• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?

    2021-09-28 02:18:36QiWeiLi李奇威JingSun孫靜FuXingLi李福星ChangChunChai柴常春JunDing丁君andJinYongFang方進(jìn)勇
    Chinese Physics B 2021年9期
    關(guān)鍵詞:孫靜常春福星

    Qi-Wei Li(李奇威),Jing Sun(孫靜),Fu-Xing Li(李福星),Chang-Chun Chai(柴常春),Jun Ding(丁君),and Jin-Yong Fang(方進(jìn)勇)

    1School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China

    2China Academy of Space Technology(Xi’an),Xi’an 710100,China

    3Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords:high power microwave,pseudomorphic high electron mobility transistor,damage mechanism,C band,low noise amplifier(LNA)

    1.Introduction

    With the rapid development of microwave technology,microwave devices are widely used in microwave communication,navigation,telemetry,remote control,satellite communication,and military electronic countermeasures.At the same time,the rapid development of microwave power supply technology makes electromagnetic pulse interference more and more dangerous to microwave semiconductor devices.[1]A large number of simulations and experiments have been carried out to study the electromagnetic immunity of high-power microwave(HPM)at the system or component level.[2–7]

    As a typical electromagnetic pulse,narrow-band microwave pulses with a peak power up to several GW and a pulse width of about 100 ns have been reported.[8,9]Such the HPM can be coupled from the front or back doors to disrupt or damage power systems.When irradiated by a strong electromagnetic pulse,the front door coupling through the antenna port will have a large amplitude,especially if the operating frequency band is within the radiation frequency band of the electromagnetic pulse.Therefore,the HPM is considered to be a serious threat to IT infrastructure and communication equipment,especially for radio frequency(RF)front-end components.

    In the previous study,Zhang et al.studied the burnt-out characteristics of low noise amplifier(LNA)based on gallium arsenide(GaAs)pseudomorphic high electron mobility transistor(pHEMT)injected with 1.4-GHz microwave pulse.[10]Liu et al.studied the combustion destruction characteristics of Ku band microwave pulses for GaAs pHEMT.[11,12]Yu et al.[13]and Xi et al.[14]studied the nonlinear and permanent degradation of GaAs-based LNA under electromagnetic pulse(EMP).Zhou et al.studied the mechanism of GaN HEMT failure induced by HPM.[15]The C band has good anti-rain attenuation and is often used in satellite communications.However,there are few reports on the HPM effect of C band LNA.

    This paper aims to study the damage characteristics of HPM induced pHEMT in the C band from the physical perspective through simulation analysis and the experimental results.The rest of this paper is organized as follows.In Section 2,the simulation model used here is described from three aspects:the device structure,the numerical model,and the signal model.In Section 3,with the help of the device simulator Sentaurus-TCAD,the electric field intensity,the current density,and the temperature characteristics of the device are analyzed to explain the HPM damage mechanism of the device.And we conclude HPM pulse-width-dependent damage rule.In Section 4,the simulation results are compared with the experimental results,and it is determined that the gate region of the pHEMT device is the vulnerable position under the irradiation of C-band HPM.Finally,the conclusions are presented in Section 5.

    2.Simulation model

    2.1.Device structure

    Aδ-doping AlGaAs/InGaAs pHEMT is studied in this paper.Figure 1 shows its basic structure as simulated in TCAD.[16]The device cross-section consists of a 0.8-μmthick GaAs substrate,a 10-nm-deep InGaAs channel,a 34.5-nm-thick AlGaAs spacer layer,a 30-nm-thick GaAs cap layer,and a 50-nm-thick Si3N4passivation layer.There also exists aδ-doping layer,which provides the carriers for the InGaAs channel layer,in the AlGaAs spacer layer.Here,the gate length is 0.15μm and the gate width is 200μm.Furthermore,the gate Schottky barrier height is 0.9 eV and the gate recess is 15-nm deep.The source–gate separation Lgsis 0.575μm including a 40-nm-thick oxide insulation layer for reducing the gate leaking current.Its metal material of electrode is gold.[17]And it is between the source and the drain and its form is symmetric.The area surrounded by the red dotted line in Fig.1 is the vulnerable area inside pHEMT,so the model grid of this area is finely divided,and the research results are given below.

    Fig.1.Basic structure ofδ-doping AlGaAs/InGaAs pHEMT.

