石 喬綜述 王衛(wèi)星審校
胰腺腺泡細胞和胰島β細胞損傷修復及再生的研究進展*
石 喬綜述 王衛(wèi)星#審校
胰腺炎可引起胰腺腺泡及胰島β細胞損傷,修復胰腺內、外分泌功能是胰腺炎治療研究亟待解決的問題;胰腺損傷修復、胰腺干細胞及內、外分泌細胞的再生和調控再生信號通路(Notch、Hedgehog及Wnt信號)對其意義重大。而胰腺腺泡及胰島β細胞的損傷修復、再生及調控胰腺內外分泌細胞的去分化、轉化和再分化過程是目前研究的熱點。
胰腺炎;胰島β細胞;腺泡;再生
急性胰腺炎(Acute Pancreatitis, AP)是臨床上常見的急腹癥,按其嚴重程度可分為輕、中及重癥,后者病情兇險、進展迅速,常并發(fā)多器官功能障礙,病死率高達10%-30%[1, 2]。AP的發(fā)病機制為胰酶異常激活后對胰腺組織的自身消化,從而引起大量胰酶釋放、氧化應激及炎癥級聯反應,導致胰腺及胰外臟器損傷。慢性胰腺炎(Chronic Pancreatitis, CP)是一種進展性胰腺炎性疾病,其病理表現為胰腺實質的破壞及纖維化,最終導致內、外分泌不足,從而導致糖尿病(Diabetes Mellitus, DM)及消化不良的發(fā)生。眾所周知,胰腺炎可導致腺泡及胰島β細胞的損傷和不足[3, 4],胰腺炎后胰腺內、外分泌功能的恢復是胰腺炎治療研究亟待解決的問題。因此,探討胰腺損傷修復、胰腺干細胞及胰腺內、外分泌細胞的再生,以及調控損傷修復和再生的信號通路,對治療胰腺疾病有重要意義。 本文綜述胰腺炎后胰腺泡和胰島β細胞的修復、再生以及調控內外分泌細胞去分化、轉化及再分化等的研究進展。
胰腺由內、外分泌腺組成,是機體最重要的消化器官之一。外分泌腺主要由腺泡細胞、導管細胞等構成,分泌各種消化酶、水和電解質入腸,起消化作用。內分泌腺胰島成團狀,分布于腺泡細胞之間,主要由α細胞、 β細胞, δ細胞和PP細胞四種細胞組成,分別分泌胰島素、胰高血糖素、生長抑素和胰多肽,它們相互作用,共同調控體內的糖代謝和血糖平衡[5],對機體的生命活動起著極為重要的作用。
成人胰腺干細胞是否存在、其表型特征及解剖位置如何目前仍有爭議[6]。有學者認為,成人胰腺中存在胰腺固有干細胞,沿胰腺導管樹分布,并能分化為胰島β細胞[6-8]。但大多數學者認為成人胰腺組織中不存在固有干細胞,而是一種兼性干細胞[9, 10]。有學者采用蛙皮素誘導胰腺炎造成的胰腺腺泡細胞損傷在一周之內完全恢復后觀察到腺泡細胞去分化形成的SOX9+腺泡導管樣結構(Acinar-to-ductal Metaplasia, ADM)中的導管樣細胞可再分化為胰腺腺泡細胞,因而認為導管樣細胞為胰腺的兼性干細胞[9, 11];也有研究發(fā)現了一些小的胰島內分泌細胞簇毗鄰胰腺導管(胰腺炎及胰腺損傷時尤其明顯),推測這些細胞可能來源于導管樣細胞的增殖及分化[12];還有報道采用三種轉錄因子Ngn3、Mafa及Pdx1調控胰腺腺泡細胞分化,可將腺泡細胞成功轉化為三種胰島內分泌細胞,即α、β,δ細胞[13];都說明腺泡細胞去分化形成SOX9+的導管樣細胞,可能為胰腺內、外分泌細胞再生的兼性干細胞。另有研究認為胰腺衛(wèi)星細胞(Pancreatic Stellate Cell, PSC)、中心腺泡細胞也可能是胰腺再生的干細胞[14-16]。
