• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    空氣系統(tǒng)引氣對壓氣機(jī)性能影響的數(shù)值研究

    2011-04-19 10:38:14李紹斌李秋實(shí)
    關(guān)鍵詞:北京航空航天大學(xué)壓氣機(jī)熱力

    趙 斌 李紹斌 李秋實(shí) 周 盛

    (北京航空航天大學(xué)航空發(fā)動(dòng)機(jī)氣動(dòng)熱力科技重點(diǎn)實(shí)驗(yàn)室,北京,100191,中國)

    INTRODUCTION

    Air system is essential to the safe and reliable operation of aircraft engines.Air with proper pressure and temperature is used for cabin air conditioning,engine inlet anti-ice and cooling of high temperature components[1].Ref.[2]showed that the bleed air from the high pressure compressor took up 3%—5%of the main flow.Although the percentage is relatively small,the air coming from such an important part of the engine generates the great impact on the compressor performance[3-6].

    During recent years,the aspirated technology is widely applied to the turbo-machinery for flow control,and offers a new approach to study the impact of air system bleeding on compressor performance. Refs.[7-9]improved the blade loaded by controlling the blade surface and the end-wall separation through the boundary layer suction.Ref.[10]performed a numerical simulation on a transonic fan rotor ATS-2 and proved that the boundary layer bleeding could greatly enhance the pressure ratio and efficiency.Ref.[11] showed that boundary layer bleeding was an effective solution for separation and stall of the cascade with large turning angles.It can be concluded from the previous studies that it is very likely to improve compressor performance by studying air system bleeding.

    Current studies in this field mainly focus on how high temperature components make efficient use of mass flow in the air system for cooling, and analytical calculation on the loss along air system network.Very few of them touched on the influence of air bleeding on compressor performance.However,the air is bled from such an essential part of the engine and there must be continuous and enough air supply for the engine to run normally.Therefore,this paper tries to explore the impact of different bleeding rates and structures on the compressor totalpressure increase and stability margin.

    1 ANALYSIS OF BLEEDING MECHANISMS

    Air bleeding improves the compressor performance through removing the low-energy fluid from critical regions of blades and altering the incidence angle of blades.The former one has been widely used in the external and internal flow control since Prandtl′s boundary suction experiment in 1904.This section mainly analyzes how bleeding influences the blade incidence angle.

    Fabri′s experiment summarized the features of bleed flow,as shown in Fig.1.The main upstream flow in the bleeding slot flows faster under the suction of bleeding; The main downstream flow slows down after the main flow decreases in air bleeding.In Fig.2,the air flows into the rotor in the axial direction with a velocity of V0.In the case that bleeding slot is located upstream of blade leading edge,the inlet axial velocity of blade increases to V1,the rotation speed U remains the same after bleeding,and the inlet flow angle Uis smaller.There is a smaller blade incidence angle when the stagger angle is constant. On the other hand,if the blade leading edge is located downstream of the bleeding slot,the inlet axial velocity of blade decreases to V2after bleeding and the blade incidence angle increases.The case is also applies to stators.Therefore,the influence mechanism of bleeding on the main flow can be concluded as:the blade incidence angle can be changed by altering the relative position of bleeding slot to the blade leading edge.

    Fig.2 Influence on inlet air angle by axial velocity changes

    For the transonic and subsonic compressor rotors,most of the blade passage losses result from the blockage caused by the interaction of tip leakage flow and end-wall boundary layer,and stall usually starts from the blade tips.When air is extracted from the rotor casing,the main flow rate upstream increases,and the incidence angle and blockage from tip clearance leakage can be reduced[12-13].The stator performance is mainly restrained by the blockage on the end-wall near suction surface[14-15].Bleeding in the stator end-wall area can increase the stator inlet flow rate,decrease the incidence angle,and remove the lowenergy fluid from the end-wall area.Blockage can be reduced by end-wall bleeding for stators.The analysis above indicates that the compressor performance is very likely to be improved by bleeding.For stators with large separation in the corner,how do end-wall bleeding location and rate influence the compressor performance?Is there an optimum value for bleeding location and rate? This paper takes the low-speed single-stage compressor in Beijing University of Aeronautics and Astronautics(BUAA)as the research object,and builds a stator flow field with large separation in the corner.Six air bleeding structures are presented,one of which is numerically studied under five bleeding rates.

    2 NUMERICAL ANALYSIS PLAN

    2.1 Low-speed single-stage compressor

    The low-speed single-stage compressor in BUAAis used in this experiment.Its structure is shown in Fig.3.The design mass flow rate is 2.80 m3/s at a rotational speed of 3 000 r/min, thus providing a total pressure increase of 1 500 Pa.Details of the compressor geometry,the op-erating conditions,and the experimental data can be found in Ref.[16].Information on the compressor stage is listed in Table 1.

    Fig.3 Schematic layout of test rig

    Table 1 Design performance of low speed axial compressor

    2.2 Numerical model and reliability analysis

    The experimental measurement sections at the inlet and outlet of compressor are selected for the calculation field boundary. The space discretization of the compressor mesh is generated by the pre-processing module AutoGrid5.The calculation is performed on a single rotor and stator passage.The total mesh point number is about 600 000.Simulations of the steady 3-D viscous flow field are carried out on the compressor by using the 3-D CFD package Numeca Fine Turbo.A cell-centered second-order finite volume discretisation is employed.The turbulence model is Spallart-Almaras.Perfect air is selected as working substance.In order to ensure the simulation accuracy,the simulation is amended by low Mach number flow.The atmospheric pressure and the temperature ofexperimental environments are 102 510 Pa and 285.15 K,respectively,held as inlet boundary condition.Concerning the radial equilibrium equation,the static pressure at the mean radius is held as outlet boundary condition. During the simulation,the main operating point of the compressor characteristic curves is obtained by changing the static pressure at the outlet.

