周為靜,陳 玲
·前沿進(jìn)展·
貝達(dá)喹啉治療耐藥結(jié)核病的研究進(jìn)展
周為靜,陳 玲
耐藥結(jié)核病是全球結(jié)核病控制規(guī)劃面臨的主要挑戰(zhàn),需要采用二線抗結(jié)核藥物治療,但治療效果并不十分理想,故亟須研究和開(kāi)發(fā)新型抗結(jié)核藥物。貝達(dá)喹啉(bedaquiline)是過(guò)去40多年中美國(guó)食品藥品監(jiān)督管理局(FDA)批準(zhǔn)用于治療耐藥結(jié)核病的第一種藥物,該藥能有效提高耐藥結(jié)核病的臨床療效及縮短治療時(shí)間。本文綜述了貝達(dá)喹啉治療耐藥結(jié)核病的作用機(jī)制、臨床試驗(yàn)、不良反應(yīng)和藥物-藥物相互作用及耐藥機(jī)制的研究進(jìn)展,以提高臨床對(duì)貝達(dá)喹啉的認(rèn)識(shí)。
耐藥結(jié)核??;貝達(dá)喹啉;綜述
最新《全球結(jié)核病報(bào)告》指出,2015年全球范圍內(nèi)新發(fā)結(jié)核病人數(shù)為1 000萬(wàn),耐藥結(jié)核病人數(shù)為58萬(wàn),目前僅有52%的耐多藥結(jié)核病(MDR-TB)和28%的廣泛耐藥結(jié)核病(XDR-TB)患者得到成功救治[1]。我國(guó)每年新發(fā)耐藥結(jié)核病患者約7萬(wàn)例,新發(fā)耐藥結(jié)核病患者約占當(dāng)年新發(fā)結(jié)核病患者的5.6%,其中僅30%的患者得到救治。耐藥結(jié)核病的治療困難,治療時(shí)間較長(zhǎng)(24~27個(gè)月),需聯(lián)合使用多種二線抗結(jié)核藥物,且療效欠佳、不良反應(yīng)較多、價(jià)格昂貴。一項(xiàng)有關(guān)XDR-TB的Meta分析結(jié)果顯示,XDR-TB患者使用二線抗結(jié)核藥物治療成功率約為44%,病死率為14%~27%[2]。因此,開(kāi)發(fā)新型抗結(jié)核藥物對(duì)縮短治療時(shí)間、改善患者治療依從性、降低復(fù)發(fā)風(fēng)險(xiǎn)、降低病死率和控制耐藥結(jié)核病疫情非常重要。
近年來(lái),10余種新型抗結(jié)核藥物處于臨床和臨床前期研究階段,這些藥物與一線、二線抗結(jié)核藥物具有協(xié)同作用但無(wú)交叉耐藥,其生物活性強(qiáng)、t1/2長(zhǎng)、致突變率低,有助于縮短治療時(shí)間等[3],其中最引人注意的是已被批準(zhǔn)上市的貝達(dá)喹啉(bedaquiline)。貝達(dá)喹啉是過(guò)去40多年來(lái)美國(guó)食品藥品監(jiān)督管理局(FDA)批準(zhǔn)用于治療耐藥結(jié)核病的第一種藥物,是對(duì)目前抗結(jié)核藥物的一個(gè)補(bǔ)充,對(duì)印度、中國(guó)等結(jié)核病流行國(guó)家意義重大。2016年12月,中國(guó)國(guó)家食品藥品監(jiān)督管理總局批準(zhǔn)將富馬酸貝達(dá)喹啉片作為抗結(jié)核藥物,用于治療成年(≥18歲)MDR-TB患者,其有望改善MDR-TB患者的治療效果,降低我國(guó)結(jié)核病疾病負(fù)擔(dān)。本文通過(guò)檢索國(guó)內(nèi)外相關(guān)文獻(xiàn),旨在綜述貝達(dá)喹啉治療耐藥結(jié)核病的作用機(jī)制、臨床試驗(yàn)、不良反應(yīng)和藥物-藥物相互作用及耐藥機(jī)制的最新研究進(jìn)展,以提高對(duì)貝達(dá)喹啉的認(rèn)識(shí)、促進(jìn)臨床合理用藥。