胰腺炎時腺泡內胰酶異常激活,腺泡細胞發(fā)生自身消化,導致大量腺泡細胞去分化、凋亡及壞死。去分化的腺泡細胞處于休眠狀態(tài),有利于避免持續(xù)傷害刺激而引起細胞壞死,當腺泡細胞所受傷害刺激解除之后,去分化腺泡細胞即可發(fā)生增殖,且可再分化為功能性腺泡細胞[17]。壞死腺泡細胞的裂解,使大量激活的胰酶釋放入血,引起全身炎癥反應,并出現血、尿淀粉酶升高。有研究指出,胰腺壞死區(qū)域腺泡細胞的修復,主要通過殘存的腺泡細胞增殖實現,而不是通過胰腺中固有干細胞的再生,且首先在胰島β細胞的增殖過程中發(fā)現;隨后的觀察也證實了這一現象[18, 19]。如Fendrich等[20]用莫昔芬祖系示蹤技術標記腺泡細胞,比較腺泡細胞在蛙皮素誘導損傷前、后腺泡細胞的標記情況,結果顯示損傷后腺泡細胞數量與損傷前差異很小,說明損傷后殘存腺泡細胞可以增殖。另有實驗表明有小部分腺泡細胞可能由非腺泡細胞如胰腺導管細胞的轉化或再生而來[21], 這從Criscimanna等[22]報道的胰腺炎時胰腺導管細胞可以分化為有功能腺泡細胞結果中也得到證實。Saponara等通過基因敲除5-羥色胺減少胰腺炎后ADM形成,觀察腺泡細胞損傷后修復情況,結果也證實ADM中的導管樣細胞為胰腺腺泡細胞損傷修復及再生的重要來源[9]。因此,胰腺炎腺泡細胞損傷修復,主要依賴于殘留的腺泡細胞增殖及腺泡細胞去分化形成的導管樣細胞的再分化,其次為胰腺中其它細胞的轉化或其它兼性干細胞。
AP患者大多有血糖升高,甚至出現糖尿。該現象被認為是一過性血糖升高,AP治愈后可完全恢復[23]。最近有研究通過對初次AP患者治愈后人群的大規(guī)模調查發(fā)現,AP后人群罹患DM風險較正常人群增加2倍[4]。還有研究顯示,40%的AP患者出院后出現糖耐量異?;駾M;AP后新診斷為DM的患者超過23%(普通人群為4%-9%),且胰腺炎的不同嚴重程度對這種風險的影響無統計學差異,即無論輕、中、重型胰腺炎,其治愈出院后患DM風險均較高[24]。表明AP不僅損傷胰腺腺泡細胞,也引起胰島β細胞的損傷。此外,CP也存在內、外分泌細胞的損傷,導致胰酶不足及血糖升高[17]。
在不同程度損傷刺激下,胰島β細胞可發(fā)生去分化、凋亡及壞死[25, 26]。有學者認為DM模型中胰島β細胞的衰竭,不是因為胰島β細胞的死亡,而是胰島β細胞在損傷刺激下發(fā)生了去分化,去分化的胰島β細胞失去了分泌胰島素的功能,從而導致患者出現血糖升高[26]。AP發(fā)生的應激及炎癥損傷可致胰島β細胞出現凋亡,甚至壞死[27, 28]。但AP是否存在胰島β細胞的去分化,目前仍不清楚。對胰島β細胞的缺乏或數量減少,機體可通過損傷修復、增殖、轉分化以及再生功能來恢復[19, 29]。如Johnson等[30]研究發(fā)現胰腺腺泡細胞可轉分化為胰腺導管細胞及胰島β細胞;Thorel等[31]還發(fā)現白喉毒素破壞胰島β細胞致其極度衰竭時胰島α細胞可轉分化為β細胞;Chera等[32]通過上調FoxO1因子(一種胰腺β細胞團的關鍵調控因子)及其下游的效應因子,也能促使胰島α及δ細胞轉分化為胰島β細胞。但對AP時胰島β細胞減少或缺失是由其凋亡、壞死所致,還是其去分化引起或兩者兼有,目前少有文獻報道,尤其AP時胰島β細胞是否發(fā)生去分化,值得繼續(xù)探討。假設胰腺炎存在胰島β細胞的凋亡、壞死,也存在胰島β細胞的去分化,那么,促使去分化的胰島β細胞再分化為有功能的胰島β細胞可能成為緩解及治療胰腺炎血糖升高及胰腺炎后DM的一個新的治療思路。
Notch信號通路廣泛存在于非脊椎動物和脊椎動物,其通過相鄰細胞之間的相互作用調節(jié)細胞、組織、器官的分化和發(fā)育。Notch信號在胰腺的胚胎發(fā)育及成人胰腺損傷后穩(wěn)態(tài)的維持中起著重要的作用[33, 34]。Notch信號通路由Notch受體、Notch配體、轉錄因子CSL(CBF-1,Suppressor of Hairless,Lag的合稱)DNA結合蛋白以及其它的效應物和Notch調節(jié)分子等組成。