郭志蘭,車路陽,孫震曉,劉長振
1.北京中醫(yī)藥大學 中藥學院,北京 100102;2.中國中醫(yī)科學院 醫(yī)學實驗中心北京市重點實驗室,北京 100700;3.解放軍總醫(yī)院 骨科,北京 100853
TRAIL抗腫瘤的優(yōu)化研究進展
郭志蘭1,2,車路陽3,孫震曉1,劉長振2
1.北京中醫(yī)藥大學 中藥學院,北京 100102;2.中國中醫(yī)科學院 醫(yī)學實驗中心北京市重點實驗室,北京 100700;3.解放軍總醫(yī)院 骨科,北京 100853
腫瘤壞死因子相關凋亡誘導配體(TRAIL)是腫瘤壞死因子(TNF)超家族成員。因其具有選擇性殺傷絕大多數(shù)腫瘤細胞而對人體正常細胞無明顯細胞毒性的特性而被廣泛研究,并已有相關制劑進入臨床抗腫瘤研究。雖然TRAIL在體內(nèi)外實驗中均展現(xiàn)出良好的抗腫瘤效果,前期臨床研究結果也表明了其相對安全性,但其臨床抗腫瘤效果卻不太理想??偨Y其臨床效果差的主要原因,可能有體內(nèi)穩(wěn)定性差、腫瘤靶向性差、腫瘤獲得性耐受等。對于TRAIL臨床療效差的問題,許多針對性的研究也相應開展,目前已有不少報道表明通過一些合理的優(yōu)化方式有可能解決上述問題。我們從TRAIL的基因治療、重組蛋白及死亡受體抗體治療、TRAIL聯(lián)合用藥治療及其他治療方法等方面,簡要綜述TRAIL在抗腫瘤方面的應用及其應用中的優(yōu)化。
腫瘤壞死因子相關凋亡誘導配體(TRAIL);抗腫瘤;穩(wěn)定性;靶向性;耐受
目前腫瘤的治療手段主要是傳統(tǒng)的手術治療輔以藥物化療及(或)放射治療,然而傳統(tǒng)的放化療法因在殺傷腫瘤細胞的同時對人體的正常細胞也產(chǎn)生較大傷害,導致病人的不良預后及生存質(zhì)量下降。腫瘤壞死因子相關凋亡誘導配體(tumornecrosisfactorrelated apoptosis-inducing ligand,TRAIL)能選擇性殺傷腫瘤細胞而對人體正常細胞無明顯的毒副作用,為更好地治療腫瘤開辟了新的道路。隨著研究的深入,TRAIL在抗腫瘤應用中的一些問題也逐漸出現(xiàn),對其相應的改進優(yōu)化也在不斷探索中。
1.1 TRAIL概況
TRAIL是1995年Wiley等從人心肌cDNA文庫中克隆出的腫瘤壞死因子(TNF)超家族成員,與細胞凋亡配體1(apoptosis-1 ligand,Apo 1L)具有較高的同源性,故其亦被命名為Apo 2L[1]。
TNF家族是一類多功能細胞因子,參與多種細胞功能及生命過程調(diào)控,包括細胞的抗病毒、免疫調(diào)節(jié)功能及生長、分化、凋亡過程等[2],其中3種分子——TNF-α、Fas-L和TRAIL可通過與相應受體的結合將死亡信號傳入細胞,誘導凋亡[3]。與前兩者比較,TRAIL的不同之處在于:①具有特異性誘導腫瘤細胞凋亡的能力,但對正常細胞無明顯的細胞毒性;②有更廣的抗癌譜;③TNF-α和Fas-L會導致人體產(chǎn)生嚴重的炎癥反應,而TRAIL對NF-κB僅有微弱激活作用。因此,TRAIL被認為是一種更為安全且極具潛力的抗腫瘤因子[4]。
1.2 TRAIL受體
與TNF家族其他成員一樣,TRAIL的活性單位為同源三聚體,在與細胞表面特異性受體結合后發(fā)揮功能。目前已確認了TRAILR1、TRAILR2、TRAILR3、TRAILR4和骨保護素(osteoprotegerin,OPG)共5種TRAIL的不同受體[5]。