貝達(dá)喹啉已被證實(shí)對(duì)革蘭陽(yáng)性菌和革蘭陰性菌呈弱活性,其最低抑菌藥物濃度(MIC)值>32 mg/L[2,4-5],目前有關(guān)其對(duì)其他類型微生物(如寄生蟲(chóng)和真菌等)的活性報(bào)道較少。貝達(dá)喹啉已被證實(shí)對(duì)各種各樣致病性分枝桿菌〔如結(jié)核分枝桿菌(Mtb)、麻風(fēng)分枝桿菌和鳥(niǎo)分枝桿菌〕及非致病性分枝桿菌(如恥垢分枝桿菌)具有選擇性活性,MIC值為0.003~0.500 mg/L,其中Mtb和恥垢分枝桿菌對(duì)貝達(dá)喹啉的敏感性較高,具有0.003 mg/L的等效MIC值;貝達(dá)喹啉對(duì)敏感和耐藥Mtb菌株中的不同細(xì)菌亞群顯示出不同活性,其對(duì)復(fù)制活躍的Mtb具有高度抑菌性,在體外其MIC值為0.003~0.120 mg/L[2,4,6-7]。臨床研究顯示,貝達(dá)喹啉與主要抗結(jié)核藥物聯(lián)用可改善其滅菌活性,可使70%~100%的感染老鼠痰培養(yǎng)結(jié)果轉(zhuǎn)陰[8-9];用藥前14 d,貝達(dá)喹啉殺菌活性較差,但其可通過(guò)增加藥物劑量而提高殺菌活性[10-11]。
貝達(dá)喹啉的作用靶點(diǎn)是人體內(nèi)結(jié)核桿菌復(fù)制和傳播所需的F1/F0-ATP合酶的質(zhì)子泵寡聚亞單位c(AtpE),F(xiàn)1/F0-ATP合酶是氧化磷酸化過(guò)程中高度保守和關(guān)鍵性酶,其利用質(zhì)子動(dòng)力勢(shì)的動(dòng)力學(xué)機(jī)械驅(qū)動(dòng)ATP產(chǎn)生[12-13];其具有獨(dú)特的強(qiáng)力和選擇性的體外抗分枝桿菌活性譜,但對(duì)哺乳動(dòng)物F1/F0-ATP合酶無(wú)抑制作用[14]。RUSTOMJEE等[15]研究結(jié)果顯示,貝達(dá)喹啉治療初期,Mtb的ATP 濃度尚維持在正常水平,治療幾天后ATP濃度逐漸下降,故貝達(dá)喹啉是以時(shí)間依賴性殺菌方式發(fā)揮抗結(jié)核作用。
貝達(dá)喹啉是一種陽(yáng)離子兩親性藥物,推測(cè)其抗分枝桿菌活性的主要機(jī)制可能與F1/F0-ATP合酶介導(dǎo)的抗分枝桿菌作用模式相關(guān),次要機(jī)制可能與陽(yáng)離子兩親性質(zhì)特別是其對(duì)膜離子轉(zhuǎn)運(yùn)ATP酶的影響有關(guān),這種機(jī)制目前尚未進(jìn)一步探索[16]。
Ⅰ期臨床試驗(yàn)發(fā)現(xiàn),人體內(nèi)貝達(dá)喹啉主要由肝細(xì)胞色素P4503A4同工酶代謝,故其與利福霉素類(利福平、利福噴汀及利福布汀)強(qiáng)力細(xì)胞色素P4503A4同工酶誘導(dǎo)劑聯(lián)合使用時(shí)血藥濃度降低50%,故應(yīng)避免聯(lián)合使用[17]。Ⅱ期臨床試驗(yàn)發(fā)現(xiàn),接受貝達(dá)喹啉/背景方案和安慰劑/背景方案治療的耐藥肺結(jié)核患者治愈率分別為62%、44%,治療時(shí)間分別縮短83 d、125 d,提示貝達(dá)喹啉/背景方案可提高耐藥肺結(jié)核的臨床療效、縮短治療時(shí)間[18]。另外,CHURCHYARD等[19]進(jìn)行的雙盲隨機(jī)對(duì)照試驗(yàn)顯示,單藥貝達(dá)喹啉可有效預(yù)防MDR-TB、XDR-TB密切接觸者發(fā)生肺結(jié)核,且安全性較高;LEIBERT等[20]研究顯示,貝達(dá)喹啉能有效縮短活動(dòng)性結(jié)核病及潛伏Mtb感染患者的治療時(shí)間;GUGLIELMETTI等[21]是在知情同意基礎(chǔ)上向35例法國(guó)MDR-TB患者提供貝達(dá)喹啉,其中19例為XDR-TB、14例為早期廣泛耐藥結(jié)核(pre-XDR-TB),平均接受4種抗結(jié)核藥物治療,采用貝達(dá)喹啉治療6個(gè)月后,28例(占96.6%)患者痰培養(yǎng)陽(yáng)性轉(zhuǎn)陰,痰培養(yǎng)陽(yáng)性轉(zhuǎn)陰中值時(shí)間為85(8~235)d。SKRAHINA等[22]根據(jù)世界衛(wèi)生組織(WHO)建議制定了包含貝達(dá)喹啉在內(nèi)的治療方案,結(jié)果顯示186例(占94%)患者治療6個(gè)月后痰培養(yǎng)陽(yáng)性轉(zhuǎn)陰,6例(占3%)患者痰培養(yǎng)仍為陽(yáng)性。