    2.2.Numerical model

    To study the physical effect and mechanism of HEMT’s HPM effect,we start from the basic physical equation and use Sentaurus TCAD to construct the physical equivalent model of pHEMT,including the Poisson equation and continuity equation.It is important to consider the electro-thermal effect in the simulation of the burning process of the device injected by the HPM.So the thermodynamic model is adopted to solve the internal physical quantity of the device,and the current density equation of Jnand hole Jpare revised as

    whereμn(μp)is the electron(hole)mobilityφn(φp)is the electron(hole)quasi-Fermi potential,and Pn(Pp)is the absolute thermoelectric power electron(hole).Meanwhile,with the thermodynamic model,the lattice temperature is computed from

    where cLis the lattice heat capacity,κis the thermal conductivity,k is the Boltzmann constant,ECand EVare the top of conduction band and the bottom of valance band,respectively,and Rn(Rp)is the electron(hole)recombination rate.

    Besides,the avalanche model accounting for impact ionization,the analytic-TEP model for thermal electric power,and the high-field-saturation model for electron mobility are also used in this model.[18]The description and physical equation for each of these models are available in Ref.[17].

    2.3.Signal model

    At present,in the study of the damage effect on the semiconductor device with the HPM event,lots of researchers take the sine wave as the HPM signal model.[19]So the C band HPM is assumed to be a sinusoidal wave without attenuation in this paper,and the mathematical expression is as follows:

    where U is the amplitude,f is the frequency,andφis the initial phase.Figure 2 shows the simulation circuit schematic diagram in this study.At first,the drain and the source are applied to with 12 V and grounded,respectively.And by adjusting the resistance R,the HEMT drain potential remains at 2 V when the gate potential is 0 V.Then the sinusoidal wave with a frequency f of 6.6 GHz and an initial phaseφof zero is injected into the gate terminal of pHEMT to simulate the process that the HPM energy couples into the input port of the pHEMT LNA through the front-door path.When the lattice temperature reaches the melting point of gallium arsenide 1511 K,the device is judged to be in failure and the simulation calculation is stopped.

    Fig.2.Schematic diagram of simulation circuit.

    3.Simulation results and discussion

    3.1.HPM damage effect

    In the simulation circuit described above,the HPMs with a fixed frequency of 6.6 GHz at different power levels are injected respectively into the gate port of pHEMT to explore the microwave damage characteristics of the C-band of pHEMT.Figure 3 shows the variations of the maximum temperature inside the device with time.Both the temperature change curves show periodic“rising-fall-rising”oscillations.When the HPM power equals 38.55 dBm,the highest temperature inside the device shows an overall upward trend at the beginning,and then the trend of the highest temperature inside the device stops rising and drops slightly,and finally,the trend of the highest temperature inside the device gradually stabilizes.It is inferred that in the last stage of the above-mentioned temperature change,the pHEMT device exchanges heat with the outside and the inside,and thus reaching a thermal equilibrium.Nevertheless,as the power level is elevated to 40.77 dBm,the highest temperature inside the device sharply rises and quickly reaches 1511 K(the GaAs melting point).So it can be inferred that device burn-out may occur.

    Fig.3.Variations of maximum temperature within pHEMT with time.

    Here,the situation that HPM with power of 40.77 dBm is injected into pHEMT is taken for example.Figure 4 shows the temperature distribution inside the HEMT at the time of the device burning down.In Fig.4,the change from dark blue to deep red represents the internal temperature of the device varying from 295.6 K to 1531 K.It can be seen that the hightemperature region represented by deep red is concentrated on the side of the source pole below the grid of the device,and this high-temperature region is called the hotspot inside the device.The formation mechanism of the hotspot is described below.

    Fig.4.Distribution of temperature(in unit K)at pHEMT burning time.

    3.2.HPM damage mechanism analysis

    According to Fig.3(b),the maximum temperature inside the device increases and decreases periodically,and the cycle frequency is consistent with the HPM frequency.In the following the changes of internal physical quantities of the pHEMT device during the single-cycle HPM are analyzed.Figures 5–8 show the data sampled at 0.87 ns and 0.95 ns from the simulation and the temperature distribution,electric field distribution,current distribution,and impact ionization,respectively.The values 0.87 ns and 0.95 ns are the minimum and maximum temperature peaks of the internal maximum temperature of the pHEMT device in an HPM cycle,respectively.Also,the value 0.87 ns is in the negative half cycle of the HPM and the value 0.95 ns is in the positive half cycle of the HPM signal.

    Figures 5(a)and 5(b)illustrate the distribution of temperature at 0.87 ns and 0.95 ns respectively.Obviously,the hotspot inside the device is always on the side of the source pole below the gate.And centered on the hotspot,the surrounding temperature decreases gradually.It means that the hotspot occurs where the heat is generated inside the device.However,the hotspot temperature at 0.95 ns is significantly higher than that at 0.87 ns.Therefore,the heat generated by the hotspot also varies in a single HPM cycle.