根據(jù)功能和結構的不同,可將TRAIL受體分為3類:①死亡受體(death receptor,DR),包括DR4(TRAILR1)、DR5(TRAILR2),兩者均含死亡結構域并能向細胞內(nèi)傳遞死亡信號,當TRAIL與DR結合時,能夠觸發(fā)TRAIL誘導細胞凋亡;②誘騙受體(decoy recep?tor,DcR),包括DcR1(TRAILR3)、DcR2(TRAILR4),兩者胞外區(qū)均有2個與DR4、DR5高度同源的富含半胱氨酸的重復序列,但DcR1缺失胞質(zhì)區(qū)域死亡結構域,DcR2只包含短的但無功能的死亡結構域,故兩者能與TRAIL結合卻不能傳導凋亡信號,當TRAIL與DcR結合時,可以逃逸TRAIL誘導的凋亡,抑制細胞凋亡途徑[6];③OPG,是一種分泌性蛋白質(zhì),在體內(nèi)主要作為NF-κB受體活化因子配體(receptor activator for NF-κB ligand,RANKL)的誘導受體,起減少破骨細胞數(shù)量、增加骨密度、促進骨質(zhì)沉積的作用[7-8]。
TRAIL因其特異性殺傷腫瘤且抗癌譜廣而具有廣泛的臨床應用前景,但其在實際臨床應用中的效果卻不盡如人意。下面將對迄今TRAIL在腫瘤治療中的主要應用方式及優(yōu)化做簡要綜述。
2.1 TRAIL的基因治療
TRAIL的基因治療主要是指用真核病毒載體轉染靶細胞后,通過表達的TRAIL來殺傷靶細胞。目前研究較多的病毒載體主要是腺病毒(ad?enovirus,Ad)和腺相關病毒(adeno-associated vi?rus,AAV)。Yang等[9]構建了包含全長TRAIL基因的腺病毒載體Ad-TRAIL,轉染NSCLC細胞系包括YTMLC、GLC、A549及H460等細胞后均導致細胞活力明顯下降且凋亡率增加;在接種了YTMLC的裸鼠腫瘤內(nèi)注射Ad-TRAIL后明顯抑制了裸鼠體內(nèi)腫瘤的生長。Shi等[10]構建了攜帶可溶性TRAIL基因的重組腺相關病毒載體rAAV2/5-sTRAIL,在A549細胞感染實驗中引起了細胞的明顯凋亡;在異種移植及原位移植肺癌荷瘤小鼠模型中,rAAV2/5-sTRAIL的介入治療明顯減少了腫瘤的生長并延長了小鼠存活時間;此外該載體對體外培養(yǎng)的人原代肝細胞和荷瘤小鼠多個器官均無毒性,因此有望成為治療肺癌的一種有效方法。對TRAIL基因治療的優(yōu)化改進方案也在不斷摸索中。Wang等[11]構建的由人端粒酶逆轉錄酶hTERT啟動子調(diào)控TRAIL表達的腺病毒載體AAV-hTERT-TRAIL,其中hTERT啟動子作為一種腫瘤組織特異性啟動子可以使AAV-hTERTTRAIL的腫瘤靶向性大大提高。Chen等[12]結合腫瘤組織中低氧環(huán)境的特性及減毒鼠傷寒沙門桿菌能在腫瘤低氧環(huán)境中特異性生長的特點,構建了受低氧誘導的啟動子調(diào)控的能分泌表達TRAIL的沙門菌株VNP20009,結果表明VNP20009能特異性靶向腫瘤細胞并分泌TRAIL,顯著促進黑色素瘤細胞的凋亡、抑制黑色素瘤的生長并延長荷瘤小鼠的生存時間。Luo等[13]巧妙地設計了由具有抗癌活性的雙胍作為脂質(zhì)體頭部的陽離子脂質(zhì)體DOBP,并用DOBP包裹TRAIL質(zhì)粒進入脂質(zhì)體-魚精蛋白-DNA(LPD)納米粒中形成DOBPLPD-TRAIL的納米微粒來進行基因運輸。一方面該結構協(xié)同了TRAIL與雙胍的抗腫瘤作用,另一方面新的DOBP載體作為基因運輸?shù)男问奖苊饬瞬《据d體可能導致的免疫原性反應,為拓寬TRAIL基因治療腫瘤譜提供了新可能。
2.2 TRAIL重組蛋白及DR抗體
第一代TRAIL重組蛋白及DR抗體的臨床前研究表明其抗腫瘤效果均較理想,Ⅰ期臨床研究結果證明了兩者在一定使用劑量下的安全性[14],但后期的臨床療效卻皆不盡如人意。