Notch信號的產生通過相鄰細胞的Notch配體與受體相互作用,Notch蛋白經過剪切,由胞內段(NICD)釋放入胞質,并進入細胞核與CSL結合, 形成NICD/CSL轉錄激活復合體,從而激活HES、HEY、HERP等堿性-螺旋-環(huán)-螺旋轉錄抑制因子家族的靶基因而發(fā)揮生物學作用。有研究報道,蛙皮素誘導的胰腺炎損傷激活Notch信號通路,促使胰腺腺泡細胞發(fā)生去分化,去分化細胞表達祖細胞樣蛋白SOX9,表明Notch通路在腺泡去分化中起重要作用[35-37]。在胰腺的發(fā)育過程中,降低Notch通路活性,使祖細胞樣蛋白Ngn3增多,促使祖細胞向內分泌細胞分化。在Notch通路處于正?;钚詰B(tài)時,促使祖細胞向外分泌細胞方向分化[33, 38]。Siveke等[35]對實驗小鼠進行基因敲除Notch受體及注射γ-secretase抑制劑阻斷Notch通路,觀察胰腺炎后腺泡細胞損傷恢復情況,結果顯示該小鼠腺泡恢復不良。Kopinke等[39]觀察到成年小鼠胰腺中Notch通路活性僅表達于導管細胞及中心腺泡細胞,上調Notch通路能促進腺泡細胞向導管樣細胞轉化,而敲除轉錄因子RBP-Jκ降低Notch通路活性,則會促進中心腺泡細胞及導管樣細胞向腺泡細胞分化。AP時能否通過調控Notch通路,減少胰腺炎時胰島β細胞的損傷,或促進β細胞的損傷修復及再生,也值得進一步探討。
Hedgehog信號通路是一種分節(jié)級性基因,其廣泛存在于哺乳動物及其它生物體,其受體包括Ptc及Smo,配體有Dhh、Shh及Ihh,其下游的轉錄因子包括Gli1、Gli2及Gli3。經典Hedgehog通路可以通過Ptc及Smo兩個受體發(fā)揮信號傳遞作用,廣泛參與胚胎發(fā)育、細胞分化、器官形成及損傷修復等。在胰腺的生長發(fā)育過程中,Hedgehog信號通路參與調控胰腺的正常發(fā)育并與胰腺的形態(tài)發(fā)生有關[40]。通常情況下,胰腺發(fā)育中Hedgehog活性處于抑制狀態(tài)[41, 42]。Fendrich等[20]研究發(fā)現敲除Smo受體阻斷Hedgehog信號傳導,對胰腺外分泌細胞發(fā)育無影響;采用蛙皮素誘導胰腺炎時Hedgehog通路被激活,對干細胞具有一定的調節(jié)作用,能促使去分化的腺泡細胞及兼性干細胞增殖更新。此外,他們對實驗小鼠采用基因敲除方法及抑制劑阻斷Hedgehog信號后,再用蛙皮素誘導胰腺炎時,其腺泡細胞可正常地發(fā)生去分化及增殖,但去分化腺泡細胞不能再分化為腺泡細胞,甚至可導致胰腺腫瘤的發(fā)生。
Wnt信號通路包括Wnt配體、Wnt家族分泌蛋白、Frizzled家族跨膜受體蛋白及β-catenin等,該通路在胚胎的早期發(fā)育、器官形成、組織再生等方面發(fā)揮重要的作用。在胰腺的生長發(fā)育中,Wnt/β-catenin信號通路參與胰腺腺泡細胞的發(fā)育與增殖[41, 43, 44]。Keefe等[45]研究發(fā)現,敲除β-catenin基因阻斷Wnt信號經典通路對蛙皮素誘導的AP、CP腺泡細胞損傷、腺泡細胞去分化、ADM的形成及腺泡細胞的再分化均無影響,但其影響殘存的腺泡細胞增殖。此外,還有文獻報道Wnt信號通路可以調節(jié)胰島β細胞的增殖[46]。
了解胰腺炎胰腺內、外分泌細胞的損傷修復,胰腺干細胞的再生以及影響胰腺損傷修復及再生的信號通路,對治療急、慢性胰腺炎后內、外分泌不足具有指導性作用。此外,上述作用對DM胰島β細胞缺乏的治療也具有積極意義。通過干預胰腺損傷修復及再生信號通路,能有效地控制AP后腺泡細胞的恢復及DM,緩解慢性胰腺炎內、外分泌不足;研究胰腺損傷時內、外分泌細胞的去分化、轉化、再分化及胰腺內兼性干細胞的再生,為人類攻克DM帶來希望。
?
