• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      非編碼RNA調(diào)控精子發(fā)生的研究進展*

      2017-04-03 08:37:43李世平成姝婷王正榮
      四川生理科學(xué)雜志 2017年2期
      關(guān)鍵詞:精母細胞精子發(fā)生生殖細胞

      李世平 成姝婷 王正榮△

      (1.四川大學(xué)華西第二醫(yī)院兒科,出生缺陷與相關(guān)婦兒疾病教育部重點實驗室;2.四川大學(xué)華西基礎(chǔ)醫(yī)學(xué)與法醫(yī)學(xué)院,時間生物學(xué)衛(wèi)生部重點實驗室,四川 成都 610041)

      綜 述

      非編碼RNA調(diào)控精子發(fā)生的研究進展*

      李世平1成姝婷2王正榮2△

      (1.四川大學(xué)華西第二醫(yī)院兒科,出生缺陷與相關(guān)婦兒疾病教育部重點實驗室;2.四川大學(xué)華西基礎(chǔ)醫(yī)學(xué)與法醫(yī)學(xué)院,時間生物學(xué)衛(wèi)生部重點實驗室,四川 成都 610041)

      隨著基因組學(xué)研究的發(fā)展,發(fā)現(xiàn)生物體基因組內(nèi)存在大量不編碼蛋白質(zhì)的基因。這些基因的轉(zhuǎn)錄產(chǎn)物稱為非編碼RNA(Noncoding RNA,ncRNA)。以前認(rèn)為ncRNA是基因組中無用的序列,但是研究表明ncRNA 在很多生命活動中起到很重要的作用。按照轉(zhuǎn)錄產(chǎn)物的序列長短ncRNA分為短鏈非編碼RNA(Small ncRNA)和長鏈非編碼RNA(LncRNA)。精子發(fā)生包括精原細胞增殖,精母細胞減數(shù)分裂以及精子成熟等一系列受到精確調(diào)控的生理發(fā)育過程。精子發(fā)生需要相關(guān)基因的適時表達,并受到轉(zhuǎn)錄和轉(zhuǎn)錄后水平的調(diào)控。但是精子發(fā)生過程的調(diào)控機制目前還未完全研究清楚。最新研究發(fā)現(xiàn)在精子發(fā)生過程ncRNA起到很重要的作用,即使在成熟精子細胞中也有ncRNA的表達。表明ncRNA參與調(diào)控精子發(fā)生的過程,并且這些父源ncRNA可能在接下來的受精和胚胎發(fā)育中起到重要的調(diào)節(jié)作用。結(jié)合最新研究進展,本文綜述了ncRNA在精子發(fā)生過程所起的作用,以期為精子發(fā)生過程中ncRNA 的進一步研究提供參考。

      ncRNA;精子發(fā)生;miRNA;piRNA;lncRNA

      精子發(fā)生是雄性動物連續(xù)產(chǎn)生雄性配子的過程,即精原干細胞(Spermatogonial stem cells,SSCs)經(jīng)歷一系列嚴(yán)格調(diào)控的生理發(fā)育形成精子的過程。精子發(fā)生包括以下階段:精原干細胞有絲分裂產(chǎn)生精母細胞;精母細胞經(jīng)歷兩次減數(shù)分裂產(chǎn)生單倍體圓形精子細胞;精子形成即圓形精子細胞成為成熟的精子[1]。精子發(fā)生的每一個階段都受到多種因素的精密調(diào)控,因此,闡明精子發(fā)生過程的分子機制,能夠增強我們對于雄性生殖細胞發(fā)育基因調(diào)控的理解[2,3]。更有意義的是,為我們診斷和治療男性不育打下堅實的基礎(chǔ)。研究表明,非編碼RNA(Noncoding RNA,ncRNA)參與精子發(fā)生過程調(diào)控[4],參與精子發(fā)生過程ncRNA主要包括短鏈非編碼RNA(Small ncRNA)和長鏈非編碼RNA(LncRNA),其中small ncRNA 主要有microRNA(miRNA)和piwi-interacting RNA(piRNA)[5]。ncRNA在生命活動很多過程中都具有很重要的作用,如調(diào)控基因表達、X染色體去活化(X-inactivation)、基因組印記、細胞分化、細胞凋亡、干細胞多能性、腦發(fā)育和精子發(fā)生等[6-9]。本文將結(jié)合最新研究進展,對miRNA、piRNA和lncRNA在精子發(fā)生過程中的調(diào)控作用進行綜述。