早期研究較多的TRAIL重組蛋白主要有全長、胞外區(qū)部分以及添加His或Flag標簽序列的TRAIL,而其中有效、無肝毒性并順利進入Ⅰ期臨床研究的只有由TRAIL第114~281位殘基組成的不含標簽的重組蛋白Apo2L.0(AMG-951/Dulaner?min)。雖然Ⅰ期臨床結果表明其對人體安全,但治療效果卻不理想[15-16]??笵R4/DR5的DR抗體效果也類似,如人源抗DR4的單克隆抗體(Mapa?tumumab/HGS-ETR1)和人源抗DR5的單克隆抗體(Lexatumumab/HGS-ETR2、HGS-TR2J)對腎癌、膀胱癌及前列腺癌等泌尿生殖系統(tǒng)的癌細胞具有明顯的誘導凋亡作用,Lexatumumab對體內(nèi)腎癌種植模型也具有明顯的抗腫瘤作用[17],但兩者均未達到臨床治療療效[18]??偨YTRAIL重組蛋白和DR抗體臨床療效差的主要原因可能有:①穩(wěn)定性差,血液中半衰期短導致生物活性降低而無法充分發(fā)揮其促凋亡效用;②靶向性差,絕大多數(shù)血液中的重組TRAIL或DR抗體無法到達相應的腫瘤部位而導致效用降低。針對這2點,對重組TRAIL或DR抗體相應的改造優(yōu)化也不斷發(fā)展。
增加其穩(wěn)定性的方法主要包括對其結構自身穩(wěn)定性進行優(yōu)化、與具有良好藥動學性質(zhì)的成分結合及一些劑型上的優(yōu)化等。Rozanov等[19]構建的含有亮氨酸拉鏈(LZ)的LZ-TRAIL嵌合體同天然TRAIL類似,以三聚體的形式發(fā)揮作用,但穩(wěn)定性卻大大提升,由原來報道的數(shù)分鐘的半衰期延長至超過一小時,并且在體內(nèi)外實驗中均表現(xiàn)出高效且特異性的殺傷腫瘤效果。人血清白蛋白(HSA)及PEG是近年研究較多的藥動學性質(zhì)良好的成分,許多科研人員嘗試將兩者與TRAIL結合,并取得了不錯的結果。Kim等[20]將TRAIL裝載到HSA納米顆粒中,使得TRAIL的半衰期明顯延長,生物活性顯著升高。Li等[21]則將HSA高親和力的配體與TRAIL結合,使其能與體內(nèi)的HSA結合并以HSA為載體進行運輸,增加了TRAIL的穩(wěn)定性及抗腫瘤效果。與PEG結合則是又一種優(yōu)化TRAIL生物活性的方式。Kim等[22]利用聚乳酸-乙醇酸共聚物(PLGA)微球緩釋系統(tǒng)裝載并運輸PEG-TRAIL,與TRAIL微球相比,PEG-TRAIL微球起始突釋率低、持續(xù)誘凋亡時間長、持續(xù)釋藥時間長,且體內(nèi)抗腫瘤效果更好,未發(fā)現(xiàn)明顯的副作用。
增加其靶向性的思路主要是通過scFv-TRAIL的形式將TRAIL與分子相對較小的單鏈抗體(scFv)融合[23],因scFv可特異性靶向腫瘤細胞表面或腫瘤微環(huán)境中的特異性高表達抗原,故可顯著提高TRAIL對腫瘤的靶向性。Edwin等[24]設計了scFvC54-sTRAIL,其中C54片段能特異性結合EGP2,一種在許多人類癌細胞(如結直腸癌、乳腺癌、小細胞肺癌等)表面高表達的抗原,進而達到靶向結合并殺傷癌細胞的效應。次年,Ed?win等[25]又報道了靶向CD7抗原構建的融合蛋白scFvCD7-sTRAIL,其中CD7作為一種在絕大多數(shù)T細胞瘤表面表達的糖蛋白,具有一定特異性。結果證實scFvCD7-sTRAIL能特異性地對急性T淋巴細胞白血病細胞產(chǎn)生明顯的促凋亡效應,而對正常人血細胞及內(nèi)皮細胞無明顯毒副作用。Liuqin等[26]構造的Ad-KDRscFv-sTRAIL則是通過Ad-KDRscFv靶向血管內(nèi)皮細胞生長因子(VEGF)受體KDR,因KDR主要在腫瘤血管內(nèi)皮細胞及腫瘤細胞表面表達,進而將TRAIL聚集到腫瘤組織部位。Ad-KDRscFv-sTRAIL不僅增強了TRAIL的靶向性,同時阻斷了VEGF與KDR的結合,抑制腫瘤血管生成,降低微血管密度,在體內(nèi)外實驗中都展現(xiàn)出良好的抑瘤效果。