貝達(dá)喹啉常見(jiàn)不良反應(yīng)是惡心(占30%)、關(guān)節(jié)痛(占26%)、頭痛(占22%)、出血(占14%)、胸痛(占9%)、厭食癥(占7%)和皮疹(占6%)[23],嚴(yán)重不良反應(yīng)是血清轉(zhuǎn)氨酶水平升高和QT間期延長(zhǎng)[23-24]。SKRAHINA等[22]最新研究結(jié)果顯示,135例(占68%)患者發(fā)生代謝和營(yíng)養(yǎng)障礙(以高尿酸血癥最常見(jiàn)),127例(占64%)患者發(fā)生肝臟疾病(以肝功能異常最常見(jiàn)),93例(47%)患者發(fā)生電解質(zhì)紊亂(以低鎂血癥最常見(jiàn)),80例(占41%)患者發(fā)生心臟疾病(以異常心電圖和心律失常最常見(jiàn)),68例(占35%)患者發(fā)生胃腸道疾病(以惡心、嘔吐、腹痛最常見(jiàn)),54例(占27%)患者發(fā)生血液和淋巴系統(tǒng)疾病(以血小板計(jì)數(shù)降低最常見(jiàn))。Ⅱ期臨床試驗(yàn)顯示,接受貝達(dá)喹啉/背景方案治療的耐藥結(jié)核病患者病死率約為12.7%,接受安慰劑/背景方案治療的耐藥結(jié)核病患者病死率約為2.5%[18,25],分析死亡原因主要為呼吸道感染和非感染性疾病而非貝達(dá)喹啉毒性作用;隨后有研究顯示,與接受安慰劑/背景方案治療的耐藥結(jié)核病患者相比,接受貝達(dá)喹啉/背景方案治療的耐藥結(jié)核病患者病死率增加7%[26]。
貝達(dá)喹啉與其他抗結(jié)核藥物〔包括主要抗結(jié)核藥物(如利福平、乙胺丁醇和吡嗪酰胺)和二線抗結(jié)核藥物(如AZD5847、噻唑烷、惡唑烷酮、利福噴汀、利奈唑胺、氯法齊明、BTZ043和PBTZ169)〕聯(lián)合使用時(shí)具有協(xié)同作用[27],而與另外一些抗結(jié)核藥物(如pretonamid)聯(lián)合使用時(shí)具有拮抗作用[28];其可有效治療感染HIV的肺結(jié)核患者[26,29],但許多抗反轉(zhuǎn)錄病毒藥物(如依法韋侖和洛匹那韋)已被證實(shí)與其存在藥物相互作用,故需采用替代藥物(如奈韋拉平)進(jìn)行替代治療[30-31]。
目前,臨床已確定幾種貝達(dá)喹啉耐藥的分子機(jī)制,其中最主要的是兩個(gè)獨(dú)立基因突變,第1個(gè)基因是atpE,其編碼F1/F0-ATP合酶。有研究顯示,30%的耐貝達(dá)喹啉臨床分離株存在atpE突變[32-33],atpE的第63或66位氨基酸突變可使貝達(dá)喹啉與ATP合酶C亞單位的結(jié)合能力下降[34-35]。與貝達(dá)喹啉耐藥相關(guān)的第2個(gè)基因是rv0678,其編碼Rv0678蛋白。有研究顯示,絕大多數(shù)貝達(dá)喹啉抗性突變體的rv0678基因均發(fā)生突變[32-33,36]。在南非,所有貝達(dá)喹啉抗性分離株及一些具有發(fā)展為貝達(dá)喹啉抗性(MIC增加4倍以上)潛力的分離株的rv0678基因均出現(xiàn)突變[26]。一個(gè)來(lái)自瑞士的關(guān)于貝達(dá)喹啉耐藥案例也涉及rv0678基因突變[37]。促進(jìn)貝達(dá)喹啉耐藥的第2個(gè)因素是突變率,取決于臨床病變或培養(yǎng)物中細(xì)菌群體的藥代動(dòng)力學(xué),貝達(dá)喹啉培養(yǎng)物中藥物抗性發(fā)展速率為1/108 cfu/m,這種耐藥率相對(duì)較低,與利福平相當(dāng)[5,36],其細(xì)菌密度可通過(guò)慢性結(jié)核病患者肉芽腫病變獲得[38-39]。但atpE和rv0678基因哪個(gè)突變率較高仍不能明確,rv0678基因似乎是最有可能性的競(jìng)爭(zhēng)者[26,37,40]。在目前的抗耐藥結(jié)核方案中,貝達(dá)喹啉的t1/2比其他抗結(jié)核藥物更長(zhǎng)(4.0~5.5個(gè)月)[14,30,41],且治療結(jié)束后其長(zhǎng)t1/2可能有利于選擇抗性群體[42-43]。