      1 短鏈非編碼RNA對精子發(fā)生的調(diào)控

      1.1 miRNA調(diào)節(jié)精子發(fā)生

      miRNA是一種特殊的小分子RNA,他的大小大約為22 bp?,F(xiàn)在已經(jīng)發(fā)現(xiàn)了大量的miRNA,人類和小鼠基因組中分別存在超過1000種miRNA。這些miRNA在物種間具有高度保守的特性,而且有報道估計miRNA能夠調(diào)節(jié)人類基因組超過30%的基因[10,11]。建立miRNA在雄性生殖細胞中表達譜,是全面研究miRNA在精子發(fā)生中調(diào)節(jié)作用的先決條件。雖然miRNA在雄性生殖細胞發(fā)育中的作用機制沒有完全研究清楚,但是通過高通量表達譜研究發(fā)現(xiàn),大量miRNA在精原細胞、粗線期精母細胞、精子細胞和成熟精子中選擇性的表達[12,13]。

      miRNA-20、miRNA-21和miRNA-106a能夠調(diào)控精原干細胞(SSCs)的自我更新[14,15]。有些miRNA參與調(diào)控SSCs的增殖和凋亡,如:miRNA-204通過靶向Sirt1調(diào)控SSCs的增殖,而miR-34c能夠影響SSCs的凋亡[16,17]。研究表明,miRNA122a在雄性生殖細胞末期大量表達,并且能夠抑制圓形精子細胞的標(biāo)志蛋白transition protein 2的表達。最新研究發(fā)現(xiàn)Translin(Testis-brain RNA binding protein)能夠與miRNA122a結(jié)合,以增強miRNA122a在體內(nèi)的穩(wěn)定性[18]。與幼年小鼠的睪丸相比,成年小鼠的睪丸中miRNA34b的表達更高,顯示miRNA34b可能在雄性生殖細胞分化中起到作用[19]。且近期研究發(fā)現(xiàn)miRNA34b和miRNA449在小鼠雄性生殖細胞發(fā)育過程中表達模式類似,參與調(diào)控精子形成,且表達異常導(dǎo)致雄性小鼠不育[20]。新生小鼠精原細胞培養(yǎng)3 d后miRNA17-92和miRNA290-295大量表達,說明這兩類miRNA可能在精子發(fā)生過程中,對SSCs的增殖和早期分化起重要作用[21]。上述研究都表明miRNA在精子發(fā)生過程具有特異性表達,能夠調(diào)控SSCs 的增殖,并參與精子生成及生殖細胞減數(shù)分裂中基因轉(zhuǎn)錄的調(diào)控,對維持雄性生殖細胞的正常發(fā)育起到調(diào)節(jié)作用。

      1.2 piRNA調(diào)控精子發(fā)生

      新近發(fā)現(xiàn)一種小分子RNA,由于他與piwi蛋白家族(如MIWI、MIWI2和MILI)相互作用,故稱為piRNA[22]。與siRNA和miRNA不同,piRNA序列長度大約為24-30 bp,出現(xiàn)在精子發(fā)生過程的粗線期精母細胞和精子細胞中[23]。雄性和雌性生殖細胞的發(fā)育都需要piRNA的表達[24]。目前,已經(jīng)發(fā)現(xiàn)了50000多種piRNAs,還有更多的piRNAs等待我們?nèi)グl(fā)現(xiàn),說明piRNA在很多生命過程都起到重要作用[25]。

      piRNA與Piwi蛋白相互作用從而在精子發(fā)生過程中發(fā)揮作用。越來越多的研究表明,包括MIWI、MIWI2和MILI在內(nèi)的亞家族piwi蛋白,是脊椎動物干細胞再生與雄性生殖細胞發(fā)育必須因子[24,26]。哺乳動物MIWI、MIWI2和MILI蛋白在生殖細胞中期和末期表達,他們是精子發(fā)生至關(guān)重要的蛋白[27-29]。MIWI蛋白是精母細胞一種細胞質(zhì)蛋白,而且在圓形精子細胞的染色小體和胞質(zhì)中都有表達。最重要的是MIWI蛋白與調(diào)節(jié)翻譯和維持mRNA穩(wěn)定的piRNA相關(guān)[30,31]。在Mili敲除小鼠中,精母細胞粗線期階段精子發(fā)生受阻,且Mili表達降低、小鼠圓形精子不能形成成熟的精子[28]。Miwi2表達降低小鼠表現(xiàn)為減數(shù)分裂一期受阻,而且隨著鼠齡的增長生殖細胞顯著的減少[32]。表明與piwi蛋白亞家族相結(jié)合的piRNA可能參與雄性生殖細胞發(fā)育的減數(shù)分裂和減數(shù)分裂后的調(diào)節(jié)。而且piRNA只在處于粗線期精母細胞和圓形精子期的雄性生殖細胞中表達[33-35],并在精子發(fā)生過程中起到抑制逆轉(zhuǎn)錄轉(zhuǎn)座子的作用[29,36]。最新研究發(fā)現(xiàn)在粗線期精母細胞中顯著表達的Nct1和Nct2非編碼RNA是piRNA前體[37,38]。但是Nct1/2缺失小鼠2號染色體上一小簇piRNA表達降低。但是并不影響精子發(fā)生和生殖能力,說明在2號染色體上的這些piRNA對維持轉(zhuǎn)座子的沉默起到重要作用[38]。