Trebing等[27]將靶向人CD70的scFv(lαhCD70)與添加了韌黏素C(TNC)的相對TRAIL更穩(wěn)定的TNC-TRAIL連接形成融合蛋白scFv-lαhCD70-TNC-TRAIL。CD70作為一個免疫調(diào)節(jié)分子,在多種腫瘤組織中廣泛表達,尤其是在腎癌、成神經(jīng)膠質(zhì)瘤及多種血液腫瘤中,而在正常細胞中較少表達,因此具有一定的靶向性。結果表明scFv-lαhCD70-TNC-TRAIL對于CD70特異性表達的腫瘤具細胞具有明顯的特異性死亡誘導效應。
另外還存在一些兼顧增強穩(wěn)定性和靶向性的改進方案。Kim等[28]通過兩步N端特異性PEG化的方法將轉鐵蛋白(transferrin,Tf)通過PEG與TRAIL結合,得到Tf-PEG-TRAIL,Tf具有腫瘤靶向性、PEG化能夠通過延緩腎臟代謝分泌而有效延長藥物在體內(nèi)的停留時間,實驗結果也證明了Tf-PEG-TRAIL的靶向性及穩(wěn)定性與TRAIL相比有了明顯提升,抗腫瘤效果也明顯提高,有望成為腫瘤治療的有效藥物。
2.3 TRAIL的聯(lián)合用藥
研究表明,TRAIL不僅單獨使用時具有抗腫瘤功效,而且與多種藥物之間存在抗腫瘤的協(xié)同作用。
比較常見的是其與一些常規(guī)化療藥物的聯(lián)合使用,在協(xié)同促進誘導腫瘤凋亡的同時,因化療藥物用量的減少而大大降低化療藥物帶來的副作用。順鉑是一種被廣泛用于多種實體腫瘤臨床治療的化療藥物。Li等[29]的研究表明其與TRAIL的聯(lián)用在體內(nèi)外實驗中均能明顯抑制對TRAIL耐受的卵巢癌細胞生長;Yin等[30]指出,其與TRAIL的聯(lián)用對抗雌性激素藥耐受的乳腺癌細胞表現(xiàn)出良好的殺傷作用,有望成為抗雌激素耐受的乳腺癌患者治療的新策略。紫杉醇是另一類聯(lián)用化療藥物。Hunter等[31]指出,對紫杉醇耐受的小細胞肺癌細胞在紫杉醇與TRAIL聯(lián)用時出現(xiàn)明顯的凋亡,其機制可能與一些非Caspase凋亡蛋白相關的凋亡誘導因子的活化相關;Li等[32]研究指出,紫杉醇與TRAIL的聯(lián)用使原本對TRAIL耐受的胃癌細胞出現(xiàn)明顯的凋亡反應,顯著增強了TRAIL的抗腫瘤活性,其機制可能與MAPK信號通路的抑制有關。其他聯(lián)用的化療藥物如多柔比星、依托泊苷、奧沙利鉑等[33-38]在實驗室階段均表現(xiàn)出逆轉部分腫瘤細胞的耐藥性或增強TRAIL殺傷作用的效果。
一些與TRAIL抗性相關蛋白的抑制劑如組蛋白去乙酰化酶抑制劑(HDACi)、蛋白酶體抑制劑、熱激蛋白(HSP)抑制劑、PI3K抑制劑等與TRAIL聯(lián)合也可增強TRAIL的抗腫瘤效果。這些抑制劑主要是通過修復TRAIL抗性產(chǎn)生過程中一些錯誤的細胞進程,包括表觀遺傳調(diào)控、蛋白質(zhì)合成、折疊及降解、代謝過程的失調(diào)等來逆轉腫瘤細胞對TRAIL的抗性[39-41]。
此外,許多中藥成分也可促進TRAIL的抗腫瘤功效。研究較多的如雷公藤內(nèi)酯可與TRAIL結合對多種腫瘤細胞,如肺癌、前列腺癌、胰腺癌及腎細胞癌等起到協(xié)同殺傷作用[42-45]。許多研究表明姜黃素也可顯著增強TRAIL對許多腫瘤,如神經(jīng)纖維瘤蛋白缺陷的惡性周圍神經(jīng)鞘膜腫瘤(MPNST)、乳腺癌、卵巢癌等的細胞毒性[46-48]。其他中藥成分如黃芩素、苦參黃素、白藜蘆醇、青蒿脂、木樨草素等[49]也被報道可逆轉腫瘤細胞對TRAIL的抗性或增強TRAIL的抗腫瘤活性。
