• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?

    2021-09-28 02:18:36QiWeiLi李奇威JingSun孫靜FuXingLi李福星ChangChunChai柴常春JunDing丁君andJinYongFang方進(jìn)勇
    Chinese Physics B 2021年9期
    關(guān)鍵詞:孫靜常春福星

    Qi-Wei Li(李奇威),Jing Sun(孫靜),Fu-Xing Li(李福星),Chang-Chun Chai(柴常春),Jun Ding(丁君),and Jin-Yong Fang(方進(jìn)勇)

    1School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China

    2China Academy of Space Technology(Xi’an),Xi’an 710100,China

    3Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords:high power microwave,pseudomorphic high electron mobility transistor,damage mechanism,C band,low noise amplifier(LNA)

    1.Introduction

    With the rapid development of microwave technology,microwave devices are widely used in microwave communication,navigation,telemetry,remote control,satellite communication,and military electronic countermeasures.At the same time,the rapid development of microwave power supply technology makes electromagnetic pulse interference more and more dangerous to microwave semiconductor devices.[1]A large number of simulations and experiments have been carried out to study the electromagnetic immunity of high-power microwave(HPM)at the system or component level.[2–7]

    As a typical electromagnetic pulse,narrow-band microwave pulses with a peak power up to several GW and a pulse width of about 100 ns have been reported.[8,9]Such the HPM can be coupled from the front or back doors to disrupt or damage power systems.When irradiated by a strong electromagnetic pulse,the front door coupling through the antenna port will have a large amplitude,especially if the operating frequency band is within the radiation frequency band of the electromagnetic pulse.Therefore,the HPM is considered to be a serious threat to IT infrastructure and communication equipment,especially for radio frequency(RF)front-end components.

    In the previous study,Zhang et al.studied the burnt-out characteristics of low noise amplifier(LNA)based on gallium arsenide(GaAs)pseudomorphic high electron mobility transistor(pHEMT)injected with 1.4-GHz microwave pulse.[10]Liu et al.studied the combustion destruction characteristics of Ku band microwave pulses for GaAs pHEMT.[11,12]Yu et al.[13]and Xi et al.[14]studied the nonlinear and permanent degradation of GaAs-based LNA under electromagnetic pulse(EMP).Zhou et al.studied the mechanism of GaN HEMT failure induced by HPM.[15]The C band has good anti-rain attenuation and is often used in satellite communications.However,there are few reports on the HPM effect of C band LNA.

    This paper aims to study the damage characteristics of HPM induced pHEMT in the C band from the physical perspective through simulation analysis and the experimental results.The rest of this paper is organized as follows.In Section 2,the simulation model used here is described from three aspects:the device structure,the numerical model,and the signal model.In Section 3,with the help of the device simulator Sentaurus-TCAD,the electric field intensity,the current density,and the temperature characteristics of the device are analyzed to explain the HPM damage mechanism of the device.And we conclude HPM pulse-width-dependent damage rule.In Section 4,the simulation results are compared with the experimental results,and it is determined that the gate region of the pHEMT device is the vulnerable position under the irradiation of C-band HPM.Finally,the conclusions are presented in Section 5.

    2.Simulation model

    2.1.Device structure

    Aδ-doping AlGaAs/InGaAs pHEMT is studied in this paper.Figure 1 shows its basic structure as simulated in TCAD.[16]The device cross-section consists of a 0.8-μmthick GaAs substrate,a 10-nm-deep InGaAs channel,a 34.5-nm-thick AlGaAs spacer layer,a 30-nm-thick GaAs cap layer,and a 50-nm-thick Si3N4passivation layer.There also exists aδ-doping layer,which provides the carriers for the InGaAs channel layer,in the AlGaAs spacer layer.Here,the gate length is 0.15μm and the gate width is 200μm.Furthermore,the gate Schottky barrier height is 0.9 eV and the gate recess is 15-nm deep.The source–gate separation Lgsis 0.575μm including a 40-nm-thick oxide insulation layer for reducing the gate leaking current.Its metal material of electrode is gold.[17]And it is between the source and the drain and its form is symmetric.The area surrounded by the red dotted line in Fig.1 is the vulnerable area inside pHEMT,so the model grid of this area is finely divided,and the research results are given below.

    Fig.1.Basic structure ofδ-doping AlGaAs/InGaAs pHEMT.

    2.2.Numerical model

    To study the physical effect and mechanism of HEMT’s HPM effect,we start from the basic physical equation and use Sentaurus TCAD to construct the physical equivalent model of pHEMT,including the Poisson equation and continuity equation.It is important to consider the electro-thermal effect in the simulation of the burning process of the device injected by the HPM.So the thermodynamic model is adopted to solve the internal physical quantity of the device,and the current density equation of Jnand hole Jpare revised as

    whereμn(μp)is the electron(hole)mobilityφn(φp)is the electron(hole)quasi-Fermi potential,and Pn(Pp)is the absolute thermoelectric power electron(hole).Meanwhile,with the thermodynamic model,the lattice temperature is computed from

    where cLis the lattice heat capacity,κis the thermal conductivity,k is the Boltzmann constant,ECand EVare the top of conduction band and the bottom of valance band,respectively,and Rn(Rp)is the electron(hole)recombination rate.