本文作者簡介:
石 喬(1987-),男,漢族,博士研究生,主要從事胰腺炎及胰腺再生醫(yī)學的研究
1 Lankisch PG,Apte M,Banks PA.Acute pancreatitis[J].Lancet, 2015,386(9988):85-96.
2 Besselink MG,van Santvoort HC,Buskens E,et al.Probiotic prophylaxis in predicted severe acute pancreatitis:a randomised, double-blind, placebo-controlled trial[J].Lancet, 2008,371(9613):651-659.
3 Hausmann S,Regel I,Steiger K,et al.Loss of periostin results in impaired regeneration and pancreatic atrophy after cerulein-induced pancreatitis[J].The American Journal of Pathology, 2016,186(1):24-31.
4 Shen HN,Yang CC,Chang YH,et al.Risk of diabetes mellitus after first-attack acute pancreatitis:a national population-based study[J].Am J Gastroenterol, 2015,110(12):1 698-1 706.
5 Cabrera O,Berman DM,Kenyon NS,et al.The unique cytoarchitecture of human pancreatic islets has implications for islet cell function[J].Proc Natl Acad Sci U S A, 2006,103(7):2 334-2 339.
6 Lanzoni G,Cardinale V,Carpino G.The hepatic,biliary,and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration[J]. Hepatology,2016,64(1):277-286.
7 Reid LM.Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver,biliary tree, and pancreas[J].Hepatology,2016,64(1):4-7.
8 Xu X,D'Hoker J,Stange G,et al.Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas[J].Cell,2008,132(2):197-207.
9 Saponara E,Grabliauskaite K, Bombardo M, et al.Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas[J].The Journal of Pathology, 2015,237(4):495-507.
10 Kopp JL,Grompe M,Sander M.Stem cells versus plasticity in liver and pancreas regeneration[J].Nat Cell Biol,2016,18(3):238-245.
11 Kawaguchi Y.Sox9 and programming of liver and pancreatic progenitors[J].J Clin Invest, 2013,123(5):1 881-1 886.
12 Bouwens L,Pipeleers DG.Extra-insular beta cells associated with ductules are frequent in adult human pancreas[J].Diabetologia,1998,41(6):629-633.
13 Li W,Nakanishi M,Zumsteg A,et al.In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes[J].eLife,2014,3:e01 846.
14 Erkan M,Adler G,Apte M V,et al.StellaTUM: current consensus and discussion on pancreatic stellate cell research[J].Gut, 2012,61(2):172-178.
15 Beer RL,Parsons MJ,Rovira M.Centroacinar cells:at the center of pancreas regeneration[J].Developmental Biology,2016,413(1):8-15.
16 Delaspre F,Beer RL,Rovira M,et al.Centroacinar cells are progenitors that contribute to endocrine pancreas regeneration[J].Diabetes,2015,64(10):3 499-3 509.
17 Puri S,Folias AE,Hebrok M.Plasticity and dedifferentiation within the pancreas:development, homeostasis, and disease[J].Cell Stem Cell,2015,16(1):18-31.
18 Desai BM,Oliver-Krasinski J,De Leon DD,et al.Preexisting pancreatic acinar cells contribute to acinar cell,but not islet β cell,regeneration[J].Journal of Clinical Investigation, 2007,117(4):971-977.
19 Dor Y,Brown J,Martinez OI,et al.Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation[J].Nature,2004,429(6987):41-46.
20 Fendrich V,Esni F,Garay MVR,et al.Hedgehog signaling is required for effective regeneration of exocrine pancreas[J].Gastroenterology,2008,135(2):621-631.
21 Strobel O,Dor Y,Alsina J,et al.In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia[J].Gastroenterology, 2007,133(6):1 999-2 009.
22 Criscimanna A,Speicher JA,Houshmand G,et al.Duct cells Contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice[J]. Gastroenterology,2011,141(4):1 451-1 462.
23 Ibars EP,Sanchez DRE,Quereda LA,et al.Pancreatic function after acute biliary pancreatitis:does it change?[J].World J Surg, 2002,26(4):479-486.
24 Das SLM,Singh PP,Phillips ARJ,et al.Newly diagnosed diabetes mellitus after acute pancreatitis:a systematic review and meta-analysis[J].Gut, 2014,63(5):818-831.
25 Takatani T,Shirakawa J,Roe MW,et al.Corrigendum:IRS1 deficiency protects beta-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation[J].Sci Rep,2016,6:34969.