2012年12月,貝達(dá)喹啉被FDA批準(zhǔn)用于治療耐藥結(jié)核病;2014年3月,貝達(dá)喹啉被歐洲藥品管理局(EMA)批準(zhǔn)用于治療耐藥結(jié)核病,貝達(dá)喹啉是自1974年利福平之后的第一個(gè)具有新型作用機(jī)制的抗結(jié)核藥物,目前正在計(jì)劃或進(jìn)行多項(xiàng)臨床試驗(yàn)以探索采用貝達(dá)喹啉治療耐藥結(jié)核病的有效方法。STREAM試驗(yàn)正在評(píng)估兩種含有貝達(dá)喹啉在內(nèi)的抗結(jié)核治療方案治療耐藥結(jié)核病的有效性,目的是開(kāi)發(fā)一種全口服6個(gè)月的MDR-TB的治療方案(NCT02409290)。NIX-TB是一個(gè)于2015年初推出的Ⅲ期臨床試驗(yàn)(NCT02333799),計(jì)劃在6~9個(gè)月內(nèi)使用貝達(dá)喹啉、PA-824和利奈唑胺治療XDR-TB[44]。截至2015年10月,全世界有超過(guò)1 258例患者采用貝達(dá)喹啉治療獲益[45-49]。此外,美國(guó)國(guó)際開(kāi)發(fā)署已決定在4年內(nèi)向100多個(gè)全球基金資助國(guó)家免費(fèi)提供貝達(dá)喹啉[26,46,50]。
貝達(dá)喹啉的臨床益處是FDA在兩個(gè)Ⅱb期臨床試驗(yàn)后給予加速批準(zhǔn)的主要原因,常規(guī)藥物僅在Ⅲ期臨床試驗(yàn)結(jié)束后才會(huì)批準(zhǔn)上市。目前,貝達(dá)喹啉尚未在兒童、妊娠期或哺乳期婦女、肺外結(jié)核病患者、HIV病毒攜帶者或其他合并癥患者中進(jìn)行研究,故上述人群在常規(guī)使用貝達(dá)喹啉前還需進(jìn)一步研究[51]。
[1]World Health Organization.Global tuberculosis report 2016[R].2016.
[2]CHAHINE E B,KARAOUI L R,MANSOUR H.Bedaquiline:A novel diarylquinoline for multidrug-resistant tuberculosis[J].Ann Pharmacother,2014,48(1):107-115.DOI:10.1177/1060028013504087.
[3]The Lancet Infectious Disease.The worldwide epidemic of multidrug-resistanttuberculosis[J].Lancet Infect Dis,2011,11(5):333.DOI:10.1016/S1473-3099(11)70105-0.
[4]PHILLEY J V,WALLACE R J Jr,BENWILL J L,et al.Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease[J].Chest,2015,148(2):499-506.DOI:10.1378/chest.14-2764.
[5]ANDRIES K,VERHASSELT P,GUILLEMONT J,et al.A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis[J].Science,2005,307(5707):223-227.