    Besides,the avalanche model accounting for impact ionization,the analytic-TEP model for thermal electric power,and the high-field-saturation model for electron mobility are also used in this model.[18]The description and physical equation for each of these models are available in Ref.[17].

    2.3.Signal model

    At present,in the study of the damage effect on the semiconductor device with the HPM event,lots of researchers take the sine wave as the HPM signal model.[19]So the C band HPM is assumed to be a sinusoidal wave without attenuation in this paper,and the mathematical expression is as follows:

    where U is the amplitude,f is the frequency,andφis the initial phase.Figure 2 shows the simulation circuit schematic diagram in this study.At first,the drain and the source are applied to with 12 V and grounded,respectively.And by adjusting the resistance R,the HEMT drain potential remains at 2 V when the gate potential is 0 V.Then the sinusoidal wave with a frequency f of 6.6 GHz and an initial phaseφof zero is injected into the gate terminal of pHEMT to simulate the process that the HPM energy couples into the input port of the pHEMT LNA through the front-door path.When the lattice temperature reaches the melting point of gallium arsenide 1511 K,the device is judged to be in failure and the simulation calculation is stopped.

    Fig.2.Schematic diagram of simulation circuit.

    3.Simulation results and discussion

    3.1.HPM damage effect

    In the simulation circuit described above,the HPMs with a fixed frequency of 6.6 GHz at different power levels are injected respectively into the gate port of pHEMT to explore the microwave damage characteristics of the C-band of pHEMT.Figure 3 shows the variations of the maximum temperature inside the device with time.Both the temperature change curves show periodic“rising-fall-rising”oscillations.When the HPM power equals 38.55 dBm,the highest temperature inside the device shows an overall upward trend at the beginning,and then the trend of the highest temperature inside the device stops rising and drops slightly,and finally,the trend of the highest temperature inside the device gradually stabilizes.It is inferred that in the last stage of the above-mentioned temperature change,the pHEMT device exchanges heat with the outside and the inside,and thus reaching a thermal equilibrium.Nevertheless,as the power level is elevated to 40.77 dBm,the highest temperature inside the device sharply rises and quickly reaches 1511 K(the GaAs melting point).So it can be inferred that device burn-out may occur.

    Fig.3.Variations of maximum temperature within pHEMT with time.

    Here,the situation that HPM with power of 40.77 dBm is injected into pHEMT is taken for example.Figure 4 shows the temperature distribution inside the HEMT at the time of the device burning down.In Fig.4,the change from dark blue to deep red represents the internal temperature of the device varying from 295.6 K to 1531 K.It can be seen that the hightemperature region represented by deep red is concentrated on the side of the source pole below the grid of the device,and this high-temperature region is called the hotspot inside the device.The formation mechanism of the hotspot is described below.

    Fig.4.Distribution of temperature(in unit K)at pHEMT burning time.

    3.2.HPM damage mechanism analysis

    According to Fig.3(b),the maximum temperature inside the device increases and decreases periodically,and the cycle frequency is consistent with the HPM frequency.In the following the changes of internal physical quantities of the pHEMT device during the single-cycle HPM are analyzed.Figures 5–8 show the data sampled at 0.87 ns and 0.95 ns from the simulation and the temperature distribution,electric field distribution,current distribution,and impact ionization,respectively.The values 0.87 ns and 0.95 ns are the minimum and maximum temperature peaks of the internal maximum temperature of the pHEMT device in an HPM cycle,respectively.Also,the value 0.87 ns is in the negative half cycle of the HPM and the value 0.95 ns is in the positive half cycle of the HPM signal.

    Figures 5(a)and 5(b)illustrate the distribution of temperature at 0.87 ns and 0.95 ns respectively.Obviously,the hotspot inside the device is always on the side of the source pole below the gate.And centered on the hotspot,the surrounding temperature decreases gradually.It means that the hotspot occurs where the heat is generated inside the device.However,the hotspot temperature at 0.95 ns is significantly higher than that at 0.87 ns.Therefore,the heat generated by the hotspot also varies in a single HPM cycle.