聯(lián)合用藥還可以進一步與增強TRAIL穩(wěn)定性和靶向性相結合。Thao等[50]利用HSA以納米顆粒的形式共運輸多柔比星和TRAIL,實現(xiàn)了與化療藥物的聯(lián)合并具備了納米藥物穩(wěn)定性好、生物利用度高、靶向性強和緩釋的功能,在對結腸癌的體內(nèi)外研究中均表現(xiàn)出了卓越的抗腫瘤效果。
2.4 其他
TRAIL與干細胞治療、免疫療法的結合同樣是研究者的努力方向。Cihui等[51]報道了一種雙重靶向治療非霍奇金淋巴瘤的體系,該體系以人源臍帶間充質(zhì)干細胞為載體,利用其自身的腫瘤靶向性特性遷移到腫瘤部位,分泌的scFvCD20-sTRAIL進一步靶向CD20特異性表達的腫瘤細胞,為非霍奇金氏淋巴瘤的治療帶來新希望。
除上述幾種TRAIL應用方式外,現(xiàn)有研究還嘗試將微生物與TRAIL結合來治療一些相關腫瘤。Fabien等[52]使用一種食物級別的益生菌——費氏丙酸桿菌作為TRAIL在結直腸癌治療中的佐劑。結果表明經(jīng)費氏丙酸桿菌發(fā)酵過的牛奶、DMEM培養(yǎng)基上清或發(fā)酵的短鏈脂肪酸代謝產(chǎn)物(丙酸和乙酸)能顯著增強TRAIL誘導的結直腸癌細胞凋亡,而對人的正常腸道上皮細胞無細胞毒作用,為臨床結直腸癌的治療提供了新思路。
TRAIL的發(fā)現(xiàn)可以說是抗腫瘤研究歷程中的重大事件之一。其對腫瘤細胞的選擇性殺傷而對絕大多數(shù)正常細胞無細胞毒性使得該蛋白成為抗腫瘤界的明星分子。對于TRAIL的相關機制及應用研究很多,相應的一些制品也已進入臨床研究。然而盡管前期實驗階段TRAIL的抗腫瘤效果顯著,臨床驗證結果卻不盡如人意。其主要原因大致為:①TRAIL在體內(nèi)的穩(wěn)定性差,半衰期短,生物利用率低;②TRAIL的靶向性差,大部分TRAIL無法到達腫瘤區(qū)域,而在血液循環(huán)過程中逐漸失活;③一些原本對TRAIL敏感的腫瘤細胞變得對TRAIL耐受。針對TRAIL的穩(wěn)定性及靶向性,研究者們從不同角度對TRAIL的性能嘗試了多種方式的優(yōu)化并取得了一定進展,包括對TRAIL自身結構的優(yōu)化、添加藥動學性質(zhì)較好的分子增加穩(wěn)定性并改善藥動學性質(zhì);與靶向腫瘤表面特異性抗原的scFv融合增加靶向性;利用能夠靶向腫瘤且增加TRAIL穩(wěn)定性的載體進行運輸及釋放等。針對腫瘤細胞對TRAIL的耐受,目前的主要方法就是聯(lián)合用藥,包括與化療藥物及一些天然產(chǎn)物的聯(lián)合。針對TRAIL的這些改進方案已不再局限于分子細胞生物學領域,還涉及藥代動力學、免疫學、材料學、制劑等,不同領域的優(yōu)勢結合將為腫瘤的治療帶來新希望。
盡管上述關于TRAIL優(yōu)化的幾種治療方案目前在實驗階段都表現(xiàn)出了良好的抗腫瘤效果,且相比于單一的TRAIL基因、TRAIL蛋白或DR抗體在生物活性方面也都有明顯改善,但其安全性方面仍有許多須驗證的地方,如TRAIL基因治療所用的病毒載體是否會引起人體免疫反應,TRAIL結構的修飾是否會導致其對正常細胞產(chǎn)生細胞毒性,腫瘤抗原scFv是否足夠特異、是否會殺傷正常細胞,如果對正常細胞有殺傷,抗腫瘤與對正常細胞的傷害可否折衷,等等。這些問題還需要進一步的動物實驗及臨床驗證。
[1]Wiley S R,Schooley K,Smolak P J,et al.Identifica?tion and characterization of a new member of the TNF family that induces apoptosis[J].Immunity,1995,3 (6):673-682.
[2]薩其拉,劉孟珉,賀福初.TNF受體家族介導的細胞凋亡信號轉導[J].生物化學與生物物理進展,1999,26(4): 327-330.