      2 LncRNA對精子發(fā)生的調(diào)控

      LncRNA是一類新的調(diào)節(jié)分子,沒有明顯的開放閱讀框,能夠被轉(zhuǎn)錄為序列長度大于200 bp的RNA[39,40]。哺乳動物基因組轉(zhuǎn)錄分析發(fā)現(xiàn)lncRNA是主要的轉(zhuǎn)錄RNA。大多數(shù)lncRNA是被RNA聚合酶Ⅱ轉(zhuǎn)錄,與編碼蛋白的mRNA類似,具有5′甲基化帽和多聚腺苷酸尾[41]。但是與編碼蛋白基因相比,lncRNA序列保守性很低,因此它一度被認(rèn)為是“無用轉(zhuǎn)錄本”[42,43]。但是越來越多的證據(jù)表明lncRNAs并不是基因組的“無意序列”,它們在很多生理過程中起到很重要的作用,如X染色體去活化(X-inactivation)、基因印記、細胞分化、細胞凋亡、干細胞多能性、腦發(fā)育和精子發(fā)生等[9,44]。已有研究在雄性生殖細胞中發(fā)現(xiàn)大量lncRNA,但是只有很少一部分進行了功能的研究[45-47]。下面簡要介紹一下在雄性生殖細胞中最新研究發(fā)現(xiàn)的lncRNA及其作用。

      Mrhl(Meiotic recombination hot spot locus)是一段長2.4 kb的lncRNA,由Nishant和他們研究團隊發(fā)現(xiàn)的[48]。Mrhl RNA存在于小鼠GC1期精原細胞的核仁中,與p68蛋白相互作用,阻斷Wnt信號通路調(diào)控精子發(fā)生過程[49]。HongrES2是一種長度為1588bp,在附睪尾部特異性表達的lncRNA[50]。研究發(fā)現(xiàn)他在30天到450天的大鼠體內(nèi)恒定的表達,也就是從第1輪的精子發(fā)生完成后開始。它主要在細胞核中表達,并被剪切為23 bp大小類似miRNA的小RNA——mil-hongrES2。mil-hongrES2能夠抑制附睪特異性蛋白CES7的表達,并且增強其膽固醇酯酶活性。通過檢測總酪氨酸磷酸化水平發(fā)現(xiàn),過表達mil-hongrES2會阻礙精子獲能[50]。

      最初認(rèn)為Tsx(Testis-specific X-linked)是一個編碼蛋白基因,而最新研究表明他是一個lncRNA[51]。Anguera的研究團隊發(fā)現(xiàn)Tsx在粗線期精母細胞特異性表達,但是在精原細胞和圓形精子細胞中沒有表達,說明Tsx在生殖細胞減數(shù)分裂起到調(diào)節(jié)作用。通過TUNEL分析發(fā)現(xiàn)Tsx敲除小鼠,細胞凋亡出現(xiàn)異常,導(dǎo)致粗線期精母細胞在總的生殖細胞中異常的高比例,說明Tsx是減數(shù)分裂至關(guān)重要的基因。Dmr(Dmrt1-related gene)也是一種睪丸特異性lncRNA,是Zhang的團隊在試圖克隆Dmrt1基因時無意發(fā)現(xiàn)的[52]。Dmr位于第5號染色體,而Dmrt1位于第19號染色體。也就是說Dmr能夠與Dmrt1形成一個反式剪切RNA亞結(jié)構(gòu)。這種嵌合體mRNA的形成破壞了Dmrt1的編碼區(qū)域,并且取代了Dmrt1基因的3′-UTR區(qū),最終導(dǎo)致DMRT1蛋白表達的降低。然而,DMRT1又是一種通過上調(diào)Sohlh1的表達,促進精原細胞發(fā)育的轉(zhuǎn)錄因子;還能通過抑制Stra8的表達防止精母細胞不成熟的減數(shù)分裂[53,54]。Drm對Dmrt1表達抑制也可能參與生殖細胞發(fā)育過程中有絲分裂與減數(shù)分裂的轉(zhuǎn)換[54]。