    Combining the heating curve of the pHEMT injected into HPM and the internal temperature distribution of the device,it can be obtained that the internal temperature of the device has an upward trend when the pHEMT gate is injected with HPM.And high temperature area is diffused because the heat generation is greater than the thermal diffusion in the pHEMT device.As a result,there appears a thermal accumulation effect in the device.Moreover,a large amount of heat is continuously generated and accumulated at the hotspot,which will eventually even cause a so high temperature inside the device that it exceeds the melting point of the material,and thus causing the device to burn.However,when the injected HPM power is less than a certain threshold,the internal temperature of the device will not rise any more after reaching a certain value,but will eventually stabilize.This is because the thermal diffusivity of the material increases with the temperature rising.Finally thermal output and thermal diffusion inside the device are balanced.

    Fig.5.Distribution of temperature(in unit K)at(a)0.87 ns and(b)0.95 ns.

    As can be seen from Fig.6,the electric field intensity is very high below the gate of the device,especially on both sides of the gate.This is due to the structure of the device,where the curvature is small,it is easy to form a large electric field intensity.At 0.87 ns,the maximum electric field intensity under the grid is close to that of the drain,while at 0.95 ns,the maximum electric field intensity under the grid is close to the electric field intensity of the source,because there is bias voltage at the drain.

    In Fig.7(a),at 0.87 ns,that is,in the negative half cycle,the current density is not large due to the reverse bias voltage of the Schottky junction.It can be seen from Fig.7(b)that at 0.95 ns,which is in the positive half cycle of the HPM,a current path appears under the gate and connects the gate to the InGaAs channel,and the current path is closer to the source side than to the drain.This is because the drain voltage is biased at 2 V,the gate/source voltage is greater than the gate/drain voltage.[20]The research shows that the heatproducing transistor can be expressed as Q=J·E by J current density and electric field intensity E.

    Fig.6.Distribution of electric field intensity(in units of V/cm)at(a)0.87 ns,and(b)0.95 ns.

    Fig.7.Distribution of current density(in units of A/cm2)at(a)0.87 ns,and(b)0.95 ns.

    Therefore,a lot of heat is thought to be generated in the positive half cycle.The area of high electric field intensity and high current density in the positive period device is located below the gate near the source,consistent with the location of the hotspot of the device.This indicates that the energy of HPM coupling into the device is converted into heat,causing the device to burn down.

    Figures 8(a)and 8(b)show the distribution of impact ionization at 0.87 ns and 0.95 ns of the device,respectively.The areas with impact ionization rate(in units A/cm2)less than 1×1027inside the device are shown in dark blue,and areas with impact ionization rate ranging from 1×1027to 1.2387×1032are shown in the areas from dark blue to deep red.In Fig.8(b),during the positive half cycle,the deep red area with a high ionization rate is concentrated in the lower part of the gate,and the position with the maximum ionization rate at the lower part of the gate is on the side of the source pole,which is consistent with the position of the large current channel in the lower part of the gate.However,during the negative half cycle,there is no high impact ionization region similar to the scenario during the positive half cycle in Fig.8(a).This indicates that in the positive half cycle,the grid Schottky junction is positively skewed,and the extremely strong grid field leads to an avalanche multiplier effect.In other words,the large forward bias voltage causes the gate to break down,forming a large current channel from the gate to the channel.In the negative half period,the gate/source and gate/drain voltages mostly fall on the reverse bias Schottky junction during the negative period,thereby failing to produce large collision ionization rate.

    Fig.8.Distribution of impact ionization(in units of cm?3·s?1)at(a)0.87 ns,and(b)0.95 ns.

    3.3.HPM pulse-width-dependent damage effect

    To study the HPM damage pulse width effect of pHEMT,in this paper used is the simulation model established above to inject sinusoidal signals with different voltage amplitudes and a frequency of 6.6 GHz into the input end of the pHEMT.And the simulation circuit setting is consistent with that described in Section 2.The HPM pulse width is calculated by the duration of the injected signal before the equipment burns out.Damage power threshold P is the average power absorbed by the equipment during HPM injection,and damage energy threshold E is the total energy absorbed by the equipment during HPM injection.The simulation results are shown in Fig.9.

    Fig.9.HPM damage power threshold and energy threshold versus pulse widthτ.

    The results show that with the increase of pulse width,the HPM power threshold decreases and the HPM energy threshold increases.Besides,there is a significant nonlinearity for each of the curves.By curve fitting,the empirical formula to describe the correlation can be obtained as follows:

    The above relationship is in line with the empirical formula of PN junction damage under monopulse signal presented by Wunsch and Tasca et al.[21,22]

    Figure 10 respectively show the temperature distribution of device with gate power injected at 40.49 dBm,41.71 dBm,and 42.40 dBm at the time of burnout in the above simulation,respectively.Comparing the high-temperature regions represented by the bright colors in Fig.10,it can be seen that the greater the injection power,the smaller the distribution area of the high-temperature region at the time of device burnout.This is because when more power is injected into the device,the device burns out in a shorter time and the heat does not have time to dissipate and is concentrated in a smaller area.It can be considered that the power injected by electromagnetic pulse will not change the mechanism of device burning,but only affect the burning time and the size of the high temperature zone.