    The definition of numerical stall point in this paper is basically the same as that in Refs.[17-18].When the back pressure increases in the compressor outlet to obtain near stall characteristics,even by 0.01% of the inlet total pressure, the mass flow rate,the pressure ratio and the efficiency of compressor keep on decreasing with the number of iterations increasing,and numerical calculation cannot converge.Therefore,it can be concluded that the calculation is divergent.So the last convergence solution before divergence corresponds to the near-stall condition. The Surge Margin calculation formula is as follows

    where SMis short forSurge Margin,Msand ΔPs*are the flow rate and the total pressure increase at the near-stall point,MdandΔPd*the flow rate and the total pressure increase at design point.

    Fig.4 shows a comparison between the numerical simulation and the experimentally measured value over the 100% speedline of the lowspeed axial compressorcharacteristics without bleeding.In this paper,compressor characteristics of numerical calculations and experiment are conducted non-dimensionalized by a reference value:the abscissaOis the inlet flow coefficient Vx/ Um,and the ordinate jis the total pressure increase coefficient ΔP*/d Um2. On the design point,the simulation matches well with the experimental data of jwith a relativeerror of 1.2%. At the near-stall point,flow range in the simulation is smaller than the experimentally measured value because of the single passage steady simulation.Fig.5 shows the comparison of the radial distributions of total pressure increase at the outlet of the compressor between the simulation and the experimentally measured value on the design point(O=0.538).It is clear th at the simulation values agree well with the measured average values obtained from the four total pressure combs with circumferential averaged-distribution in the experiment.The above analysis shows that simulation calculation results are very close to the experimentlly measured results.In other words, the numerical calculation can approximatively reproduce the experimental results,and the numerical simulation is a reliable way to study the influence of bleeding on the compressor overall performance.

    Fig.5 Radial distributions of total pressure increase on design point at outlet of compressor

    2.3 Building and analysis of stators with large corner separation

    The stall is induced by the leakage of the rotor blade tip of the compressor above.In order to study the influence of bleeding structure,location and rate on the stator corner separation,another compressor is needed where there is large separation in the near-stall stator corner.Therefore, based on the reliability of the numerical method, a new compressor is built with large separation in the stator corner on the near-stall point.The ratio of rotors to stators is modified into 18∶ 12, and the stator inlet setting angle is cut by 2°.The new compressor is used as the baseline,upon which all numerical studies below are conducted.

    Fig.6 shows the skin friction line on the blade suction surface of the baseline at near-stall point. There are serious separations on stator corners.On stator suction surface,two obvious separating lines roll up from boundary layer of the suction surface and grow into the shedding vortex,thus taking along a large number of low-energy fluid to the downstream.It aggravates the stator losses.The separation on the upper half of the stator starts from 15% of the chord,and the outlet separation covers up 40% to 100% of the stator radial range.It is a typical closed form of separation.In the lower half of the stator,there is obvious separation and the radial flow.Fig.7 shows that there is the contours of the total pressure increase coefficient at stator outlet,where SS means the suction surface and PS the pressure surface.The location and the trend of corner separation at stator suction surface match well with those shown in Fig.6.The separation in the upper half of the stator outlet covers about 35% of the pitch range in circumferential.

    Fig.6 Skin friction line on stator suction surface of baseline approaching stall point

    Fig.7 Stator exit total pressure increase coefficient contours of baseline approaching stall point

    The complicated stator cornerseparations cause a huge increase in the loss.It is the most likely cause of the decrease in the compressor performance under the low flow rate condition.In this case,can these bleeding structures and rates effectively control the stator flow? And what influence does each plan have on the compressor performance?Answers are given in the comparative analysis on numerical calculation results of each bleeding plan below.

    3 INFLUENCES OF BLEEDING STRUCTURES

    3.1 Bleeding structure plans

    Six air bleeding structure plans are presented in this paper according to the bleeding mechanisms above.In each plan,bleeding slots are located downstream of the leading edge of stator blades.Information on the plans is given in Table 2,and Fig.8 shows the structure of bleeding slots.In plans a and b,the bleeding slot is about 5% chord of stator and located at 10% and 20% chord from leading edge in the casing.The bleeding location in plan c is at the trailing edge in the casing,about 5% chord of stator.In plan d,the bleeding slot is rectangle-shaped,and located near the suction surface in the casing.The length is about 59% of the stator chord,and the width is about 15% of the stator chord.The bleeding location of plan e is at the stator suction surface near the hub.The air is bled out from the casing through the internal cavity of the stator.The plan f is basically a combination of plans d and e. It controls the flow in both the casing corner and the hub corner at the same time.From plan a to plan e,2.5% of the main flow is bled out.In plan f,1% of the main flow is bled from the casing and the blade suction surface.