    Combining the heating curve of the pHEMT injected into HPM and the internal temperature distribution of the device,it can be obtained that the internal temperature of the device has an upward trend when the pHEMT gate is injected with HPM.And high temperature area is diffused because the heat generation is greater than the thermal diffusion in the pHEMT device.As a result,there appears a thermal accumulation effect in the device.Moreover,a large amount of heat is continuously generated and accumulated at the hotspot,which will eventually even cause a so high temperature inside the device that it exceeds the melting point of the material,and thus causing the device to burn.However,when the injected HPM power is less than a certain threshold,the internal temperature of the device will not rise any more after reaching a certain value,but will eventually stabilize.This is because the thermal diffusivity of the material increases with the temperature rising.Finally thermal output and thermal diffusion inside the device are balanced.

    Fig.5.Distribution of temperature(in unit K)at(a)0.87 ns and(b)0.95 ns.

    As can be seen from Fig.6,the electric field intensity is very high below the gate of the device,especially on both sides of the gate.This is due to the structure of the device,where the curvature is small,it is easy to form a large electric field intensity.At 0.87 ns,the maximum electric field intensity under the grid is close to that of the drain,while at 0.95 ns,the maximum electric field intensity under the grid is close to the electric field intensity of the source,because there is bias voltage at the drain.

    In Fig.7(a),at 0.87 ns,that is,in the negative half cycle,the current density is not large due to the reverse bias voltage of the Schottky junction.It can be seen from Fig.7(b)that at 0.95 ns,which is in the positive half cycle of the HPM,a current path appears under the gate and connects the gate to the InGaAs channel,and the current path is closer to the source side than to the drain.This is because the drain voltage is biased at 2 V,the gate/source voltage is greater than the gate/drain voltage.[20]The research shows that the heatproducing transistor can be expressed as Q=J·E by J current density and electric field intensity E.

    Fig.6.Distribution of electric field intensity(in units of V/cm)at(a)0.87 ns,and(b)0.95 ns.

    Fig.7.Distribution of current density(in units of A/cm2)at(a)0.87 ns,and(b)0.95 ns.

    Therefore,a lot of heat is thought to be generated in the positive half cycle.The area of high electric field intensity and high current density in the positive period device is located below the gate near the source,consistent with the location of the hotspot of the device.This indicates that the energy of HPM coupling into the device is converted into heat,causing the device to burn down.

    Figures 8(a)and 8(b)show the distribution of impact ionization at 0.87 ns and 0.95 ns of the device,respectively.The areas with impact ionization rate(in units A/cm2)less than 1×1027inside the device are shown in dark blue,and areas with impact ionization rate ranging from 1×1027to 1.2387×1032are shown in the areas from dark blue to deep red.In Fig.8(b),during the positive half cycle,the deep red area with a high ionization rate is concentrated in the lower part of the gate,and the position with the maximum ionization rate at the lower part of the gate is on the side of the source pole,which is consistent with the position of the large current channel in the lower part of the gate.However,during the negative half cycle,there is no high impact ionization region similar to the scenario during the positive half cycle in Fig.8(a).This indicates that in the positive half cycle,the grid Schottky junction is positively skewed,and the extremely strong grid field leads to an avalanche multiplier effect.In other words,the large forward bias voltage causes the gate to break down,forming a large current channel from the gate to the channel.In the negative half period,the gate/source and gate/drain voltages mostly fall on the reverse bias Schottky junction during the negative period,thereby failing to produce large collision ionization rate.

    Fig.8.Distribution of impact ionization(in units of cm?3·s?1)at(a)0.87 ns,and(b)0.95 ns.

    3.3.HPM pulse-width-dependent damage effect

    To study the HPM damage pulse width effect of pHEMT,in this paper used is the simulation model established above to inject sinusoidal signals with different voltage amplitudes and a frequency of 6.6 GHz into the input end of the pHEMT.And the simulation circuit setting is consistent with that described in Section 2.The HPM pulse width is calculated by the duration of the injected signal before the equipment burns out.Damage power threshold P is the average power absorbed by the equipment during HPM injection,and damage energy threshold E is the total energy absorbed by the equipment during HPM injection.The simulation results are shown in Fig.9.

    Fig.9.HPM damage power threshold and energy threshold versus pulse widthτ.

    The results show that with the increase of pulse width,the HPM power threshold decreases and the HPM energy threshold increases.Besides,there is a significant nonlinearity for each of the curves.By curve fitting,the empirical formula to describe the correlation can be obtained as follows:

    The above relationship is in line with the empirical formula of PN junction damage under monopulse signal presented by Wunsch and Tasca et al.[21,22]

    Figure 10 respectively show the temperature distribution of device with gate power injected at 40.49 dBm,41.71 dBm,and 42.40 dBm at the time of burnout in the above simulation,respectively.Comparing the high-temperature regions represented by the bright colors in Fig.10,it can be seen that the greater the injection power,the smaller the distribution area of the high-temperature region at the time of device burnout.This is because when more power is injected into the device,the device burns out in a shorter time and the heat does not have time to dissipate and is concentrated in a smaller area.It can be considered that the power injected by electromagnetic pulse will not change the mechanism of device burning,but only affect the burning time and the size of the high temperature zone.