    Fig.10.Distribution of temperature(in unit K)when the injected power is(a)40.49 dBm,(b)41.71 dBm,and(c)42.40 dBm.

    4.Comparison with experimental results

    The experiment is performed by directly injecting a continuous HPM at 6.6 GHz into an LNA.When the injection power exceeds 40 dBm,it is difficult to observe a stable output waveform at the output port of LNA.Therefore,the output gain of LNA is reduced by 20 dBm,which serves as a criterion to judge the damage of LNA.The experimental sample is a three-stage LNA.And the crucial transistors of the first two stages are typical GaAs pHEMT devices,whose gate length and width are consistent with those in the simulation model.By opening the package of the damaged sample,it is found that the LNA damage area is located at the first transistor gate of the LNA as shown in Fig.11.

    The scanning electron microscope(SEM)observation results of the first-level damage of the LNA are shown in Fig.12.In Fig.12(a),there are several abnormal locations in the pHEMT device,and the square area surrounded by the red line represents a typical damage area.Figure 12(b)is the magnified view of the square area enclosed by the red line in Fig.12(a).In Fig.12(b),the vertical metal strip in the middle is the gate metal of pHEMT,the left side is the source region,and the right side is the drain region.The gate metal strip is broken.Besides,the channel in the region near the gate is also damaged,and the deviation of the gate to the source side is more serious.[6,10–12]As shown in Fig.12(c),there are small balls and pits formed after the material has melted at the fracture of the gate metal strip.The damage zone of position 1 and position 2 and the normal area are analyzed by EDS,and the results are as shown in Fig.13.

    Fig.11.First-stage LNA transistors by optical microscope.

    Fig.12.Internal characteristics of damaged samples characterized by SEM.

    Fig.13.Energy spectrum analysis of damage at(a)position 1,(b)position 2,and(c)in normal area.

    As can be seen from Fig.13,the percentage composition of gold(Au)at position 1(41.45%)and the percentage composition of gold(Au)at position 2(24.68%)are significantly higher than that in the normal area(7.95%).This indicates that the gate metal Au has melted and diffused in all directions.Also,the fractions of nitrogen(5.96%)and silicon(2.78%)at place 1 are both smaller than those of nitrogen(8.61%)and silicon(4.61%)in the normal area.This indicates that the passivation layer between the gate and the source also melts and splashes out.In contrast,the nitrogen component ratio(8.00%)and silicon component ratio(9.00%)in place 2 do not decrease compared with the normal place.It is judged that the passivation layer between the gate and the drain does not burn down or burns not severely.The anatomical analysis results of the above damaged samples are consistent with the simulation results,indicating that the pHEMT will burnt out in the circuit when the HPM power is larger than a certain threshold.Furthermore,the gate of the pHEMT device,especially the gate biased to the side of the source,is the weak link under the action of HPM.

    5.Conclusions

    The C band HPM damage effects of the pHEMT devices are studied through simulation and experiment in this paper.It can be concluded that the Schottky junction undergoes an avalanche breakdown under the action of a large forward bias voltage,which results in forming a large current.And a large amount of Joule heat generated by the strong electric field and the large current density near the gate forms a hotspot.When the injected HPM power is higher than a certain threshold,the hotspot temperature oscillating rises with time.And pHEMT will eventually damage because of the thermal accumulation at the hotspot.According to the above theory and experimental results,we investigated,the key parameters causing damage to the device under typical pulse conditions,including the damage location,damage power,etc.This work has a certain reference value in evaluating the pHEMT’s microwave damage.