    Table 2 Bleeding location plans

    Fig.8 Structure of bleeding location plans

    3.2 Influence on total pressure increase and surge margin

    Figs.9,10 show the overall characteristics of total pressure increase in each bleeding plan.And Table 3 lists out different surge margins in each plan.The surge margin in the calculation of the baseline is 30.3%.It can be seen from Figs.9,10 and Table 3,only plan f manages to enhance both the total pressure increase and the surge margin, and improves the flow condition at the near-stall point.In this plan,the total pressure increase grows by 5.88% than the baseline,the mass flow range expands by 4.25%,and surge margin reaches 44.12%,which is a 45.47% increase on the baseline.In plans a and b,there is only the total pressure with a tiny increase.Two SMin both plans enhance very little,only by 2.52% and 4.06%,respectively.In plans c and d,the mass flow range is expanded at the cost of a reduction in the total pressure increase,but the surge margin decreases by 2.68% and 1.73% respectively.In plan e,the total pressure increase rises a little at near stall point,but the mass flow range decreases,so the relative surge margin reduces by 1.31%.

    Fig.9 Performance of total pressure increase in each bleeding location plan

    Fig.10 Performance of total pressure increase in plan f

    Table3 Relative increment of stability margin in each bleeding location plan %

    3.3 Influence on stator flow field

    Fig.11 shows the total pressure increase coefficient contours near stall(O=0.425)at stator outlet in each bleeding plan,where LE means the leading edge and TE the traling edge.In plan f, bleeding on the casing effectively removes a large number of low-energy fluid accumulation in the casing corner.Meanwhile,bleeding at the stator suction surface near hub eliminates the separation from the local small region,and effectively weakenes the radial flow caused by casing bleeding in the main flow.The stator flow obtains an overall improvement.The plans a and b both extract air at the entrance of stator leading edge.They reduce the incidence angle in the tip region,push back the starting location of the boundary layer separation near the casing,and reduce the large separation region on the stator casing in the radial and circumferential scale,but the large local separation of the casing still cannot be completely eliminated.In plans c and d,the large separation in the casing suction surface corner is completely removed,and the tip blockage is alleviated.However,the reduction of tip blockage and the suction effect cause the strong radial flow in the hub region.Under these influences,a large separation comes about in the suction surface corner near hub region.It indicates that there is an optimal value of bleeding rate to control the stator casing corner separation.The influence of bleeding rate on the main flow field is explored afterwards. The plan e only controls the flow in suction surface near hub region,and the large separation in the shroud corner still exists.

    Fig.11 Stator exit total pressure increase coefficient contours near stall in each bleeding location plan

    Fig.12 Radial distributions of stator total loss coefficient near stall in each bleeding location plan

    Fig.12 shows the radial distribution of the near-stall statortotal loss coefficient in each plan.In the equation of the total loss coefficients of the stators,P*inand Pinare the inlet total pressure and the static pressure of the stators,P*outis the outlet total pressure.In plan f,it is apparent that there is a great reduction in the flow loss in the areas above 40% of the blade span,and the losses in the area below 20%of the blade span are under better control.The removal of the separation and the decrease in the loss greatly improves the stator flow.

    It can be concluded that both flow mechanisms can effectively reduce the corner separation,and enhance the compressor performance. During the research,reducing the incidence angle alone cannot completely remove the large separation area near the casing.It only pushes back the starting location of the boundary layer separation on the tips near the casing and reduces the scale of separation. The compressorsurge margin hardly has any improvement. However,if the low-energy fluid in the critical area can be eliminated at the same time when the incidence angle is reduced,there is a better stator flow as the lowenergy fluid is removed and the separation is inhibited.The compressor has a comprehensive improvement in total pressure increase and surge margin.The research also indicates that too large bleeding rates bring about intensive radial flow, destruct the main flow,and increase the risk of large separation in hub region.In other words, there is an optimum value in the bleeding rate controlling the stator casing corner separation.

    4 INFLUENCES OF BLEEDING RATES

    There are different stator flow fields in plans d and f due to different bleeding rates in the analysis above.What are the similarities and dissimilarities in the stator flow field under different bleeding rates? What is the optimum bleeding rate?In order to explore the influence of different bleeding rates on the stator flow field and the performance,5 bleeding plans are presented with the same bleeding structure and location of plan d. These plans are referred to as d1—d5,and corresponding bleeding rates are 0.3%,0.6%,1%, 2% and 3%,respectively.

    4.1 Influence on total pressure increase

    Table 4 lists out the total pressure increase coefficient in each bleeding rate plan at the design point.In plan d1,the total pressure increase coefficient rises by 0.75% under a bleeding rate of 0.3%.The coefficient rises by 0.65% in plan d2 where the bleeding rate increases to 0.6%.In plan d3,the coefficient grows only by 0.15% while the bleeding rate reaches 1.0%.In plans d4 and d5,the coefficients decrease by 0.59% and 1.5% respectively when the bleeding rates keep increasing.In conclusion,there is increase in the coefficient when the bleeding rate is under 1.0%. The coefficient starts to decrease when the bleeding rate exceeds 1%.Therefore,there is an optimum value in the bleeding rates,and it is not the more the better.