[6]WORLEY M V,ESTRADA S J.Bedaquiline:a novel antitubercular agent for the treatment of multidrug-resistant tuberculosis[J].Pharmacotherapy,2014,34(11):1187-1197.DOI:10.1002/phar.1482.
[7]WANG H,ZHANG X,BAI Y,et al.Comparative efficacy and acceptability of fiveanti-tubercular drugs in treatment of multidrug resistant tuberculosis:a network meta-analysis[J].J Clin Bioinforma,2015,5:5.DOI:10.1186/s13336-015-0020-x.
[8]TASNEEN R,LI S Y,PELOQUIN C A,et al.Sterilizing activity of novel TMC207-and PA-824-containing regimens in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2011,55(12):5485-5492.DOI:10.1128/AAC.05293-11.
[9]IBRAHIM M,TRUFFOT-PERNOT C,ANDRIES K,et al.Sterilizing activity of R2079-10(TMC207)-containing regimens in the murine model of tuberculosis[J].Am J Respir Crit Care Med,2009,180(6):553-557.DOI:10.1164/rccm.200807-1152OC.
[10]DHILLON J,ANDRIES K,PHILLIPS P J,et al.Bactericidal activity of the diarylquinoline TMC207 against Mycobacterium tuberculosis outside and within cells[J].Tuberculosis,2010,90(5):301-305.DOI:10.1016/j.tube.2010.07.004.
[11]DIACON A H,DAWSON R,VON GROOTE-BIDLINGMAIER F,et al.Bactericidal activity of pyrazinamide and clofazimine alone and in combination with pretonamidand bedaquiline[J].Am J Respir Crit Care Med,2015,191(8):943-953.DOI:10.1164/rccm.201410-1801OC.
[12]MALONEY P C,KASHKET E R,WILSON T H.A proton motive force drives ATP synthesisin bacteria[J].Proc Natl Acad Sci U S A,1974,71(10):3896-3900.
[13]HICKS D B,LIU J,F(xiàn)UJISAWA M,et al.F1F0-ATP synthases of alkaliphilic bacteria:lessons from their adaptations[J].Biochim Biophys Acta,2010,1797(8):1362-1377.DOI:10.1016/j.bbabio.2010.02.028.
[14]FIELD S K.Bedaquiline for the treatment of multidrug-resistant tuberculosis:great promise or disappointment[J].Ther Adv Chronic Dis,2015,6(4):170-184.DOI:10.1177/2040622315582325.
[15]RUSTOMJEE R,DIACON A H,ALLEN J,et al.Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis[J].Antimicrob Agents Chemother,2008,52(8):2831-2835.DOI:10.1128/AAC.01204-07.
[16]CHOLO M C,MOTHIBA M T,F(xiàn)OURIE B,et al.Mechanisms of actionand therapeutic efficacies of the lipophilicantimycobacterial agents clofazimine and bedaquiline[J].J Antimicrob Chemother,2017,72(2):338-353.DOI:10.1093/jac/dkw426.
[17]馬培奇.抗結(jié)核病新藥研發(fā)進(jìn)展[J].上海醫(yī)藥,2008,29(11):514-516.DOI:10.3969/j.issn.1006-1533.2008.11.011.
[18]DIACON A H,PYM A,GROBUSCH M P,et al.Multidrug-resistant tuberculosis and culture conversion with bedaquiline[J].N Engl J Med,2014,371(8):723-732.DOI:10.1056/NEJMoa1313865.
[19]CHURCHYARD G J,F(xiàn)RIEDLAND G,F(xiàn)IELDING K,et al.Opportunities afforded by newdrugs for tuberculosis[J].Lancet Infect Dis,2010,10(6):368-369.DOI:10.1016/S1473-3099(10)70095-5.
[20]LEIBERT E,ROM W N.New drugs and regimens for treatment of TB[J].Expert Rev Anti Infect Ther,2010,8(7):801-813.DOI:10.1586/eri.10.60.
[21]GUGLIELMETTI L,LE DU D,JACHYM M,et al.Compassionate use of bedaquiline for the treatment of MDR- and XDR-tuberculosis:an interim analysis of a French cohort[J].Clin Infect Dis,2015,60(2):188-194.DOI:10.1093/cid/ciu786.
[22]SKRAHINA A,HUREVICH H,F(xiàn)ALZON D,et al.Bedaquiline in the multidrug-resistant tuberculosis treatment:Belarus experience[J].Int J Mycobacteriol,2016,5(Suppl 1):S62-63.DOI:10.1016/j.ijmyco.2016.11.014.