[3]Mackay F,Kalled S L.TNF ligands and receptors in autoimmunity:an update[J].Curr Opin Immunol,2002, 14(6):783-790.
[4]范開,羅嵐,劉洪洪.腫瘤壞死因子誘導凋亡配體TRAIL研究進展[J].重慶理工大學學報(自然科學), 2011,25(2):47-52.
[5]Kim Y,Seol D W.TRAIL,a mighty apoptosis inducer [J].Mol Cells,2003,15(3):283-293.
[6]Johnstone R W,Frew A J,Smyth M J.The TRAIL apoptotic pathway in cancer onset,progression and therapy[J].Nat Rev Cancer,2008,8(10):782-798.
[7]Lacey D L,Timms E,Tan H L,et al.Osteoproteger?in ligand is a cytokine that regulates osteoclast differ?entiation and activation[J].Cell,1998,93(2):165-176.
[8]Ashkenazi A.Targeting death and decoy receptors of the tumour-necrosis factor superfamily[J].Nat Rev Cancer,2002,2(6):420-430.
[9]Yang F,Shi P,Xi X,et al.Recombinant adenovirus?es expressing TRAIL demonstrate antitumor effects on non-small cell lung cancer(NSCLC)[J].Med Oncol, 2006,23(2):191-204.
[10]Shi J,Zheng D X,Liu Y X,et al.Overexpression of soluble TRAIL induces apoptosis in human lung ade?nocarcinoma and inhibits growth of tumor xenografts in nudemice[J].Cancer Res,2005,65(5):1687-1692.
[11]Wang Y,Huang F,Cai H,et al.Potent antitumor ef?fect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma[J].J Gene Med,2008,10(5): 518-526.
[12]Chen J,Yang B,Cheng X et al.Salmonella-mediated tumor-targeting TRAIL gene therapy significantly sup?presses melanoma growth in mouse model[J].Cancer Sci,2012,103(2):325-333.
[13]Luo C,Miao L,Zhao Y,et al.A novel cationic lipid with intrinsic antitumor activity to facilitate gene thera?py of TRAIL DNA[J].Biomaterials,2016,102:239-248.
[14]Wakelee H A,Patnaik A,Sikic B I,et al.Phase I and pharmacokinetic study of lexatumumab (HGSETR2)given every 2 weeks in patients with advanced solid tumors[J].Ann Oncol,2010,21(2):376-381.
[15]Herbst R S,Eckhardt S G,Kurzrock R,et al.Phase I dose-escalation study of recombinant human Apo2L/ TRAIL,a dual proapoptotic receptor agonist,in pa?tients with advanced cancer[J].J Clin Oncol,2010,28 (17):2839-2846.
[16]Soria J C,Márk Z,Zatloukal P,et al.Randomized Pphase II study of dulanermin in combination with pa?clitaxel,carboplatin,and bevacizumab in advanced non-small-cell lung cancer[J].J Clin Oncol,2011,29 (33):4442-4451.
[17]Plummer R,Attard G,Pacey S,et al.Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers[J].Clin Cancer Res,2007,13 (20):6187-6194.
[18]Micheau O,Shirley S,Dufour F.Death receptors as targets in cancer[J].Br J Pharmacol,2013,169(8):1723-1744.
[19]Rozanov D V,Savinov A Y,Golubkov V S,et al.En?gineering a leucine zipper-TRAIL homotrimer with im?proved cytotoxicity in tumor cells[J]. Mol Cancer Ther,2009,8(6):1515-1525.
[20]Kim T H,Jiang H H,Youn Y S,et al.Preparation and characterization of Apo2L/TNF-related apoptosisinducing ligand-loaded human serum albumin nanopar?ticles with improved stability and tumor distribution [J].J Pharm Sci,2011,100(2):482-491.
[21]Li R,Yang H,Jia D,et al.Fusion to an albuminbinding domain with a high affinity for albumin ex?tends the circulatory half-life and enhances the in vi?vo antitumor effects of human TRAIL[J].J Control Rel,2016,228:96-106.
[22]Kim T H,Jiang H H,Park C W,et al.PEGylated TNF-related apoptosis-inducing ligand(TRAIL)-loaded sustained release PLGA microspheres for enhanced sta?bility and antitumor activity[J].J Control Rel,2011,150 (1):63-69.
[23]Kortt A A,Dolezal O,Power B E,et al.Dimeric and trimeric antibodies:high avidity scFvs for cancer tar?geting[J].Biomol Eng,2001,18(3):95-108.