    Table4 Relative value of total pressure increase coefficient in each bleeding rate plan at design point

    4.2 Influence on stator flow field

    Fig.13 presents the skin friction on the stator suction surface at the design point in each plan.Fig.14 shows the stator exit total pressure increase coefficient contours at the design point in each plan.With the bleeding rate increasing,the casing separation area starts to shrink along the radial and circumferential direction.The casing corner separation is under better control in plan d3.Its radial range is cut to 90% to 100% of the blade span,and the circumferential range also shrinks.However,the radial flow in the hub region starts to intensify and the separation area also expands when the bleeding rate grows.In plan d3,the radial range of the separation area increases to 60% of the blade span,compared to 20% of the blade span in the baseline.The circumferential influence covers up 20% of the pitch range.When the bleeding rates reach and exceed 1%,the casing corner separation gradually disappears,and the separation and the radial flow in the hub intensify.In plan d5,the casing separation completely disappears under the 3% of the bleeding rate,but larger hub separation appears and grows to 75% of the blade span.

    Fig.13 Skin friction on stator suction surface at design point in each plan

    Fig.14 Stator exit total pressure increase coefficient contours at design point in each bleeding rate plan

    Fig.15 shows the radial distributions of the stator total loss coefficient at the design point in each plan.The stator total loss coefficient in the upper half of the blade span apparently decreases with an increase in the casing bleeding rate.At the 90% of the blade span,the loss coefficient in plan d1 decreases to 0.1 from 0.3 in baseline. However,there is no significant decrease in the loss coefficient when the bleeding rate continues to grow.The loss coefficient in the lower half of the blade span increase together with the bleeding rates.The bleeding rate influences the stator total loss coefficient in the same way that stator flow field changes as shown in Figs.13,14.They both reflect how bleeding rate influences the stator flow field,and explain why the total pressure increase changes on the design points of each plan.

    Fig.15 Radial distributions of stator total loss coefficient at design point in each bleeding rate plan

    In conclusion, too much bleeding brings about intensive radial flow when removing the local separation.Furthermore,when there is large incidence angle in stators or separationin hub corner,large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.Therefore,there is an optimum value in the bleeding rate controlling the stator casing corner separation.The value depends on the flow of the stator flow field.

    5 CONCLUSIONS

    (1)In both mechanisms about how bleeding improves the compressor performance,the elimination of low-energy fluid by bleeding plays a dominant role.The influence of bleeding on the blades incidence angle can determine the location of bleeding device.The compressor has a much better performance if both mechanisms are taken into consideration during design.

    (2)A joint bleeding structure plan bleeds 1% of the air from both the stator casing near suction side and the stator suction surface near the hub region.This plan succeeds in rising both the total pressure increase and the surge margin of compressor at the same time.Compared with the baseline condition,the total pressure increase rises by 5.88%, the flow range expands by 4.25% and the overall surge margin increases by 45.47%.

    (3)There is an optimum value in the bleeding rate controlling the stator casing corner separation.Too much bleeding brings about intensive radial flow when removing the local separation. Furthermore,when there is the large incidence angle in stators or the separation in hub corner, large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.

    [1] Yang Yansheng,Wu Xiangyu,Lu Haiying,et al. Design manual of aircraft engine,16th volumes:Air systems and analysis of heat transfer[M].Beijing: Aviation Industry Press,2001:1-11.(in Chinese)

    [2] Zhao Bin,Li Shaobin,Hou Anpin,et al.The research on air bleed of air system in aero-engine[C]// Academic ExchangingMeeting of 15th Turbomachinery Committee of Aviation Institute.China: CSAA,2009:190-198.(in Chinese)

    [3] Andrew JY,Ronald J R.Effects of bleed air extraction on thrust level of the F404-GE-400 turbofan engine[R].NASA TM-104247,1992.

    [4] Alison B E.The effects of compressor seventh-stage bleed air extraction on performance of the F100-PW-220 afterburning turbofan engine[R].N ASA CR-179447,1991.

    [5] Wellborn S R,Michael L K.Bleed flow interactions with an axial-flow compressor powerstream[R]. AIAA Paper 2002-4057,2002.

    [6] Kerrcbroek J L,Reijnan D P,Ziminsky W S,et al. Aspirated compressors[R].ASM E Paper,GT-97-525,1997.

    [7] Merchant A A,Drela M,Kerrebrock J L,et al. Aerodynamic design and analysis of a high pressure ratio aspirated compressor stage[R].ASM E Paper, GT-2000-619,2000.

    [8] Zhou Hai,Li Qiushi,Lu Yajun.Prospects of numerical analysis of an aspirated transonic fan rotor [J].Journal of Aerospace Power,2004,19(3):408-412.(in Chinese)

    [9] Wang Songtao,Qian Jiru,Feng Guotai,et al.The research about loss reduction and separation suppress by wall suction[J].Journal of Engineering Thermophysics,2006,27(1):48-50.(in Chinese)

    [10]Conan F,Savarese S,Moteurs S.Bleed airflow CFD modeling in areodynamics simulations of jet engine compressors[R].ASM E Paper,GT-2001-0544, 2001.

    [11]Saathoff H,Stark U.Tip clearance flow in a low speed compressor and cascade[C]//Fourth European Conference on Turbomachinery.Firenze,Italy:[s. n.],2001:81-91.

    [12]Gummer V,Swoboda M,Goller M,et al.The impact of rotor tip sweep on the three-dimensional flow in a highly-loaded single stage low-speed axial compressor— Part1:design and numerical analysis[C]// Fifth European Conference on Turbomachinery. Prague,Czech Republic:[s.n.],2003.