    猜你喜歡
    孫靜常春福星
    常春作品
    孫靜:堅(jiān)守初心 勇?lián)鷷r(shí)代使命
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    家里的寶
    兩個(gè)少年兩匹馬
    兩個(gè)女人一臺(tái)戲
    以豎直上拋運(yùn)動(dòng)為例淺談學(xué)生分組合作的習(xí)題課模式
    Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium*
    壽 酒
    西江月(2014年4期)2014-03-13 03:40:20
    等你回來(lái)
    日日夜夜操网爽| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站 | 一级作爱视频免费观看| 国产伦精品一区二区三区视频9 | 老汉色∧v一级毛片| 欧美日韩国产亚洲二区| 一本精品99久久精品77| 久久久国产成人免费| 午夜福利免费观看在线| 日韩成人在线观看一区二区三区| 小蜜桃在线观看免费完整版高清| xxxwww97欧美| 免费看十八禁软件| 少妇的逼好多水| 久久精品国产自在天天线| 国产探花在线观看一区二区| 国内精品久久久久久久电影| 性色av乱码一区二区三区2| 男女下面进入的视频免费午夜| 成人特级黄色片久久久久久久| 麻豆一二三区av精品| 中文在线观看免费www的网站| 午夜免费激情av| 国产一区二区三区在线臀色熟女| 日韩欧美精品v在线| 一级黄色大片毛片| 国产精品野战在线观看| 亚洲久久久久久中文字幕| 午夜老司机福利剧场| 午夜福利免费观看在线| 国产私拍福利视频在线观看| 麻豆久久精品国产亚洲av| 白带黄色成豆腐渣| 国产探花在线观看一区二区| 国产v大片淫在线免费观看| 好男人在线观看高清免费视频| 老鸭窝网址在线观看| 18禁在线播放成人免费| 国产欧美日韩精品亚洲av| 亚洲成人精品中文字幕电影| 国产黄片美女视频| 小蜜桃在线观看免费完整版高清| xxx96com| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩福利视频一区二区| 亚洲五月天丁香| 免费看美女性在线毛片视频| 国产精品一区二区三区四区久久| 午夜福利欧美成人| 日韩人妻高清精品专区| 波野结衣二区三区在线 | 丰满人妻熟妇乱又伦精品不卡| 日韩亚洲欧美综合| 国产精品久久久久久精品电影| 人妻夜夜爽99麻豆av| 一本综合久久免费| 九色国产91popny在线| 亚洲精品乱码久久久v下载方式 | 给我免费播放毛片高清在线观看| 99精品欧美一区二区三区四区| 精品人妻偷拍中文字幕| 中文资源天堂在线| 欧美一级a爱片免费观看看| 免费在线观看成人毛片| 免费人成视频x8x8入口观看| 亚洲精品国产精品久久久不卡| 黄色女人牲交| 国产精品香港三级国产av潘金莲| 国产成人系列免费观看| 国产免费一级a男人的天堂| 岛国在线观看网站| 欧美高清成人免费视频www| 免费在线观看日本一区| 欧美色视频一区免费| 九九久久精品国产亚洲av麻豆| 琪琪午夜伦伦电影理论片6080| 舔av片在线| 女人十人毛片免费观看3o分钟| 老鸭窝网址在线观看| 午夜福利成人在线免费观看| 亚洲成av人片在线播放无| 婷婷精品国产亚洲av| 日韩成人在线观看一区二区三区| 极品教师在线免费播放| 亚洲人成电影免费在线| 99热这里只有精品一区| 黑人欧美特级aaaaaa片| 精品不卡国产一区二区三区| 日韩人妻高清精品专区| 免费av毛片视频| 国产精品女同一区二区软件 | a在线观看视频网站| 日本撒尿小便嘘嘘汇集6| 可以在线观看毛片的网站| 欧美最新免费一区二区三区 | av在线蜜桃| 国产三级在线视频| 最近视频中文字幕2019在线8| 麻豆国产av国片精品| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 熟女电影av网| 久久人人精品亚洲av| 99热只有精品国产| 国产精品 国内视频| 久久草成人影院| 精品久久久久久久人妻蜜臀av| 天天一区二区日本电影三级| 一区二区三区高清视频在线| 一级a爱片免费观看的视频| 琪琪午夜伦伦电影理论片6080| 免费观看的影片在线观看| 99在线人妻在线中文字幕| 日韩欧美 国产精品| 伊人久久精品亚洲午夜| netflix在线观看网站| 高潮久久久久久久久久久不卡| 欧美另类亚洲清纯唯美| 日本黄色片子视频| 免费搜索国产男女视频| 99久久无色码亚洲精品果冻| 国产精品,欧美在线| 国产午夜精品久久久久久一区二区三区 | 国产探花极品一区二区| 亚洲五月婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美一区二区三区黑人| 色吧在线观看| 国内精品美女久久久久久| 国产视频一区二区在线看| 久久精品亚洲精品国产色婷小说| 欧美+日韩+精品| 香蕉久久夜色| 天天一区二区日本电影三级| 