      鑒于在睪丸發(fā)育和雄性生殖細胞中發(fā)現(xiàn)了大量的lncRNA表達,但是只有為數(shù)不多的幾種研究了他們在雄性生殖細胞發(fā)育過程中的功能,因此lncRNA在精子發(fā)生的調(diào)控機制值得我們深入研究。

      3 小結(jié)與展望

      中心法則告訴我們蛋白質(zhì)是各種細胞和分子功能的核心。翻譯形成的蛋白質(zhì)是生物體內(nèi)發(fā)揮作用的大分子物質(zhì)。但是,最新研究表明編碼蛋白的基因在高等生物中所占的比例和低等生物相近。估計我們已知的編碼蛋白的基因大約只占基因組的5%~10%。很大一部分轉(zhuǎn)錄的基因并不編碼蛋白。以前認(rèn)為ncRNA是基因組中無用的序列,但是研究表明ncRNA 在很多生命活動中其到很重要的作用。原核生物基因組ncRNA的量少于25%,簡單的真核生物含有25%~50%的ncRNA,更加復(fù)雜的真菌,植物乃至動物基因組非編碼DNA的量大于50%,而人類的含有接近98.5%的ncRNA[55]。已經(jīng)有研究表明,ncRNA在精子發(fā)生過程中具有不可或缺的作用。ncRNA的發(fā)現(xiàn)為解釋精子發(fā)生分子調(diào)節(jié)機制提供了新的思路,特別是對生殖細胞中調(diào)節(jié)增殖和分化的內(nèi)源性基因調(diào)控機制的闡釋。越來越多的研究表明ncRNA對精子發(fā)生和雄性生殖能力非常重要[56]。精子發(fā)生是一個復(fù)雜的,且由多方調(diào)控的生物過程。結(jié)合我們現(xiàn)有對ncRNA的認(rèn)識,我們還沒有完全明白ncRNA在精子發(fā)生過程中的作用。雖然現(xiàn)在的高通量實驗技術(shù)和開放的ncRNA數(shù)據(jù)庫資源,讓我們發(fā)現(xiàn)了很多ncRNA,但是這些ncRNA在精子發(fā)生過程中的功能依然不清楚。這也提示我們研究ncRNA在精子發(fā)生過程中的調(diào)控機制具有巨大的研究潛力。

      1 Griswold MD. Spermatogenesis: The commitment to meiosis[J]. Physiol Rev, 2016, 96(1): 1-17.

      2 Komeya M, Ogawa T. Spermatogonial stem cells: progress and prospects[J]. Asian J Androl, 2015, 17(5): 771-775.

      3 Morimoto H, Iwata K, Ogonuki N, et al. ROS are required for mouse spermatogonial stem cell self-renewal[J]. Cell Stem Cell, 2013, 12(6): 774-786.

      4 Garcia-lopez J, Alonso L, Cardenas DB, et al. Diversity and functionalconvergence of small noncoding RNAs in male germ cell differentiation and fertilization[J]. RNA, 2015, 21(5): 946-962.

      5 Zhang P, Kang JY, Gou LT, et al. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes[J]. Cell Res, 2015, 25(2): 193-207.

      6 Plasterk RH. RNA silencing: the genome′s immune system[J]. Science, 2002, 296(5571): 1263-1265.

      7 Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters[J]. Nat Genet, 2011, 43(7): 621-629.

      8 Yap KL, Li S, Mu Oz-cabello AM, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a[J]. Mol Cell, 2010, 38(5): 662-674.

      9 Mattick JS. Long noncoding RNAs in cell and developmental biology[J]. Semin Cell Dev Biol, 2011, 22(4): 327.

      10Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 120(1): 15-20.

      11Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r[J]. Nat Cell Biol, 2012, 14(7): 659-665.

      12Moritoki Y, Hayashi Y, Mizuno K, et al. Expression profiling of microRNA in cryptorchid testes: miR-135a contributes to the maintenance of spermatogonial stem cells by regulating FoxO1[J]. J Urol, 2014, 191(4): 1174-1180.