    [13]Zhao Bin,Li Shaobin,Li Qiushi,et al.Unsteady numerical research into the impact of bleeding on axialcompressorperformance[C]//Proceeding of ASME2010 3rd Joint US-European Fluids Engineering Summer Meeting.Montreal,Canada: [s.n.], 2010:FEDSM-ICNMM2010-30228.

    [14]Joslyn H D,Dring R P. Axial compressor stator aerodynamics[J].ASM E Journal of Heat Transfer, 1985(107):485-493.

    [15]Kang S,Hirsch C.Three dimensional flow in a linear compressor cascade at design condition[R]. ASME Paper,GT91-114,1991.

    [16]Li Zhiping,Li Qiushi,Yuan Wei,et al.The experimental research on a new method for extending the axial-compressors stallmargin[J]. Journalof Aerospace Power, 2006,21(3): 485-491.(in Chinese)

    [17]Hall E J,Crook A J,Delancy R A.Aerodynamic analysis of compressor casing treatment with a3-D navier-stokes solver[R]. AIAA Paper 94-2796, 1994.

    [18]Yang H,Nuernberger D,Nicke E A.Numerical investigation of casing treatment mechanisms with a conservative mix-cell approach[R].ASM E Paper, GT-2003-28483,2003.

    猜你喜歡
    北京航空航天大學(xué)壓氣機(jī)熱力
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    熱力工程造價(jià)控制的影響因素及解決
    軸流壓氣機(jī)效率評定方法
    熱力站設(shè)備評測分析
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    重型燃?xì)廨啓C(jī)壓氣機(jī)第一級轉(zhuǎn)子葉片斷裂分析
    壓氣機(jī)緊湊S形過渡段內(nèi)周向彎靜子性能數(shù)值計(jì)算
    周六福520愛跑節(jié)1000人登陸西安城墻 熱力開跑
    中國寶玉石(2018年3期)2018-07-09 03:13:52
    午夜精品在线福利| 国产精品美女特级片免费视频播放器 | 99国产精品免费福利视频| 桃色一区二区三区在线观看| 啦啦啦免费观看视频1| 成人亚洲精品av一区二区 | 亚洲九九香蕉| 亚洲一区二区三区色噜噜 | 91av网站免费观看| 可以在线观看毛片的网站| 深夜精品福利| 中文字幕精品免费在线观看视频| bbb黄色大片| 国产精品久久久av美女十八| av国产精品久久久久影院| 亚洲色图 男人天堂 中文字幕| 亚洲伊人色综图| 精品欧美一区二区三区在线| 人人妻人人爽人人添夜夜欢视频| 欧美成人午夜精品| √禁漫天堂资源中文www| 欧美成人性av电影在线观看| 91成人精品电影| svipshipincom国产片| 黄频高清免费视频| 91成人精品电影| 在线十欧美十亚洲十日本专区| 午夜老司机福利片| 午夜福利,免费看| 亚洲精品在线美女| 在线观看免费午夜福利视频| 午夜精品国产一区二区电影| 一夜夜www| 国产精品综合久久久久久久免费 | 黄频高清免费视频| 在线视频色国产色| a级毛片黄视频| 国产成人精品久久二区二区91| 在线观看66精品国产| 熟女少妇亚洲综合色aaa.| 久久久精品欧美日韩精品| 男人舔女人的私密视频| www.精华液| 亚洲av第一区精品v没综合| 午夜精品国产一区二区电影| 高清在线国产一区| 两性夫妻黄色片| 精品人妻在线不人妻| 亚洲欧美一区二区三区久久| 母亲3免费完整高清在线观看| 午夜视频精品福利| 熟女少妇亚洲综合色aaa.