26 Talchai C,Xuan S,Lin HV,et al.Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure[J].Cell, 2012,150(6):1 223-1 234.
27 Deng WH,Chen C,Wang WX,et al.Effects of ORP150 on appearance and function of pancreatic beta cells following acute necrotizing pancreatitis[J].Pathol Res Pract, 2011,207(6):370-376.
28 Fonseca SG,Lipson KL,Urano F.Endoplasmic reticulum stress signaling in pancreatic beta-cells[J].Antioxid Redox Signal,2007,9(12):2 335-2 344.
29 Pagliuca FW,Millman JR,Gurtler M, et al.Generation of functional human pancreatic beta cells in vitro[J].Cell, 2014,159(2):428-439.
30 Johnson CL,Peat JM,Volante SN,et al.Activation of protein kinase Cδ leads to increased pancreatic acinar cell dedifferentiation in the absence of MIST1[J].The Journal of Pathology, 2012,228(3):351-365.
31 Thorel F,Nepote V,Avril I,et al.Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss[J].Nature, 2010,464(7 292):1 149-1 154.
32 Chera S, Baronnier D,Ghila L,et al.Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers[J].Nature, 2014,514(7523):503-507.
33 Apelqvist A,Li H,Sommer L,et al.Notch signalling controls pancreatic cell differentiation[J]. Nature,1999,400(6747):877-881.
34 Jensen JN,Cameron E,Garay MVR,et al.Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration[J].Gastroenterology, 2005,128(3):728-741.
35 Siveke JT,Lubeseder-Martellato C,Lee M,et al.Notch signaling is required for exocrine regeneration after acute pancreatitis[J].Gastroenterology,2008,134(2):544-555.
36 Cras-Meneur C,Conlon M,Zhang Y,et al.Early pancreatic islet fate and maturation is controlled through RBP-Jkappa[J].Sci Rep,2016,6:26874.
37 Hidalgo-Sastre A,Brodylo R L,Lubeseder-Martellato C,et al.Hes1 controls exocrine cell plasticity and restricts development of pancreatic ductal adenocarcinoma in a mouse model[J].The American Journal of Pathology,2016,186(11):2 934-2 944.
38 Bar Y,Efrat S.The NOTCH pathway in beta-cell growth and differentiation[J].Vitam Horm, 2014,95:391-405.
39 Kopinke D,Brailsford M,Pan FC,et al.Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas[J].Dev Biol,2012,362(1):57-64.
40 Wilson CW,Chuang PT.Mechanism and evolution of cytosolic Hedgehog signal transduction[J].Development,2010,137(13):2 079-2 094.
41 Shih HP,Wang A,Sander M.Pancreas organogenesis:from lineage determination to morphogenesis[J].Annu Rev Cell Dev Biol,2013,29:81-105.
42 Kretzschmar K,Watt FM.Lineage tracing[J].Cell,2012,148(1-2):33-45.
43 Heiser PW,Lau J,Taketo MM,et al.Stabilization of beta-catenin impacts pancreas growth[J]. Development,2006,133(10):2 023-2 032.
44 Valenta T,Hausmann G,Basler K.The many faces and functions of beta-catenin[J].EMBO J, 2012,31(12):2 714-2 736.
45 Keefe MD,Wang H,De LaO JP,et al.beta-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice[J].Dis Model Mech, 2012,5(4):503-514.
Research Progress of the Repairing and Regeneration of the Injured Pancreatic Acinar and β Cells
SHI Qiao, WANG Wei-Xing#
Department of General Surgery, Renmin Hospital of Wuhan University,Wuhan 430060,China;#
Pancreatitis can cause the injuries of acinar and β cells. After pancreatitis, the repairing of the function of exocrine and endocrine is a problem that should be solved urgently. It's important to understand the repairing of pancreatic injury, pancreatic stem cells, regeneration, and the signal pathways (Notch, Hedgehog, Wnt) that regulate them for pancreatic diseases. This review aimed to summarize the new progress of the injuries of acinar and β cells, regeneration, and regulating the dedifferentiation, redifferentiation and transformation of exocrine and endocrine cells.
Pancreatitis; Islet β cell; Acinar cell; Regeneration
微循環(huán)學雜志2017年第27卷第1期綜 述 ?
國家自然科學基金(81370562)
武漢大學人民醫(yī)院肝膽腔鏡外科,武漢 430060;#
,E-mail:sate.llite@163.com
本文2016-11-10收到,2016-12-12修回
R657.5+1
A
1005-1740(2017)01-0060-05