亚洲欧美日韩东京热| 色老头精品视频在线观看| 无限看片的www在线观看| 国产伦在线观看视频一区| 韩国av一区二区三区四区| 午夜免费男女啪啪视频观看 | 亚洲天堂国产精品一区在线| 久久伊人香网站| 亚洲人成网站在线播| 成人18禁在线播放| 中文在线观看免费www的网站| 久久国产精品人妻蜜桃| 真实男女啪啪啪动态图| 天堂网av新在线| 真实男女啪啪啪动态图| xxx96com| 白带黄色成豆腐渣| 午夜福利高清视频| 国产一区二区在线观看日韩 | 午夜免费激情av| 美女高潮的动态| 欧美大码av| 国产精品野战在线观看| 亚洲国产精品合色在线| 欧美一区二区精品小视频在线| 国产成人系列免费观看| 色吧在线观看| 国产av不卡久久| 亚洲熟妇熟女久久| 免费高清视频大片| 国产黄色小视频在线观看| 18禁在线播放成人免费| 日韩高清综合在线| 可以在线观看的亚洲视频| 性欧美人与动物交配| 国产色爽女视频免费观看| 日日摸夜夜添夜夜添小说| 成人国产综合亚洲| 91久久精品电影网| 成人三级黄色视频| 男女做爰动态图高潮gif福利片| 长腿黑丝高跟| 搡老妇女老女人老熟妇| 狠狠狠狠99中文字幕| 欧美成人性av电影在线观看| 成人午夜高清在线视频| 男女视频在线观看网站免费| a在线观看视频网站| 18禁美女被吸乳视频| 久久精品91无色码中文字幕| www.www免费av| 桃红色精品国产亚洲av| 国产精品美女特级片免费视频播放器| 久久久色成人| x7x7x7水蜜桃| 色视频www国产| 首页视频小说图片口味搜索| 欧美极品一区二区三区四区| 日韩欧美国产在线观看| 午夜久久久久精精品| 九色国产91popny在线| 中文字幕av在线有码专区| 久久精品亚洲精品国产色婷小说| 欧美绝顶高潮抽搐喷水| 伊人久久精品亚洲午夜| 婷婷精品国产亚洲av| 亚洲av美国av| 99久久99久久久精品蜜桃| 99热精品在线国产| 亚洲午夜理论影院| 国产精品99久久99久久久不卡| 亚洲人成网站在线播放欧美日韩| 免费看a级黄色片| 男女做爰动态图高潮gif福利片| 欧美日韩中文字幕国产精品一区二区三区| 嫩草影院精品99| 亚洲欧美一区二区三区黑人| 午夜福利视频1000在线观看| 在线免费观看不下载黄p国产 | 白带黄色成豆腐渣| 国产免费一级a男人的天堂| 亚洲欧美日韩无卡精品| 美女免费视频网站| 亚洲美女视频黄频| 亚洲狠狠婷婷综合久久图片| 麻豆国产av国片精品| 国产单亲对白刺激| 国产色婷婷99| 国产亚洲精品一区二区www| 欧美区成人在线视频| 色在线成人网| 国产精品免费一区二区三区在线| 黄色视频,在线免费观看| 久久久久国内视频| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品久久男人天堂| 一级毛片女人18水好多| 欧美日韩瑟瑟在线播放| 国产精品久久久久久久电影 | 天天躁日日操中文字幕| 精品熟女少妇八av免费久了| 精品午夜福利视频在线观看一区| 制服人妻中文乱码| 中文字幕久久专区| 又黄又爽又免费观看的视频| av天堂中文字幕网| 亚洲一区二区三区色噜噜| 最好的美女福利视频网| 国产高清视频在线观看网站| а√天堂www在线а√下载| 久久久久九九精品影院| 国产日本99.免费观看| 亚洲人成网站在线播| 在线国产一区二区在线| 午夜两性在线视频| 久久久久亚洲av毛片大全| 五月玫瑰六月丁香| 国产精品精品国产色婷婷| 性色avwww在线观看| 国产精品美女特级片免费视频播放器| 欧美成人免费av一区二区三区| 国产精品野战在线观看| 日本成人三级电影网站| 亚洲 国产 在线| 国产精品av视频在线免费观看| 床上黄色一级片| 亚洲七黄色美女视频| 亚洲成av人片免费观看| 夜夜夜夜夜久久久久| 亚洲天堂国产精品一区在线| 日本熟妇午夜| 国产黄片美女视频| 国产av在哪里看| 亚洲美女视频黄频| 国产欧美日韩一区二区三| 久久久久久久久久黄片| 一夜夜www| 久久久国产成人免费| 日本三级黄在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区高清视频在线| 哪里可以看免费的av片| 午夜精品久久久久久毛片777| 精品久久久久久久久久免费视频| 脱女人内裤的视频| 免费观看人在逋| 一级黄片播放器| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线播放一区| 免费大片18禁| 久久中文看片网| 在线观看午夜福利视频| 亚洲av中文字字幕乱码综合| 日韩 欧美 亚洲 中文字幕| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 日韩欧美精品v在线| 亚洲五月婷婷丁香| 精品久久久久久久人妻蜜臀av| 国产野战对白在线观看| 最近最新免费中文字幕在线| 中文在线观看免费www的网站| 又粗又爽又猛毛片免费看| 在线观看美女被高潮喷水网站 | 精品久久久久久成人av| 亚洲精品乱码久久久v下载方式 | 波多野结衣高清作品| 亚洲性夜色夜夜综合| 