| 精品久久久久久久毛片微露脸| 国产一区二区三区视频了| 制服人妻中文乱码| 波多野结衣一区麻豆| 巨乳人妻的诱惑在线观看| 校园春色视频在线观看| 久久亚洲真实| 日韩欧美一区二区三区在线观看| 精品一区二区三区视频在线观看免费 | 搡老岳熟女国产| 亚洲午夜理论影院| 日本撒尿小便嘘嘘汇集6| 香蕉丝袜av| 村上凉子中文字幕在线| 欧美精品啪啪一区二区三区| 桃色一区二区三区在线观看| 视频区欧美日本亚洲| 亚洲国产欧美日韩在线播放| 免费在线观看日本一区| 国产又色又爽无遮挡免费看| 欧美日韩精品网址| 亚洲成国产人片在线观看| 99精国产麻豆久久婷婷| 成人国产一区最新在线观看| 脱女人内裤的视频| 久久草成人影院| 婷婷六月久久综合丁香| 亚洲熟女毛片儿| 最新在线观看一区二区三区| 亚洲精品中文字幕一二三四区| 国产99白浆流出| 黄色丝袜av网址大全| 视频在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 999久久久国产精品视频| 超碰成人久久| 成人18禁高潮啪啪吃奶动态图| 69精品国产乱码久久久| 午夜a级毛片| 亚洲成人久久性| 热re99久久国产66热| 国产av又大| av在线天堂中文字幕 | 精品国产超薄肉色丝袜足j| 国产精品 欧美亚洲| 日韩人妻精品一区2区三区| 亚洲成人国产一区在线观看| 欧美精品啪啪一区二区三区| 国内久久婷婷六月综合欲色啪| 欧美色视频一区免费| 久久中文字幕人妻熟女| 99re在线观看精品视频| 麻豆成人av在线观看| 亚洲精品av麻豆狂野| 可以免费在线观看a视频的电影网站| 免费日韩欧美在线观看| 免费av中文字幕在线| 亚洲一区二区三区欧美精品| 一二三四社区在线视频社区8| 国产野战对白在线观看| 亚洲成国产人片在线观看| 欧美日韩乱码在线| 国产精品亚洲一级av第二区| 丁香六月欧美| 老司机福利观看| 国产成人精品久久二区二区91| 91麻豆精品激情在线观看国产 | 俄罗斯特黄特色一大片| avwww免费| 每晚都被弄得嗷嗷叫到高潮| 9色porny在线观看| 人人妻人人澡人人看| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| 久热爱精品视频在线9| 成人精品一区二区免费| 成人三级做爰电影| 一夜夜www| 国产一卡二卡三卡精品| 999精品在线视频| 男男h啪啪无遮挡| 制服人妻中文乱码| 中出人妻视频一区二区| tocl精华| 免费搜索国产男女视频| 俄罗斯特黄特色一大片| 久久亚洲精品不卡| 亚洲国产精品999在线| 亚洲欧美日韩无卡精品| 老司机靠b影院| 亚洲人成网站在线播放欧美日韩| 精品国产国语对白av| 正在播放国产对白刺激| 色婷婷av一区二区三区视频| 极品人妻少妇av视频| 99久久综合精品五月天人人| 亚洲aⅴ乱码一区二区在线播放 | 色播在线永久视频| 日本撒尿小便嘘嘘汇集6| 日韩av在线大香蕉| 久久天堂一区二区三区四区| 男女下面进入的视频免费午夜 | 99热只有精品国产| 国产av一区二区精品久久| 男女下面进入的视频免费午夜 | 亚洲欧美激情在线| 亚洲三区欧美一区| 久久欧美精品欧美久久欧美| 亚洲自拍偷在线| av欧美777| a级片在线免费高清观看视频| 亚洲视频免费观看视频| 一夜夜www| 久久久精品欧美日韩精品| 一夜夜www| 18禁美女被吸乳视频| 国产精品 国内视频| 视频在线观看一区二区三区| www.www免费av| 高清av免费在线| 亚洲情色 制服丝袜| 中文字幕高清在线视频| 搡老熟女国产l中国老女人| 亚洲av五月六月丁香网| 亚洲成人免费电影在线观看| 欧美日韩亚洲高清精品| 好男人电影高清在线观看| 亚洲视频免费观看视频| 国产三级黄色录像| 男女下面插进去视频免费观看| 精品久久久久久成人av| 最新在线观看一区二区三区| 亚洲精华国产精华精| 免费在线观看黄色视频的| 男人的好看免费观看在线视频 | 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| 欧美乱色亚洲激情| 9热在线视频观看99| 丝袜美足系列| 日韩免费高清中文字幕av| 国产成人欧美| 99久久人妻综合| 亚洲国产精品999在线| 在线观看免费视频网站a站| 国产午夜精品久久久久久| 成人免费观看视频高清| 天天影视国产精品| 精品电影一区二区在线| 日本免费一区二区三区高清不卡 | 老司机亚洲免费影院| 手机成人av网站| 亚洲欧美日韩另类电影网站| 欧美亚洲日本最大视频资源| 亚洲欧美日韩无卡精品| 亚洲片人在线观看| videosex国产| 久久久水蜜桃国产精品网| 精品一品国产午夜福利视频| 日本五十路高清| 国产男靠女视频免费网站| 999久久久国产精品视频| 精品久久久久久,| 日韩精品免费视频一区二区三区| 国产真人三级小视频在线观看| 国产成人系列免费观看| 国产无遮挡羞羞视频在线观看| av天堂在线播放| 久久国产精品男人的天堂亚洲| 日韩欧美一区视频在线观看| 国产精品香港三级国产av潘金莲| 在线视频色国产色| 精品国产亚洲在线| 麻豆久久精品国产亚洲av | 国产精品乱码一区二三区的特点 | 法律面前人人平等表现在哪些方面| 久久人人爽av亚洲精品天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看66精品国产| 老司机在亚洲福利影院| 欧美一区二区精品小视频在线| 午夜视频精品福利| 国产精品影院久久| www.