[24]Bremer E,Kuijlen J,Samplonius D,et al.Target cellrestricted and-enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2[J].Int J Can?cer,2004,109(2):281-290.
[25]Bremer E,Samplonius D F,Peipp M,et al.Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-relat?ed apoptosis-inducing ligand fusion protein with speci?ficity for human CD7[J].Cancer Res,2005,65(8):3380-3388.
[26]Yang L,Guo J,Wang J,et al.Ad-KDRscFv:sTRAIL displays a synergistic antitumor effect without obvious cytotoxicity to normal tissues[J].Int Immunopharmacol, 2012,13(10:37-45.
[27]Trebing J,El-Mesery M,Sch?fer V,et al.CD70-re?stricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants[J].Cell Death Dis,2014,5:e1035.
[28]Kim T H,Jo Y G,Jiang H H,et al.PEG-transferrin conjugated TRAIL(TNF-related apoptosis-inducing li?gand)for therapeutic tumor targeting[J].J Control Rel, 2012,162(2):422-428.
[29]Li F,Guo Y,Han L,et al.In vitro and in vivo growth inhibition of drug-resistant ovarian carcinoma cells using a combination of cisplatin and a TRAIL-encoding retrovirus[J].Oncol Lett,2012,4(6):1254-1258.
[30]Yin S,Rishi A K,Reddy K B.Anti-estrogen-resis?tant breast cancer cells are sensitive to cisplatin plus TRAIL treatment[J].Oncol Rep,2015,33(3):1475-1480.
[31]Hunter T B,Manimala N J,Luddy K A,et al.Pacli?taxel and TRAIL synergize to kill paclitaxel-resistant small cell lung cancer cells through a caspase-inde?pendent mechanism mediated through AIF[J].Antican?cer Res,2011,31(10):3193-3204.
[32]Li L,Wen X Z,Bu Z D,et al.Paclitaxel enhances tumoricidal potential of TRAIL via inhibition of MAPK in resistant gastric cancer cells[J].Oncol Rep, 2016,35(5):3009-3017.
[33]Wang S,Ren W,Liu J,et al.TRAIL and doxorubi?cin combination induces proapoptotic and antiangiogen?ic effects in soft tissue sarcoma in vivo[J].Clin Can?cer Res,2010,16(9):2591-2604.
[34]Kang J,Bu J,Hao Y,et al.Subtoxic concentration of doxorubicin enhances TRAIL-induced apoptosis in hu?man prostate cancer cell line LNCaP[J].Prostate Can?cer Prostatic Dis,2005,8(3):274-279.
[35]Kim H R,Lee M W,Kim D S,et al.Etoposide sensi?tizes neuroblastoma cells expressing caspase 8 to TRAIL[J].Cell Biol Int Rep,2012,19(1):e00017.
[36]El Fajoui Z,Toscano F,Jacquemin G,et al.Oxaliplat?in sensitizes human colon cancer cells to TRAIL through JNK-dependent phosphorylation of Bcl-xL[J]. Gastroenterology,2011,142(2):663-673.
[37]Xu L,Qu X,Zhang Y,et al.Oxaliplatin enhances TRAIL-induced apoptosis in gastric cancer cells by CBL-regulated death receptor redistribution in lipid rafts[J].FEBS Lett,2009,583(5):943-948.
[38]Huang T,Gong W H,Li X C,et al.Oxaliplatin sensi?tizes OS cells to TRAIL-induced apoptosis via downregulation of Mcl1[J].Asian Pac J Cancer Prev,2012, 13(7):3477-3481.
[39]Mérino D,Lalaoui N,Morizot A,et al.TRAIL in can?cer therapy:present and future challenges[J].Expert Opin Ther Targets,2007,11(10):1299-1314.
[40]Johnstone R W,Frew A J,Smyth M J.The TRAIL apoptotic pathway in cancer onset,progression and therapy[J].Nat Rev Cancer,2008,8(10):782-798.
[41]Trivedi R,Mishra D P.Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells [J].Front Oncol,2015,5:69.
[42]Lee K Y,Park J S,Jee Y K,et al.Triptolide sensitiz?es lung cancer cells to TNF-related apoptosis-induc?ing ligand(TRAIL)-induced apoptosis by inhibition of NF-κB activation[J].Exp Mol Med,2002,34(6):462-468.
[43]Xiaowen H,Yi S.Triptolide sensitizes TRAIL-induced apoptosis in prostate cancer cells via p53-mediated DR5 up-regulation[J].Mol Biol Rep,2012,39(9):8763-8770.