久久久国产成人免费| 九色国产91popny在线| 国产伦在线观看视频一区| 日本黄大片高清| 欧美午夜高清在线| 99国产精品一区二区蜜桃av| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| ponron亚洲| 国产一区二区三区视频了| 国产不卡一卡二| 日日干狠狠操夜夜爽| 亚洲欧美精品综合久久99| 国产成+人综合+亚洲专区| 日韩欧美精品v在线| 精品久久久久久久毛片微露脸| 熟女人妻精品中文字幕| 国产成人a区在线观看| 三级男女做爰猛烈吃奶摸视频| 国产一区二区在线观看日韩 | 69av精品久久久久久| 美女高潮的动态| 小蜜桃在线观看免费完整版高清| 国产免费一级a男人的天堂| 黄片小视频在线播放| 嫩草影院入口| 亚洲av电影不卡..在线观看| 激情在线观看视频在线高清| 婷婷精品国产亚洲av在线| 我要搜黄色片| 国产精品久久久久久久久免 | 欧美乱妇无乱码| 精品人妻一区二区三区麻豆 | 蜜桃亚洲精品一区二区三区| 国产av一区在线观看免费| 成年版毛片免费区| 色吧在线观看| 亚洲最大成人手机在线| 黄色丝袜av网址大全| 欧美日韩综合久久久久久 | 欧美成人性av电影在线观看| e午夜精品久久久久久久| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 亚洲国产欧美人成| 国产成人aa在线观看| 国产成人av激情在线播放| 女同久久另类99精品国产91| 精华霜和精华液先用哪个| 国产高清有码在线观看视频| 97超级碰碰碰精品色视频在线观看| 国产激情欧美一区二区| 在线a可以看的网站| 国产精品久久久久久精品电影| 天天躁日日操中文字幕| 九色国产91popny在线| 亚洲精品在线美女| 99热只有精品国产| 青草久久国产| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 深夜精品福利| 操出白浆在线播放| 亚洲av五月六月丁香网| 黄片小视频在线播放| 精品欧美国产一区二区三| 国产午夜精品论理片| 精品久久久久久,| 69人妻影院| 亚洲第一欧美日韩一区二区三区| 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区| av在线天堂中文字幕| 国产69精品久久久久777片| 日本熟妇午夜| 男女做爰动态图高潮gif福利片| 免费看十八禁软件| 国产 一区 欧美 日韩| 韩国av一区二区三区四区| 老熟妇仑乱视频hdxx| 长腿黑丝高跟| 性色av乱码一区二区三区2| 亚洲av电影不卡..在线观看| 成人特级黄色片久久久久久久| 亚洲av成人av| 国产成人欧美在线观看| 好看av亚洲va欧美ⅴa在| 97人妻精品一区二区三区麻豆| 乱人视频在线观看| 色综合欧美亚洲国产小说| 一个人看的www免费观看视频| 久久久成人免费电影| 男插女下体视频免费在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最近最新中文字幕大全免费视频| 欧美另类亚洲清纯唯美| 亚洲精品一卡2卡三卡4卡5卡| www.色视频.com| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 又粗又爽又猛毛片免费看| 欧美一区二区亚洲| 欧美中文日本在线观看视频| 亚洲最大成人中文| 18禁国产床啪视频网站| 一级作爱视频免费观看| 窝窝影院91人妻| 久久欧美精品欧美久久欧美| 黄色视频,在线免费观看| 又爽又黄无遮挡网站| 又紧又爽又黄一区二区| www.999成人在线观看| 久久九九热精品免费| 国产欧美日韩精品一区二区| 午夜影院日韩av| 天美传媒精品一区二区| 成人18禁在线播放| 国产精品影院久久| 免费搜索国产男女视频| 欧美一级a爱片免费观看看| 亚洲成人久久性| 日韩欧美免费精品| 国产又黄又爽又无遮挡在线| 精品人妻偷拍中文字幕| 最近视频中文字幕2019在线8| e午夜精品久久久久久久| 免费av不卡在线播放| 哪里可以看免费的av片| xxxwww97欧美| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 久久久久国内视频| a级一级毛片免费在线观看| 午夜激情欧美在线| 18美女黄网站色大片免费观看| www国产在线视频色| 精品不卡国产一区二区三区| 亚洲国产欧美人成| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区高清视频在线| 免费大片18禁| 制服人妻中文乱码| 欧美日本亚洲视频在线播放| 最后的刺客免费高清国语| 成人精品一区二区免费| 午夜福利欧美成人| 99在线视频只有这里精品首页| 亚洲一区二区三区不卡视频| 国产主播在线观看一区二区| 俺也久久电影网| 亚洲国产欧美网| 在线免费观看的www视频| 女人被狂操c到高潮| 国产精品亚洲一级av第二区| 99在线人妻在线中文字幕| 91麻豆av在线| 12—13女人毛片做爰片一| 欧美日韩乱码在线| 