[23]DEOGHARE S.Bedaquiline:a new drug approved for treatment of multidrugresistant tuberculosis[J].Indian J Pharmacol,2013,45(5):536-537.DOI:10.4103/0253-7613.117765.
[24]U.S.Food and Drug Administration.SIRTURO Prescribing Information.Availablefrom URL[M].[2016 -01-21].http://www.accessdata.fda.gov/drugsatfda_docs/ label/2012/204384s000lbl.pdf.
[25]MINGOTE L R,NAMUTAMBA D,APINA F,et al.The use of bedaquiline in regimensto treat drug-resistant and drug-susceptible tuberculosis:a perspective fromtuberculosis-affected communities[J].Lancet,2015,385(9966):477-479.DOI:10.1016/S0140-6736(14)60523-7.
[26]PYM A S,DIACON A H,TANG S J,et al.Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis[J].Eur Respir J,2016,47(2):564-574.DOI:10.1183/13993003.00724-2015.
[27]MAKAROV V,LECHARTIER B,ZHANG M,et al.Towards a new combination therapy fortuberculosis with next generation benzothiazinones[J].EMBO Mol Med,2014,6(3):372-383.DOI:10.1002/emmm.201303575.
[28]WALLIS R S,JAKUBIEC W,MITTON-FRY M,et al.Rapid evaluation in whole bloodculture of regimens for XDR-TB containing PNU-100480(sutezolid),TMC207,PA-824,SQ109,and pyrazinamide[J].PLoS One,2012,7(1):e30479.DOI:10.1371/journal.pone.0030479.
[29]NDJEKA N,CONRADIE F,SCHNIPPEL K,et al.Treatment of drug-resistant tuberculosis with bedaquiline in a high HIV prevalence setting:an interim cohort analysis[J].Int J Tuberc Lung Dis,2015,19(8):979-985.DOI:10.5588/ijtld.14.0944.
[30]SVENSSON E M,DOOLEY K E,KARLSSON M O.Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection[J].Antimicrob Agents Chemother,2014,58(11):6406-6412.DOI:10.1128/AAC.03246-14.
[31]PANDIE M,WIESNER L,MCILLERON H,et al.Drug-drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB[J].J Antimicrob Chemother,2016,71(4):1037-1040.DOI:10.1093/jac/dkv447.
[32]HARTKOORN R C,UPLEKAR S,COLE S T.Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2014,58(5):2979-2981.DOI:10.1128/AAC.00037-14.
[33]HUITRIC E,VERHASSELT P,KOUL A,et al.Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor[J].Antimicrob Agents Chemother,2010,54(3):1022-1028.DOI:10.1128/AAC.01611-09.
[34]HUITRIC E,VERHASSELT P,ANDRIES K,et al.In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor [J].Antimicrob Agents Chemother,2007,51(11):4202-4204.
[35]PETRELLA S,CAMBAU E,CHAUFFOUR A,et al.Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria [J].Antimicrob Agents Chemother,2006,50(8):2853-2856.
[36]ANDRIES K,VILLELLAS C,COECK N,et al.Acquired resistance of Mycobacterium tuberculosis to bedaquiline[J].PLoS One,2014,9(7):e102135.DOI:10.1371/journal.pone.0102135.
[37]BLOEMBERG G V,KELLER P M,STUCKI D,et al.Acquired resistance to bedaquilineand delamanid in therapy for tuberculosis[J].N Engl J Med,2015,373(20):1986-1988.DOI:10.1056/NEJMc1505196.
[38]MITCHISON D,DAVIES G.The chemotherapy of tuberculosis:past,present an future[J].Int J Tuberc Lung Dis,2012,16(6):724-732.DOI:10.5588/ijtld.12.0083.
[39]GIDEON H P,PHUAH J Y,MYERS A J,et al.Variability in tuberculosis granulomaT cell responses exists,but a balance of pro- and antiinflammatory cytokines is associated with sterilization[J].PLoS Pathog,2015,11(1):e1004603.DOI:10.1371/journal.ppat.1004603.
[40]SOMOSKOVI A,BRUDERER V,HOMKE R,et al.A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment[J].Eur Respir J,2015,45(2):554-557.DOI:10.1183/09031936.00142914.