      13Yan N, Lu Y, Sun H, et al. A microarray for microRNA profiling in mouse testis tissues[J]. Reproduction, 2007, 134(1): 73-79.

      14He Z, Jiang J, Kokkinaki M, et al. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1[J]. Stem Cells, 2013, 31(10): 2205-2217.

      15Niu Z, Goodyear SM, Rao S, et al. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells[J]. Proc Natl Acad Sci USA, 2011, 108(31): 12740-12745.

      16Niu B, Wu J, Mu H, et al. miR-204 regulates the proliferation of dairy goat spermatogonial stem cells via targeting to sirt1[J]. Rejuvenation Res, 2016, 19(2): 120-130.

      17Li M, Yu M, Liu C, et al. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis[J]. Cell Prolif, 2013, 46(2): 223-231.

      18Yu Z, Raabe T, Hecht NB. MicroRNA mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage[J]. Biol Reprod, 2005, 73(3): 427-433.

      19Barad O, Meiri E, Avniel A, et al. MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues[J]. Genome Res, 2004, 14(12): 2486-2494.

      20Wu J, Bao J, Kim M, et al. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis[J]. Proc Natl Acad Sci USA, 2014, 111(28): E2851-2857.

      21Hayashi K, Chuva De Sousa Lopes SM, Kaneda M, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis[J]. PLoS One, 2008, 3(3): e1738.

      22Sarkar A, Volff JN, Vaury C. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation[J]. FASEB J, 2017, 31(2): 436-446.

      23Gou LT, Dai P, Yang JH, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis[J]. Cell Res, 2014, 24(6): 680-700.

      24Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs[J]. Development, 2008, 135(1): 3-9.

      25Huang Y, Bai JY, Ren HT. PiRNAs biogenesis and its functions[J]. Bioorg Khim, 2014, 40(3): 320-326.

      26Reddien PW, Oviedo NJ, Jennings JR, et al. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells[J]. Science, 2005, 310(5752): 1327-1330.

      27Deng W, Lin H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis[J]. Dev Cell, 2002, 2(6): 819-830.

      28Kuramochi-Miyagawa S, Kimura T, Ijiri TW, et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis[J]. Development, 2004, 131(4): 839-849.

      29Carmell MA, Girard A, Van De Kant HJG, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline[J]. Dev Cell, 2007, 12(4): 503-514.

      30Grivna ST, Pyhtila B, Lin H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis[J]. Proc Natl Acad Sci USA, 2006, 103(36): 13415-13420.

      31Reuter M, Berninger P, Chuma S, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing[J]. Nature, 2011, 480(7376): 264-267.

      32Chuma S, Nakano T. piRNA and spermatogenesis in mice[J]. Philos Trans R Soc Lond B Biol Sci, 2012, 368(1609): 20110338-20110338.

      33Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes[J]. Nature, 2006, 442(7099): 203-207.

      34Girard A, Sachidanandam R, Hannon GJ, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins[J]. Nature, 2006, 442(7099): 199-202.

      35Grivna ST, Beyret E, Wang Z, et al. A novel class of small RNAs in mouse spermatogenic cells[J]. Genes Dev, 2006, 20(13): 1709-1714.

      36Aravin AA, Sachidanandam R, Girard A, et al. Developmentally regulated piRNA clusters implicate MILI in transposon control[J]. Science, 2007, 316(5825): 744-747.

      37Iguchi N, Xu M, Hori T, et al. Noncoding RNAs of the mammalian testis: the meiotic transcripts Nct1 and Nct2 encode piRNAs[J]. Ann N Y Acad Sci, 2007, 1120: 84-94.

      38Xu M, You Y, Hunsicker P, et al. Mice deficient for a small cluster of piwi-interacting RNAs implicate piwi-Interacting RNAs in transposon control[J]. Biol Reprod, 2008, 79(1): 51-57.

      39Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription[J]. Science, 2007, 316(5830): 1484-1488.

      40Amaral PP, Clark MB, Gascoigne DK, et al. lncRNAdb: a reference database for long noncoding RNAs[J]. Nucleic Acids Res, 2011, 39(suppl 1): D146-D151.

      41Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature, 2009, 458(7235): 223-227.

      42Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II[J]. Nat Struct Mol Biol, 2007, 14(2): 103-105.

      43Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function[J]. Trends Genet, 22(1): 1-5.

      44Mattick JS. The central role of RNA in human development and cognition[J]. FEBS Lett, 585(11): 1600-1616.