国产探花在线观看一区二区| 中文字幕人成人乱码亚洲影| 国产亚洲av嫩草精品影院| 757午夜福利合集在线观看| or卡值多少钱| 怎么达到女性高潮| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 亚洲中文字幕日韩| 一个人免费在线观看电影| 中文字幕久久专区| avwww免费| xxxwww97欧美| 国产一区二区三区视频了| 亚洲国产精品成人综合色| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 午夜精品在线福利| 一本综合久久免费| 亚洲激情在线av| 99久久精品国产亚洲精品| 国产精品亚洲一级av第二区| 日韩欧美免费精品| 夜夜躁狠狠躁天天躁| 国产高清激情床上av| xxxwww97欧美| 麻豆久久精品国产亚洲av| 男女之事视频高清在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精华一区二区三区| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 国产精品久久久久久精品电影| 一区二区三区免费毛片| 欧美国产日韩亚洲一区| 国产亚洲精品久久久久久毛片| 亚洲精品色激情综合| 免费观看的影片在线观看| 国产色婷婷99| 国产乱人视频| 极品教师在线免费播放| 又爽又黄无遮挡网站| 久久精品亚洲精品国产色婷小说| 中文字幕av成人在线电影| 日韩欧美三级三区| 欧美乱妇无乱码| 日韩大尺度精品在线看网址| 亚洲 欧美 日韩 在线 免费| 国产成人福利小说| 免费在线观看成人毛片| 日韩精品中文字幕看吧| 亚洲美女视频黄频| 国模一区二区三区四区视频| www.熟女人妻精品国产| 中文亚洲av片在线观看爽| 99精品欧美一区二区三区四区| 中文字幕人妻丝袜一区二区| 18美女黄网站色大片免费观看| 久久久精品大字幕| 18禁黄网站禁片免费观看直播| av女优亚洲男人天堂| 国产精华一区二区三区| 无限看片的www在线观看| 97超视频在线观看视频| 亚洲av不卡在线观看| 每晚都被弄得嗷嗷叫到高潮| 夜夜爽天天搞| 国产伦在线观看视频一区| 免费高清视频大片| 一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 亚洲黑人精品在线| 久久精品国产综合久久久| 亚洲精品美女久久久久99蜜臀| 国产精品久久电影中文字幕| 久久国产乱子伦精品免费另类| 青草久久国产| 国产精品99久久99久久久不卡| 90打野战视频偷拍视频| 国产精品久久久久久久久免 | 欧美绝顶高潮抽搐喷水| 国产三级在线视频| 亚洲欧美一区二区三区黑人| 成人亚洲精品av一区二区| 国产精品一区二区三区四区免费观看 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美av亚洲av综合av国产av| 日本免费a在线| 亚洲人成网站在线播| 最好的美女福利视频网| 午夜老司机福利剧场| 成人永久免费在线观看视频| 一二三四社区在线视频社区8| 日本三级黄在线观看| 久久国产乱子伦精品免费另类| 女警被强在线播放| 成年女人看的毛片在线观看| 欧美黑人巨大hd| 色综合婷婷激情| 天堂动漫精品| 国产精品 欧美亚洲| 亚洲乱码一区二区免费版| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 啪啪无遮挡十八禁网站| 中文资源天堂在线| 国产精品三级大全| 真实男女啪啪啪动态图| 久久亚洲精品不卡| 亚洲欧美激情综合另类| 我的老师免费观看完整版| 99riav亚洲国产免费| 在线观看66精品国产| 国产精品久久视频播放| 亚洲av五月六月丁香网| 女人十人毛片免费观看3o分钟| 欧美精品啪啪一区二区三区| 最近视频中文字幕2019在线8| 国产激情欧美一区二区| АⅤ资源中文在线天堂| 两个人看的免费小视频| 国产91精品成人一区二区三区| 中文在线观看免费www的网站| 热99在线观看视频| 国产v大片淫在线免费观看| 午夜影院日韩av| 在线观看午夜福利视频| av福利片在线观看| 91在线精品国自产拍蜜月 | 男女做爰动态图高潮gif福利片| 精品99又大又爽又粗少妇毛片 | 久久久久性生活片| 女人高潮潮喷娇喘18禁视频| 久99久视频精品免费| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线 | 男人和女人高潮做爰伦理| 黄色成人免费大全| 91在线精品国自产拍蜜月 | 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 久久精品国产清高在天天线| 日韩欧美在线二视频| 男人舔女人下体高潮全视频| 成人18禁在线播放| 日韩欧美一区二区三区在线观看| 天堂影院成人在线观看| 久久精品国产清高在天天线| 午夜久久久久精精品| 天堂动漫精品| 人妻丰满熟妇av一区二区三区| 国产精品一及| 国产精品永久免费网站| 久久精品国产清高在天天线|