自偷自拍.com| 国产精品综合久久久久久久免费 | 国产精品久久久人人做人人爽| avwww免费| 他把我摸到了高潮在线观看| 88av欧美| 日本精品一区二区三区蜜桃| 亚洲国产精品一区二区三区在线| 午夜福利免费观看在线| 黄色视频不卡| 久久人妻熟女aⅴ| 日韩视频一区二区在线观看| 黑丝袜美女国产一区| 51午夜福利影视在线观看| 国产精品日韩av在线免费观看 | 欧美最黄视频在线播放免费 | 成人18禁在线播放| 国产精品美女特级片免费视频播放器 | 99久久综合精品五月天人人| 成人黄色视频免费在线看| 免费在线观看黄色视频的| 在线av久久热| 视频在线观看一区二区三区| 淫秽高清视频在线观看| 色综合站精品国产| 亚洲九九香蕉| 夜夜爽天天搞| 亚洲一区高清亚洲精品| 咕卡用的链子| 亚洲熟女毛片儿| 一区福利在线观看| 亚洲精品一二三| 日本黄色日本黄色录像| 亚洲精品中文字幕一二三四区| 一级,二级,三级黄色视频| 午夜免费激情av| 99在线视频只有这里精品首页| 免费在线观看黄色视频的| 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| 日韩免费高清中文字幕av| 黄色成人免费大全| 国产精品久久久久成人av| 亚洲色图综合在线观看| 人人妻人人添人人爽欧美一区卜| xxx96com| av国产精品久久久久影院| 久久国产亚洲av麻豆专区| 超碰成人久久| 三上悠亚av全集在线观看| 国产视频一区二区在线看| 侵犯人妻中文字幕一二三四区| 黄色 视频免费看| 麻豆久久精品国产亚洲av | 亚洲少妇的诱惑av| 亚洲成人精品中文字幕电影 | 久久精品国产综合久久久| 亚洲欧美精品综合一区二区三区| 亚洲av五月六月丁香网| 一边摸一边做爽爽视频免费| 亚洲专区国产一区二区| 又紧又爽又黄一区二区| 成人影院久久| 国产精华一区二区三区| 久9热在线精品视频| 女警被强在线播放| 精品久久蜜臀av无| 欧美大码av| 黑人操中国人逼视频| 欧美人与性动交α欧美软件| 777久久人妻少妇嫩草av网站| 一区二区三区激情视频| www.自偷自拍.com| 久热这里只有精品99| 国产精品九九99| av网站免费在线观看视频| 欧美人与性动交α欧美精品济南到| 性欧美人与动物交配| 中出人妻视频一区二区| 欧美大码av| 欧美乱色亚洲激情| 亚洲精品中文字幕在线视频| 欧美在线黄色| 精品乱码久久久久久99久播| 亚洲久久久国产精品| 啦啦啦免费观看视频1| 免费少妇av软件| 免费少妇av软件| 另类亚洲欧美激情| 欧美日韩乱码在线| 亚洲欧美激情综合另类| 人妻丰满熟妇av一区二区三区| 超碰成人久久| 国产男靠女视频免费网站| 亚洲av成人av| a级毛片在线看网站| 国产97色在线日韩免费| 亚洲avbb在线观看| 91九色精品人成在线观看| 日韩国内少妇激情av| 一边摸一边做爽爽视频免费| 久久人人精品亚洲av| 欧美老熟妇乱子伦牲交| 欧美日韩中文字幕国产精品一区二区三区 | 三上悠亚av全集在线观看| 午夜免费成人在线视频| 一a级毛片在线观看| 国产一区在线观看成人免费| 国产野战对白在线观看| 久久精品国产清高在天天线| 嫩草影院精品99| 制服诱惑二区| 久久草成人影院| 亚洲欧洲精品一区二区精品久久久| 亚洲中文日韩欧美视频| 手机成人av网站| 老熟妇仑乱视频hdxx| 丁香欧美五月| 国产不卡一卡二| 国产一卡二卡三卡精品| 啦啦啦 在线观看视频| 国产亚洲欧美在线一区二区| 午夜亚洲福利在线播放| 高清毛片免费观看视频网站 | 国产一卡二卡三卡精品| 日韩欧美免费精品| 1024视频免费在线观看| 成人亚洲精品av一区二区 | 日本三级黄在线观看| 最近最新中文字幕大全电影3 | 黄片小视频在线播放| 涩涩av久久男人的天堂| 五月开心婷婷网| 国产熟女午夜一区二区三区| xxxhd国产人妻xxx| 97人妻天天添夜夜摸| 亚洲国产欧美日韩在线播放| 在线永久观看黄色视频| 亚洲成av片中文字幕在线观看| 男女之事视频高清在线观看| 免费女性裸体啪啪无遮挡网站| 久久天躁狠狠躁夜夜2o2o| 99精品久久久久人妻精品| 国产区一区二久久| 午夜成年电影在线免费观看| 国产成+人综合+亚洲专区| 9热在线视频观看99| 亚洲成人免费av在线播放| 一级a爱片免费观看的视频| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 亚洲国产精品一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 久久精品国产99精品国产亚洲性色 | 免费高清在线观看日韩| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 宅男免费午夜| 久久久精品国产亚洲av高清涩受| 美国免费a级毛片| 99re在线观看精品视频| 一区二区三区精品91| 热re99久久国产66热| 亚洲欧美日韩无卡精品| 亚洲一区二区三区欧美精品| 一级毛片女人18水好多| 亚洲少妇的诱惑av| 男女下面插进去视频免费观看| 午夜久久久在线观看| 国产一区二区三区视频了| 亚洲av日韩精品久久久久久密| 国产精品久久久久久人妻精品电影| 国产精品秋霞免费鲁丝片| 久久午夜综合久久蜜桃| 欧美国产精品va在线观看不卡| 99国产极品粉嫩在线观看| 国产亚洲欧美在线一区二区| 男人的好看免费观看在线视频 | 欧美精品一区二区免费开放| 男女高潮啪啪啪动态图| 一级毛片精品| 成人精品一区二区免费| 999久久久精品免费观看国产| 亚洲激情在线av| av网站免费在线观看视频| 亚洲人成电影免费在线| 法律面前人人平等表现在哪些方面| 热99国产精品久久久久久7| 99国产极品粉嫩在线观看| 日本五十路高清| 免费少妇av软件| 久久99一区二区三区| 精品久久蜜臀av无| 色婷婷久久久亚洲欧美| 少妇 在线观看| 精品国产一区二区久久| 黑人欧美特级aaaaaa片| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕在线视频| 免费av毛片视频| 麻豆av在线久日| 丰满迷人的少妇在线观看| 女同久久另类99精品国产91| 国产精品久久久av美女十八| 日韩欧美一区二区三区在线观看| av超薄肉色丝袜交足视频| 久久精品aⅴ一区二区三区四区| 欧美+亚洲+日韩+国产| www.999成人在线观看| 日韩av在线大香蕉| 午夜老司机福利片| 在线观看免费高清a一片| 超碰成人久久| 国产成人系列免费观看| 国产一区二区三区在线臀色熟女 | 欧美成人性av电影在线观看| 亚洲一区高清亚洲精品| 看黄色毛片网站| 身体一侧抽搐| 国产精品国产av在线观看| 电影成人av| 国产高清videossex| 黑人巨大精品欧美一区二区mp4| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 成人永久免费在线观看视频| 亚洲第一青青草原| 丝袜人妻中文字幕| www.