    Fig.10.Distribution of temperature(in unit K)when the injected power is(a)40.49 dBm,(b)41.71 dBm,and(c)42.40 dBm.

    4.Comparison with experimental results

    The experiment is performed by directly injecting a continuous HPM at 6.6 GHz into an LNA.When the injection power exceeds 40 dBm,it is difficult to observe a stable output waveform at the output port of LNA.Therefore,the output gain of LNA is reduced by 20 dBm,which serves as a criterion to judge the damage of LNA.The experimental sample is a three-stage LNA.And the crucial transistors of the first two stages are typical GaAs pHEMT devices,whose gate length and width are consistent with those in the simulation model.By opening the package of the damaged sample,it is found that the LNA damage area is located at the first transistor gate of the LNA as shown in Fig.11.

    The scanning electron microscope(SEM)observation results of the first-level damage of the LNA are shown in Fig.12.In Fig.12(a),there are several abnormal locations in the pHEMT device,and the square area surrounded by the red line represents a typical damage area.Figure 12(b)is the magnified view of the square area enclosed by the red line in Fig.12(a).In Fig.12(b),the vertical metal strip in the middle is the gate metal of pHEMT,the left side is the source region,and the right side is the drain region.The gate metal strip is broken.Besides,the channel in the region near the gate is also damaged,and the deviation of the gate to the source side is more serious.[6,10–12]As shown in Fig.12(c),there are small balls and pits formed after the material has melted at the fracture of the gate metal strip.The damage zone of position 1 and position 2 and the normal area are analyzed by EDS,and the results are as shown in Fig.13.

    Fig.11.First-stage LNA transistors by optical microscope.

    Fig.12.Internal characteristics of damaged samples characterized by SEM.

    Fig.13.Energy spectrum analysis of damage at(a)position 1,(b)position 2,and(c)in normal area.

    As can be seen from Fig.13,the percentage composition of gold(Au)at position 1(41.45%)and the percentage composition of gold(Au)at position 2(24.68%)are significantly higher than that in the normal area(7.95%).This indicates that the gate metal Au has melted and diffused in all directions.Also,the fractions of nitrogen(5.96%)and silicon(2.78%)at place 1 are both smaller than those of nitrogen(8.61%)and silicon(4.61%)in the normal area.This indicates that the passivation layer between the gate and the source also melts and splashes out.In contrast,the nitrogen component ratio(8.00%)and silicon component ratio(9.00%)in place 2 do not decrease compared with the normal place.It is judged that the passivation layer between the gate and the drain does not burn down or burns not severely.The anatomical analysis results of the above damaged samples are consistent with the simulation results,indicating that the pHEMT will burnt out in the circuit when the HPM power is larger than a certain threshold.Furthermore,the gate of the pHEMT device,especially the gate biased to the side of the source,is the weak link under the action of HPM.

    5.Conclusions

    The C band HPM damage effects of the pHEMT devices are studied through simulation and experiment in this paper.It can be concluded that the Schottky junction undergoes an avalanche breakdown under the action of a large forward bias voltage,which results in forming a large current.And a large amount of Joule heat generated by the strong electric field and the large current density near the gate forms a hotspot.When the injected HPM power is higher than a certain threshold,the hotspot temperature oscillating rises with time.And pHEMT will eventually damage because of the thermal accumulation at the hotspot.According to the above theory and experimental results,we investigated,the key parameters causing damage to the device under typical pulse conditions,including the damage location,damage power,etc.This work has a certain reference value in evaluating the pHEMT’s microwave damage.