[41]CHAHINE E B,KARAOUI L R,MANSOUR H.Bedaquiline:a novel diarylquinoline for multidrug-resistant tuberculosis[J].Ann Pharmacother,2014,48(1):107-115.DOI:10.1177/1060028013504087.
[42]BRIGDEN G,HEWISON C,VARAINE F.New developments in the treatment of drug-resistant tuberculosis:clinical utility of bedaquiline and delamanid[J].Infect Drug Resist,2015,8:367-378.DOI:10.2147/IDR.S68351.
[43]LEIBERT E,DANCKERS M,ROM W N.New drugs to treat multidrugresistant tuberculosis:the case for bedaquiline[J].Ther Clin Risk Manag,2014,10:597-602.DOI:10.2147/TCRM.S37743.
[44]PODANY A T,SWINDELLS S.Current strategies to treat tuberculosis[J].F1000Research,2016,5(F1000 Faculty Rev):2579.
[45]LESSEM E M,BERNARDO J,REED C,et al.Informed use of bedaquiline for tuberculosis[J].Lancet,2015,385(9979):1724.DOI:10.1016/S0140-6736(15)60885-6.
[46]CONRADIE F,MEINTJES G,HUGHES J,et al.Clinical access to bedaquiline programme for the treatment of drug-resistant tuberculosis[J].S Afr Med J,2014,104(3):164-166.
[47]PATEL R V,RIYAZ S D,PARK S W.Bedaquiline:a new hope to treat multidrug-resistant tuberculosis[J].Curr Top Med Chem,2014,14(16):1866-1874.
[48]UDWADIA Z F,AMALE R A,MULLERPATTAN J B.Initial experience of bedaquiline use in a series of drug-resistant tuberculosis patients from India[J].Int J Tuberc Lung Dis,2014,18(11):1315-1318.DOI:10.5588/ijtld.14.0284.
[49]FURIN J,BRIGDEN G,LESSEM E,et al.Global progress and challenges in implementing new medications for treating multidrug-resistant tuberculosis[J].Emerg Infect Dis,2016,22(3):e151430.DOI:10.3201/eid2203.151430.
[50]LESSEM E,COX H,DANIELS C,et al.Access to new medications for the treatmentof drug-resistant tuberculosis:patient provider and community perspectives[J].Int J Infect Dis,2015,32:56-60.DOI:10.1016/j.ijid.2014.12.012.
[51]YADAV S,RAWAL G,BAXI M.Bedaquiline:a novel antitubercular agent for the treatment of multidrug-resistant tuberculosis[J].J Clin Diagn Res,2016,10(8):FM01-02.DOI:10.7860/JCDR/2016/19052.8286.
(本文編輯:謝武英)
ProgressonBedaquilineinTreatingDrug-resistantTuberculosis
ZHOUWei-jing,CHENLing
TheSecondDepartmentofRespiratoryMedicine,theAffiliatedHospitalofZunyiMedicalCollege,Zunyi563000,China
Correspondingauthor:CHENLing,E-mail:Lingjuncd@163.com
Drug-resistant tuberculosis is the major challenge in Global Tuberculosis Control Programme,which needs second-line anti-tuberculosis drugs,but the treatment outcome is not very ideal,so we should develop new anti-tuberculosis drugs.Bedaquiline was the first drug for drug-resistant tuberculosis that approved by FDA in the past 40 years,can effectively improve the clinical effect and shorten the curative time in treating drug-resistant tuberculosis.This paper reviewed the action mechanism,clinic trials,adverse reactions,drug-drug interaction and drug resistance mechanism of bedaquiline in treating drug-resistant tuberculosis,in order to improve the clinical acquaintance of bedaquiline.
Drug-resistant tuberculosis;Bedaquiline;Review
國(guó)家自然科學(xué)基金面上項(xiàng)目(81360002)
陳玲,E-mail:Lingjuncd@163.com
R 521
A
10.3969/j.issn.1008-5971.2017.08.003
2017-05-23;
2017-08-19)
563000貴州省遵義市,遵義醫(yī)學(xué)院附屬醫(yī)院呼吸二科
周為靜,陳玲.貝達(dá)喹啉治療耐藥結(jié)核病的研究進(jìn)展[J].實(shí)用心腦肺血管病雜志,2017,25(8):11-14.[www.syxnf.net]
ZHOU W J,CHEN L.Progress on bedaquiline in treating drug-resistant tuberculosis[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease,2017,25(8):11-14.