熟女人妻精品国产| 9热在线视频观看99| 亚洲片人在线观看| 老鸭窝网址在线观看| 日本三级黄在线观看| 老司机亚洲免费影院| 99国产极品粉嫩在线观看| 亚洲欧美日韩另类电影网站| 国产蜜桃级精品一区二区三区| 99riav亚洲国产免费| 黄片播放在线免费| 麻豆久久精品国产亚洲av | 久久99一区二区三区| 欧美中文日本在线观看视频| 久久精品国产综合久久久| 三上悠亚av全集在线观看| 国产一区二区三区综合在线观看| 国产熟女午夜一区二区三区| 中文字幕高清在线视频| 日本欧美视频一区| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 天堂俺去俺来也www色官网| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 亚洲 欧美 日韩 在线 免费| 天堂动漫精品| 亚洲欧美激情综合另类| 一本大道久久a久久精品| 在线观看一区二区三区| 久久久久久久久久久久大奶| 精品日产1卡2卡| 国产精品乱码一区二三区的特点 | tocl精华| 日日夜夜操网爽| 国产av在哪里看| 精品人妻在线不人妻| 大型av网站在线播放| 99久久综合精品五月天人人| 国产熟女xx| 久久久国产欧美日韩av| 国产精品 国内视频| 国产精品 欧美亚洲| 成人特级黄色片久久久久久久| 免费在线观看完整版高清| 中文欧美无线码| 亚洲国产欧美网| 国产三级在线视频| 男女之事视频高清在线观看| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 日本黄色日本黄色录像| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| avwww免费| 在线观看日韩欧美| netflix在线观看网站| 亚洲精品久久成人aⅴ小说| 亚洲五月婷婷丁香| 脱女人内裤的视频| 乱人伦中国视频| 久久久久久久精品吃奶| 久久国产精品人妻蜜桃| 少妇粗大呻吟视频| 久久中文字幕人妻熟女| 国产人伦9x9x在线观看| 天天躁夜夜躁狠狠躁躁| 最近最新中文字幕大全免费视频| 亚洲人成伊人成综合网2020| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 成人亚洲精品一区在线观看| 精品日产1卡2卡| 亚洲专区国产一区二区| 国产成年人精品一区二区 | 69精品国产乱码久久久| 成人三级做爰电影| 中文亚洲av片在线观看爽| 天堂√8在线中文| 日本wwww免费看| 9热在线视频观看99| 国产精品二区激情视频| 18禁黄网站禁片午夜丰满| 99国产精品一区二区三区| 女同久久另类99精品国产91| 日韩三级视频一区二区三区| 成人国语在线视频| 国产精品1区2区在线观看.| 国产成年人精品一区二区 | 欧美激情久久久久久爽电影 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一二三| 在线av久久热| 大型黄色视频在线免费观看| 国产成人av教育| 国产在线观看jvid| 中文字幕色久视频| 国产成人系列免费观看| 国产成人欧美在线观看| 搡老岳熟女国产| 精品欧美一区二区三区在线| 新久久久久国产一级毛片| 三级毛片av免费| 自线自在国产av| 欧美人与性动交α欧美精品济南到| 中文亚洲av片在线观看爽| 国产精品 国内视频| 国产精品一区二区精品视频观看| 一个人观看的视频www高清免费观看 | 大型av网站在线播放| 欧美性长视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 曰老女人黄片| 一边摸一边抽搐一进一小说| 欧美 亚洲 国产 日韩一| 在线看a的网站| 欧美日韩av久久| a在线观看视频网站| 久热爱精品视频在线9| 69av精品久久久久久| 老司机亚洲免费影院| 久久精品国产亚洲av高清一级| 又黄又粗又硬又大视频| 欧美日韩乱码在线| 欧美乱色亚洲激情| 午夜亚洲福利在线播放| 国产成+人综合+亚洲专区| 国产精品自产拍在线观看55亚洲| 日日夜夜操网爽| 国产精品日韩av在线免费观看 | 欧美一级毛片孕妇| 在线观看一区二区三区激情| aaaaa片日本免费| 国产精品影院久久| 日本vs欧美在线观看视频| 国产三级在线视频| 午夜老司机福利片| 999精品在线视频| 国产熟女午夜一区二区三区| 97碰自拍视频| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 亚洲男人的天堂狠狠| 国产精品国产av在线观看| 最近最新中文字幕大全电影3 | cao死你这个sao货| 手机成人av网站|