    猜你喜歡
    孫靜常春福星
    常春作品
    孫靜:堅(jiān)守初心 勇?lián)鷷r(shí)代使命
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    家里的寶
    兩個(gè)少年兩匹馬
    兩個(gè)女人一臺(tái)戲
    以豎直上拋運(yùn)動(dòng)為例淺談學(xué)生分組合作的習(xí)題課模式
    Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium*
    壽 酒
    西江月(2014年4期)2014-03-13 03:40:20
    等你回來(lái)
    午夜久久久在线观看| 99久久综合免费| a 毛片基地| 国产在线一区二区三区精| 国产伦理片在线播放av一区| 亚洲一区二区三区欧美精品| 亚洲av.av天堂| 啦啦啦中文免费视频观看日本| 亚洲国产精品成人久久小说| 久久狼人影院| 国产免费一级a男人的天堂| 国产精品蜜桃在线观看| 国产又爽黄色视频| 寂寞人妻少妇视频99o| 国产精品秋霞免费鲁丝片| 狂野欧美激情性xxxx在线观看| 色哟哟·www| 男男h啪啪无遮挡| 一区二区三区四区激情视频| 国产一级毛片在线| 欧美日本中文国产一区发布| 婷婷色综合大香蕉| 中文字幕av电影在线播放| 九色亚洲精品在线播放| 免费人成在线观看视频色| 美女脱内裤让男人舔精品视频| 国产精品成人在线| 观看美女的网站| 99热6这里只有精品| 男人添女人高潮全过程视频| 欧美日韩精品成人综合77777| 国产精品人妻久久久影院| 久久午夜福利片| 在线亚洲精品国产二区图片欧美| 少妇高潮的动态图| 国产精品秋霞免费鲁丝片| 国产av国产精品国产| 韩国高清视频一区二区三区| 亚洲成av片中文字幕在线观看 | 99国产精品免费福利视频| 91午夜精品亚洲一区二区三区| 亚洲精品色激情综合| 精品国产国语对白av| 三上悠亚av全集在线观看| 亚洲,欧美,日韩| 这个男人来自地球电影免费观看 | 国产麻豆69| 日本av手机在线免费观看| 青春草国产在线视频| 午夜视频国产福利| 欧美亚洲 丝袜 人妻 在线| 色哟哟·www| 欧美国产精品va在线观看不卡| 亚洲图色成人| 国产有黄有色有爽视频| 国产欧美另类精品又又久久亚洲欧美| 熟女人妻精品中文字幕| 97超碰精品成人国产| 久久久亚洲精品成人影院| 亚洲欧洲日产国产| 99热全是精品| 久久久久精品人妻al黑| 亚洲美女视频黄频| 性色avwww在线观看| 韩国精品一区二区三区 | 大香蕉97超碰在线| 日韩精品免费视频一区二区三区 | 精品国产国语对白av| 国产在线一区二区三区精| 亚洲经典国产精华液单| 亚洲精品乱久久久久久| 国产老妇伦熟女老妇高清| 欧美精品高潮呻吟av久久| 熟女电影av网| 日韩av免费高清视频| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 九九在线视频观看精品| 高清av免费在线| 午夜激情av网站| 男人添女人高潮全过程视频| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 久久久久久久大尺度免费视频| 亚洲久久久国产精品| 91国产中文字幕| 视频中文字幕在线观看| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 一边亲一边摸免费视频| 久久99热6这里只有精品| 欧美激情国产日韩精品一区| 久久久久精品久久久久真实原创| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 亚洲国产日韩一区二区| 国产精品国产三级国产av玫瑰| 亚洲欧美清纯卡通| 在线观看免费视频网站a站| 中文天堂在线官网| 男女国产视频网站| 欧美3d第一页| 国产成人精品在线电影| 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品va在线观看不卡| 青春草视频在线免费观看| 满18在线观看网站| 国产日韩一区二区三区精品不卡| 中文字幕免费在线视频6| 久久久久久久久久久免费av| 五月玫瑰六月丁香| 少妇熟女欧美另类| 精品酒店卫生间| 草草在线视频免费看| 9191精品国产免费久久| 美女中出高潮动态图| 久久久久久久久久久久大奶| 啦啦啦中文免费视频观看日本| 自线自在国产av| 成人亚洲欧美一区二区av| av免费在线看不卡| 最近的中文字幕免费完整| 国产毛片在线视频| 日本wwww免费看| 性色avwww在线观看| 亚洲三级黄色毛片| 欧美精品一区二区免费开放| videossex国产| 一个人免费看片子| 久久久亚洲精品成人影院| 美女xxoo啪啪120秒动态图| 中文字幕制服av| 亚洲av电影在线进入| 中国三级夫妇交换| 