      45Luk AC, Chan WY, Rennert OM, et al. Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies[J]. Reproduction, 2014, 147(5): R131-R141.

      46Bao J, Wu J, Schuster AS, et al. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline[J]. Biol Reprod, 2013, 89(5): 107-107.

      47Liang M, Li W, Tian H, et al. Sequential expression of long noncoding RNA as mRNA gene expression in specific stages of mouse spermatogenesis[J]. Sci Rep, 2014, 4: 5966.

      48Nishant KT, Ravishankar H, Rao MRS. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA[J]. Mol Cell Biol, 2004, 24(12): 5620-5634.

      49Arun G, Akhade VS, Donakonda S, et al. mrhl RNA, a long noncoding RNA, negatively regulates wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells[J]. Mol Cell Biol, 2012, 32(15): 3140-3152.

      50Ni MJ, Hu ZH, Liu Q, et al. Identification and characterization of a novel non-coding RNA involved in sperm maturation[J]. PLoS One, 2011, 6(10): e26053.

      51Anguera MC, Ma W, Clift D, et al. Tsxproduces a long noncoding RNA and has general functions in the germline, stem cells, and brain[J]. PLoS Genet, 2011, 7(9): e1002248.

      52Zhang L, Lu H, Xin D, et al. A novel ncRNA gene from mouse chromosome 5 trans-splices with Dmrt1 on chromosome 19[J]. Biochem Biophys Res Commun, 2010, 400(4): 696-700.

      53Ottolenghi C, Veitia R, Barbieri M, et al. The human doublesex-related gene, DMRT2, is homologous to a gene involved in somitogenesis and encodes a potential bicistronic transcript[J]. Genomics, 2000, 64(2): 179-186.

      54Agbor VA, Tao S, Lei N, et al. A Wt1-Dmrt1 transgene restores DMRT1 to sertoli cells of Dmrtl-/-testes a novel model of DMRT1-deficient germ cells[J]. Biol Reprod, 2013, 88(2): 51, 1-15.

      55Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94.

      56Yadav RP, Kotaja N. Small RNAs in spermatogenesis[J]. Mol Cell Endocrinol, 2014, 382(1): 498-508.

      Research progress of noncoding RNA in spermatogenesis*

      LiShi-ping1, ChengShu-ting2, WangZheng-rong2△

      (1.Key Laboratory of Birth defects and Related Diseases of Women and Children, Department of Pediatrics,West China Second University Hospital, Sichuan University; 2. Health Ministry Key Laboratory of Chronobiology,West China School of Preclinical and Forensic Medicine, Sichuan University, Sichuan Chengdu 610041)

      國家自然科學(xué)基金資助(編號:31371108;31500935)

      李世平,男,博士,主要從事生物節(jié)律與發(fā)育期神經(jīng)損傷與修復(fù),Email:iamlsp@163.com。

      △通訊作者:王正榮,男,教授,主要從事生物節(jié)律研究,Email:wangzhengrong@126.com。

      2017-4-5)

      猜你喜歡
      精母細胞精子發(fā)生生殖細胞
      硫唑嘌呤對RSL3 誘導(dǎo)小鼠精母細胞鐵死亡的影響
      精漿外泌體在精子發(fā)生與功能調(diào)控中的研究進展
      人工馴養(yǎng)樹鼩精子發(fā)生過程中MCM7蛋白的表達
      顱內(nèi)生殖細胞瘤放療的研究進展
      有關(guān)減數(shù)分裂的幾點思考
      顱內(nèi)生殖細胞瘤診斷方法研究進展
      原發(fā)性顱內(nèi)生殖細胞腫瘤全基因組甲基化分析提示生殖細胞瘤為原始生殖細胞起源
      季節(jié)對狐貍精子發(fā)生的影響
      甘草對小鼠體外精原細胞分化的影響
      Ddx1基因在不同發(fā)育階段小鼠睪丸組織中的表達
      枣强县| 天峨县| 洪洞县| 蓬溪县| 梅州市| 连南| 雷州市| 东乡| 宝清县| 山东| 土默特左旗| 久治县| 忻州市| 禹州市| 武威市| 岳普湖县| 沭阳县| 从江县| 和田县| 白沙| 花莲市| 大化| 霍山县| 金山区| 白山市| 普陀区| 东山县| 齐齐哈尔市| 始兴县| 恩施市| 义马市| 盱眙县| 平定县| 岳普湖县| 奉贤区| 中卫市| 德阳市| 蓬安县| 蚌埠市| 阿瓦提县| 社会|