[44]Chen Z,Sangwan V,Banerjee S,et al.Triptolide sen?sitizes pancreatic cancer cells to TRAIL-induced acti?vation of the death receptor pathway[J].Cancer Lett, 2014,348(1-2):156-166.
[45]Brincks E L,Kucaba T A,James B R,et al.Trip?tolide enhances the tumoricidal activity of TRAIL against renal cell carcinoma[J].FEBS J,2015,282(24): 4747-4765.
[46]Reuss D E,Mucha J,Haqenlocher C,et al.Sensitivi?ty of malignant peripheral nerve sheath tumor cells to TRAIL is augmented by loss of NF1 through modula?tion of MYC/MAD and is potentiated by curcumin through induction of ROS[J].PLoS One,2013,8(2): e57152.
[47]Park S,Cho D H,Andera L,et al.Curcumin enhanc?es TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins[J].Mol Cell Bio?chem,2013,383(1-2):39-48.
[48]Wahl H,Tan L,Griffith K,et al.Curcumin enhances Apo2L/TRAIL-induced apoptosis in chemoresistant ovarian cancer cells[J].Gynecol Oncol,2007,105(1): 104-112.
[49]Dai X,Zhang J,Arfuso F,et al.Targeting TNF-relat?ed apoptosis-inducing ligand(TRAIL)receptor by natu?ral products as a potential therapeutic approach for cancer therapy[J].Exp Biol Med(Maywood),2015,240 (6):760-773.
[50]Thao le Q,Byeon H J,Lee C,et al.Doxorubicinbound albumin nanoparticles containing a TRAIL pro?tein for targeted treatment of colon cancer[J].Pharm Res,2016,33(3):615-626.
[51]Yan C,Li S,Li Z,et al.Human umbilical cord mes?enchymal stem cells as vehicles of CD20-specific TRAIL fusion protein delivery:a double-target thera?py against non-Hodgkin's lymphoma[J].Mol Pharm, 2013,10(1):142-151.
[52]Cousin F J,Jouan-Lanhouet S,Théret N,et al.The probiotic Propionibacterium freudenreichii as a new ad?juvant for TRAIL-based therapy in colorectal cancer [J].Oncotarget,2016,7(6):7161-7178.
Advances in Optimization of TRAIL in Anti-Tumor Appli?cation
GUO Zhi-Lan1,2,CHE Lu-Yang3,SUN Zhen-Xiao1*,LIU Chang-Zhen2*
1.College of Chinese Pharmacy,Beijing University of Chinese Medicine,Beijing 100102;2.Beijing Key Laborato?ry of Research of Chinese Medicine on Prevention and Treatment for Major Diseases,Experimental Research Cen?ter,China Academy of Chinese Medical Sciences,Beijing 100700;3.Department of Orthopedics,Chinese PLA General Hospital,Beijing 100853;China
As a member of tumor necrosis factor(TNF)superfamily,tumor necrosis factor related apoptosis-in?ducing ligand(TRAIL)is well known for its capability to induce apoptosis in a wide range of tumor cells while having minimal toxicity to normal human cells.Thus,there are many researches related to TRAIL,and some agents targeting TRAIL receptors(TRAILR)have been into the clinical period.Although TRAIL showed great po?tential in tumor killing in preclinical period and its safety was verified in the early clinical result,its anti-tumor effects in clinical therapy is not satisfied.The main reasons for the poor effect may include:a short half-life in vi?vo,poor tumor targeting ability and acquired resistance to TRAIL.To deal with this defection of TRAIL,numerous related studies are in progress,and,excitingly,a number of reports have revealed that appropriate optimization of TRAIL in such as structure,dosage form and adjuvants combination is of great potential.In this review,the antitumor application of TRAIL and its optimization process were summarized from TRAIL gene therapy,recombinantTRAIL and agonists targeting death receptors,TRAIL combination and other therapy strategies.
tumor necrosis factor related apoptosis-inducing ligand(TRAIL);antitumor;stability;targeting abili?ty;acquired resistance
Q25
A
1009-0002(2017)02-0175-07
10.3969/j.issn.1009-0002.2017.02.023
2016-08-25
國家自然科學基金(31170829,81171762,81550017,81473418);中國中醫(yī)科學院自主選題項目(zz2015015)
郭志蘭(1992-),女,碩士研究生
劉長振,(E-mail)lcz0220@163.com;孫震曉,(E-mail)sunzxcn@hotmail.com
*Co-corresponding anthors,LIU Chang-Zhen,E-mail:lcz0220@163.com;SUN Zhen-Xiao,E-mail:sunzxcn@hotmail.com