一二三四在线观看免费中文在 | 自拍欧美九色日韩亚洲蝌蚪91| 国产黄色视频一区二区在线观看| 亚洲国产日韩一区二区| 久久久久国产精品人妻一区二区| 欧美激情 高清一区二区三区| 成人手机av| 国精品久久久久久国模美| av线在线观看网站| 午夜日本视频在线| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av天美| 熟女电影av网| 国产精品一区二区在线不卡| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 精品国产国语对白av| 亚洲国产看品久久| av免费观看日本| 午夜91福利影院| 午夜影院在线不卡| 国产 一区精品| 高清不卡的av网站| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 一区二区三区四区激情视频| 一区二区日韩欧美中文字幕 | 97精品久久久久久久久久精品| 国产又爽黄色视频| 国产黄色免费在线视频| 丰满少妇做爰视频| kizo精华| 日韩精品有码人妻一区| 狂野欧美激情性bbbbbb| 久久精品人人爽人人爽视色| 最近最新中文字幕免费大全7| 午夜激情av网站| 亚洲国产日韩一区二区| 欧美另类一区| 亚洲伊人色综图| 午夜福利网站1000一区二区三区| 午夜福利视频精品| 另类亚洲欧美激情| 亚洲av成人精品一二三区| 下体分泌物呈黄色| 亚洲成色77777| 国产亚洲午夜精品一区二区久久| 自线自在国产av| 国产熟女欧美一区二区| 97在线视频观看| 国产乱来视频区| 在线天堂中文资源库| 婷婷色综合大香蕉| 久久久久精品性色| 国产一区二区激情短视频 | 男人爽女人下面视频在线观看| 熟女av电影| 亚洲av成人精品一二三区| 国产精品一区www在线观看| 亚洲成av片中文字幕在线观看 | 制服人妻中文乱码| 亚洲国产毛片av蜜桃av| 黄片无遮挡物在线观看| 精品久久久精品久久久| 免费在线观看完整版高清| 国产成人免费观看mmmm| 色婷婷久久久亚洲欧美| av有码第一页| 久久人人爽av亚洲精品天堂| 久久这里有精品视频免费| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 亚洲精品第二区| 久久国产精品大桥未久av| 搡老乐熟女国产| 久久精品夜色国产| 日本免费在线观看一区| 久久午夜综合久久蜜桃| 国产xxxxx性猛交| 亚洲色图 男人天堂 中文字幕 | videosex国产| 伦理电影免费视频| 国产色爽女视频免费观看| 只有这里有精品99| 黄色视频在线播放观看不卡| 99视频精品全部免费 在线| av天堂久久9| 亚洲国产精品国产精品| 国产黄频视频在线观看| av女优亚洲男人天堂| 免费看光身美女| 日韩三级伦理在线观看| 18禁观看日本| 大香蕉久久成人网| 黄色视频在线播放观看不卡| 日本免费在线观看一区| 久久ye,这里只有精品| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 99九九在线精品视频| 国产不卡av网站在线观看| 极品人妻少妇av视频| 人妻系列 视频| 久久人妻熟女aⅴ| 久久久久久久精品精品| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 免费黄色在线免费观看| 免费高清在线观看日韩| 久久99热这里只频精品6学生| 91成人精品电影| 91国产中文字幕| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 欧美丝袜亚洲另类| 日本黄大片高清| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 777米奇影视久久| 亚洲美女搞黄在线观看| 亚洲色图 男人天堂 中文字幕 | 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| 免费黄频网站在线观看国产| 亚洲国产精品专区欧美| 中文字幕制服av| 丝袜人妻中文字幕| 久久精品国产综合久久久 | 亚洲国产精品一区三区| 国产午夜精品一二区理论片| 啦啦啦在线观看免费高清www| 亚洲图色成人| 免费播放大片免费观看视频在线观看| 另类精品久久| 国产极品天堂在线| 国产 精品1| 中文字幕人妻丝袜制服| 亚洲婷婷狠狠爱综合网| 欧美激情 高清一区二区三区| 久久人人爽人人爽人人片va| 一级爰片在线观看| 99热国产这里只有精品6| 少妇人妻精品综合一区二区| 亚洲一码二码三码区别大吗| 婷婷色综合www| 成年人免费黄色播放视频| 精品一区在线观看国产| 免费人成在线观看视频色| 日日撸夜夜添| 国产乱人偷精品视频| 91aial.com中文字幕在线观看| 2021少妇久久久久久久久久久| 亚洲成色77777| 久久久久久久精品精品| 99国产精品免费福利视频| 欧美少妇被猛烈插入视频| 精品一品国产午夜福利视频| 亚洲精品色激情综合| 老熟女久久久| 精品一区二区三区四区五区乱码 | 日韩人妻精品一区2区三区| 精品久久久精品久久久| 99国产综合亚洲精品| 久久 成人 亚洲| 高清视频免费观看一区二区| 中国国产av一级| 亚洲精品久久成人aⅴ小说| 亚洲成国产人片在线观看| 中文字幕免费在线视频6| 欧美精品一区二区免费开放| 久久精品久久久久久久性| 亚洲av欧美aⅴ国产| 人妻人人澡人人爽人人| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| www.av在线官网国产| 久久午夜综合久久蜜桃| 欧美激情 高清一区二区三区| 多毛熟女@视频| 又黄又爽又刺激的免费视频.| 精品久久久久久电影网| 熟妇人妻不卡中文字幕| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 日本黄大片高清| 日韩免费高清中文字幕av| 精品酒店卫生间| 久久青草综合色| 日韩成人伦理影院| 青青草视频在线视频观看| 国产精品人妻久久久久久| 又粗又硬又长又爽又黄的视频| 日本91视频免费播放| 日本色播在线视频| 久久久久久久大尺度免费视频| 亚洲美女黄色视频免费看| 亚洲人与动物交配视频| a级毛片在线看网站| 亚洲国产精品成人久久小说| 美女大奶头黄色视频| av不卡在线播放| 色网站视频免费| 免费观看无遮挡的男女| 久久精品人人爽人人爽视色| 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品| 亚洲综合精品二区| 国产精品久久久久久久电影| 国内精品宾馆在线| 国产女主播在线喷水免费视频网站| 热99国产精品久久久久久7| 欧美日韩综合久久久久久| 久久 成人 亚洲| 欧美激情极品国产一区二区三区 | 国产成人精品一,二区| 亚洲精品,欧美精品| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 亚洲欧洲国产日韩| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 国产成人一区二区在线| 国产亚洲午夜精品一区二区久久| 韩国精品一区二区三区 | 黄色怎么调成土黄色| 国产又爽黄色视频| 一区二区av电影网| 国产精品一区www在线观看| 精品国产一区二区三区久久久樱花| 亚洲国产欧美在线一区| 韩国高清视频一区二区三区| 国产av码专区亚洲av| 午夜免费鲁丝| 国产精品久久久av美女十八| 如日韩欧美国产精品一区二区三区| 久久99一区二区三区| 精品午夜福利在线看| 啦啦啦啦在线视频资源| 99精国产麻豆久久婷婷| 亚洲内射少妇av| 欧美 日韩 精品 国产| 国产福利在线免费观看视频| 免费观看性生交大片5| 免费黄网站久久成人精品| 边亲边吃奶的免费视频| 日日爽夜夜爽网站| 热99久久久久精品小说推荐| 一本—道久久a久久精品蜜桃钙片| 黄色 视频免费看| 母亲3免费完整高清在线观看 | 99国产综合亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 另类精品久久| av.在线天堂| 天美传媒精品一区二区| 天天影视国产精品| 少妇被粗大猛烈的视频| 最近2019中文字幕mv第一页| 亚洲av电影在线进入| 亚洲情色 制服丝袜| 精品国产一区二区三区四区第35| 日本av免费视频播放| 男人爽女人下面视频在线观看| 精品酒店卫生间| 搡老乐熟女国产| 国产一区有黄有色的免费视频| av福利片在线| 少妇人妻精品综合一区二区| 国产成人精品久久久久久| 丝袜美足系列| 女性生殖器流出的白浆| 校园人妻丝袜中文字幕| 男女无遮挡免费网站观看| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 日韩熟女老妇一区二区性免费视频| 午夜91福利影院| 日本-黄色视频高清免费观看| 欧美人与性动交α欧美软件 | 欧美3d第一页| 搡女人真爽免费视频火全软件| 精品亚洲成a人片在线观看| 精品一区二区免费观看| 亚洲国产看品久久| 亚洲国产精品一区三区| 亚洲精品美女久久av网站| 中文字幕av电影在线播放| 老司机影院毛片| 热99国产精品久久久久久7| av网站免费在线观看视频| 三级国产精品片| 日本av免费视频播放| 蜜桃国产av成人99| 亚洲美女视频黄频| 成人综合一区亚洲| 久久ye,这里只有精品| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 全区人妻精品视频| 丝袜脚勾引网站| 大香蕉久久成人网| 老熟女久久久| 亚洲内射少妇av| 日韩在线高清观看一区二区三区| 免费观看性生交大片5| 国产高清不卡午夜福利| 丝袜脚勾引网站| 国产精品成人在线| 亚洲精品一区蜜桃| 一级a做视频免费观看| 午夜福利,免费看| 亚洲精品av麻豆狂野| 成人亚洲欧美一区二区av| 女性被躁到高潮视频| 久久免费观看电影| 婷婷色av中文字幕| 我的女老师完整版在线观看| 日韩精品免费视频一区二区三区 | 久久这里有精品视频免费| 美女xxoo啪啪120秒动态图| 伦理电影大哥的女人| 欧美人与性动交α欧美软件 | 国产黄色视频一区二区在线观看| 久久免费观看电影| 国产精品久久久久久久久免| 免费不卡的大黄色大毛片视频在线观看| 日韩电影二区| 精品少妇久久久久久888优播| 亚洲成色77777| 毛片一级片免费看久久久久| 成人毛片60女人毛片免费| 青春草国产在线视频| 免费播放大片免费观看视频在线观看| 亚洲第一av免费看| 制服人妻中文乱码| 亚洲人成77777在线视频| 国内精品宾馆在线| 久久99蜜桃精品久久| 亚洲精品国产av蜜桃| 亚洲熟女精品中文字幕| 亚洲精品456在线播放app| 亚洲精品,欧美精品| 亚洲美女搞黄在线观看| 大码成人一级视频| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 亚洲,欧美精品.| 国产成人a∨麻豆精品| 亚洲av日韩在线播放| 韩国av在线不卡| 亚洲欧美成人综合另类久久久| 成人综合一区亚洲| 日本爱情动作片www.在线观看| 插逼视频在线观看| 久久久久国产精品人妻一区二区| 国产国语露脸激情在线看| 国产xxxxx性猛交| 国产精品女同一区二区软件| 九九在线视频观看精品| 一边摸一边做爽爽视频免费| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区视频免费看| 免费观看性生交大片5| 日本免费在线观看一区| 国产亚洲一区二区精品| 精品一区二区免费观看| 另类亚洲欧美激情| 大片免费播放器 马上看| 亚洲av欧美aⅴ国产| 欧美 日韩 精品 国产| 五月玫瑰六月丁香| 国产探花极品一区二区| 亚洲欧美清纯卡通| 成人手机av| 在线观看人妻少妇| 中文字幕最新亚洲高清| 成人亚洲欧美一区二区av| 狂野欧美激情性bbbbbb| 搡女人真爽免费视频火全软件| 亚洲丝袜综合中文字幕| 久久国产亚洲av麻豆专区| 天天操日日干夜夜撸| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久影院123| 国产成人精品福利久久| 丰满少妇做爰视频| 一区二区三区精品91| 亚洲国产精品国产精品| 国产高清国产精品国产三级| 欧美最新免费一区二区三区| av女优亚洲男人天堂| 如日韩欧美国产精品一区二区三区| 乱码一卡2卡4卡精品| 男女高潮啪啪啪动态图| 亚洲成色77777| 少妇人妻精品综合一区二区| 日本vs欧美在线观看视频| 亚洲精华国产精华液的使用体验| 日韩欧美精品免费久久| 91国产中文字幕| tube8黄色片| 人人妻人人添人人爽欧美一区卜| av.在线天堂| 婷婷成人精品国产| av又黄又爽大尺度在线免费看| 国产毛片在线视频| 日本欧美国产在线视频| 如日韩欧美国产精品一区二区三区| 亚洲欧美色中文字幕在线| 精品少妇久久久久久888优播| 满18在线观看网站| 精品99又大又爽又粗少妇毛片| 2018国产大陆天天弄谢| 黄色一级大片看看| 丝袜脚勾引网站| 国产精品秋霞免费鲁丝片| 97超碰精品成人国产| 日韩免费高清中文字幕av| 日本av免费视频播放| 亚洲三级黄色毛片| 卡戴珊不雅视频在线播放| 亚洲精品aⅴ在线观看| 免费黄网站久久成人精品| av一本久久久久| 99视频精品全部免费 在线| 国产69精品久久久久777片| 一本色道久久久久久精品综合| 国产探花极品一区二区| 欧美日韩av久久| 国产国语露脸激情在线看| 国产精品人妻久久久久久| 夜夜骑夜夜射夜夜干| 国产熟女午夜一区二区三区| 久久这里有精品视频免费| 久久精品国产综合久久久 | 国产日韩欧美亚洲二区| 人人妻人人添人人爽欧美一区卜| 亚洲精品aⅴ在线观看| 丝瓜视频免费看黄片| 成人漫画全彩无遮挡| 狠狠婷婷综合久久久久久88av| 国产精品国产三级国产专区5o| 爱豆传媒免费全集在线观看| 黄色配什么色好看| 97人妻天天添夜夜摸| 99热网站在线观看| 国产毛片在线视频| 精品一区二区三区视频在线| 亚洲国产av影院在线观看| 97超碰精品成人国产| 亚洲av免费高清在线观看| 99香蕉大伊视频| 国产成人午夜福利电影在线观看| 国产精品久久久久成人av| 免费观看a级毛片全部| 日韩精品免费视频一区二区三区 | 亚洲国产日韩一区二区| 久久精品夜色国产| 黑人高潮一二区| 性高湖久久久久久久久免费观看| 国产日韩欧美视频二区| 国产男人的电影天堂91| 亚洲成色77777| 妹子高潮喷水视频| 久久久国产一区二区| 国产免费现黄频在线看| 啦啦啦啦在线视频资源| 色哟哟·www| 日本免费在线观看一区| 男人舔女人的私密视频| 9色porny在线观看| 午夜福利网站1000一区二区三区| 日日啪夜夜爽|