• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ice accumulation and thickness distribution before inverted siphon*

    2017-03-09 09:09:29HuiFu付輝XinleiGuo郭新蕾KailinYang楊開林TaoWang王濤YongxinGuo郭永鑫
    關(guān)鍵詞:王濤

    Hui Fu (付輝), Xin-lei Guo (郭新蕾), Kai-lin Yang (楊開林), Tao Wang (王濤), Yong-xin Guo (郭永鑫)

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail:fuhui_iwhr@126.com

    (Received November 25, 2015, Revised February 3, 2016)

    Ice accumulation and thickness distribution before inverted siphon*

    Hui Fu (付輝), Xin-lei Guo (郭新蕾), Kai-lin Yang (楊開林), Tao Wang (王濤), Yong-xin Guo (郭永鑫)

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail:fuhui_iwhr@126.com

    (Received November 25, 2015, Revised February 3, 2016)

    In winter, the safe operation and the water transfer efficiency of an inverted siphon are big concerns for water diversion projects in a high latitude area. This paper takes the Tanghe inverted siphon of the Middle Route of the South-to-North Water Diversion Project in China as an example, and carries out experimental studies under the real ice condition with different water levels, flow discharges and submerged depths. The ice accumulation process and the ice jam thickness distribution before the inverted siphon are tested and measured. The characteristics of the ice jam distribution and the relationship betweenti/H(ratio of ice jam thicknesstito total water levelH) andFri(Froude number under ice jam) are analyzed. An equation for the ice jam thickness calculation before the inverted siphon is put forward. Analysis results might help the thickness prediction and the ice jam prevention of similar water diversion projects during ice period.

    Inverted siphon, ice jam, water diversion, ice thickness, real ice experiment

    Introduction

    For open channel water diversion projects in northern China, the ice jam is an important issue in winter. Examples of such projects include the Water Diversion Project from Yellow River to Qingdao City and the Water Diversion Project from Yellow River to Tianjin City[1]. Inverted siphons are commonly used in water diversion projects. Once one of them is jammed along the channel, the safe operation of the whole project will be threatened. Inverted siphons usually were reported to be jammed by ice, such as the inverted siphons of the Shahe irrigation district in 2003 and the water diversion project from Yellow River to Baiyangdian in 2008. For preventing inverted siphonsfrom ice jam, the discharge of the Beijing-Shijiazhuang section in the Middle Route of the South-to-North Water Diversion Project was reduced to about 10 m3/s, only 1/6 of the design discharge. So the water diversion efficiency of the water diversion projects is significantly lowered during the ice period.

    At present, the safe operation of inverted siphons during ice period is not well studied, apart from the studies of ice transportation through a submerged gate[2,3]. The ice jam formation and the thickness distribution are issues to be explored for inverted siphons. To prevent the ice jam, a conservative value of Froude number was usually used for the safe operation of inverted siphons[4-8], which would sharply decrease the water transfer capacity in winter. So a better understanding of the ice jam thickness along the channel is urgently desirable.

    With Tanghe inverted siphon of the Middle Route of the South-to-North Water Diversion Project in China as an example, the ice accumulation processes before the inverted siphon were tested under the real ice condition by the experiment platform of China Institute of Water Resources and Hydropower Research[9]. The characteristics of the ice jam distribution and the relationship betweenti/HandFriare analyzed in this paper. And then an equation for the icejam thickness calculation before an inverted siphon is put forwarded.

    1. Ice entrainment and transportation

    According to hydrostatics, the forces on the ice floe are balanced by gravity and buoyancy. But according to hydrodynamics, the additional Bernoulli’s effect and the flow separation should be considered (as shown in Fig.1).

    Fig.1 Negative pressure distribution caused by Bernoulli effect and flow separation

    The critical conditions of the ice entrainment can be described by[10]

    whereVcris the critical velocity upstream of the ice,gis the acceleration of gravity,ρiandρwrepresent the densities of ice and water respectively,tis the thickness of the ice floe, andKis the coefficient.

    The critical condition of the under-turning submergence can be described as[10]

    whereVcis the flow velocity in the upstream open channel,Vuis the flow velocity under the ice,Lis the length of the ice,αis the under-turning angle when the leading edge of ice just submerges,tiis the ice thickness below the water surface.

    The under-turning angleαcan be calculated by

    When the ice submerges at the leading edge of the ice jam, it may be transported downstream or accumulated at the bottom of the ice jam, which will thicken the ice jam. This critical hydraulic conditions can be described as[11]

    wheresjis the porosity of the ice jam,si=ρi/ρw.

    For the last 30 years, it has been believed that the most important variables were the Froude number based on velocity, the submerged depth or the ratio of the submerged depth to the full water depth. Pretty good discrimination between the ice entrainment and the non-entrainment has been achieved using these variables.

    2. Experimental set up

    A series of experiments are conducted in a flume of 50 m long, 0.8 m wide and 0.8 m high. A 6 m long inverted siphon is used to model the typical Tanghe inverted siphon, and the model scale is 1:23.4 (according to the width of the flume and the prototype dimension of Tanghe inverted siphon). Because of the limitation of the laboratory length, the horizontal length of the inverted siphon model is shortened. And the height of the inverted siphon inlet is 0.244 m. Ice pieces of average dimension of 0.276 m×0.0186 m× 0.0025 m are used to model the ice accumulation and the transportation at the inlet of the inverted siphon. The use of a real ice material can overcome many disadvantages of plastic and paraffin, such as the friction coefficient, the adhesiveness, and the soakage[12-14]. The detailed arrangement of the inverted siphon and the flume is shown in Fig.2. The simplified shape of the inverted siphon inlet is shown in Fig.3, whereH1is the submerged depth from the water surface to the top of the inlet. A thickness measuring section is set every 0.1 m, with nineteen sections (Section 1 to Section 19) before the inlet of the inverted siphon.

    Fig.2 Layout of inverted siphon experiment

    Fig.3 Simplified figure of inverted siphon inlet

    The real ice experiment platform is automatically operated, and it consists of the control computer, the DDC device drive and the data collecting module, the axial flow fans, the centrifugal fans, the heating system, the temperature feed-back system, 9 refrigeration units and so on. 27 high-accuracy temperature sensors are distributed along the platform to provide real-time temperatures for the temperature control system . By an air temperature control system, the lowest laboratory temperature can be reduced to ?15oC, with a control accuracy of ±0.5oC and the temperature fluctuation of less than 1oC.

    3. Experiment cases

    49 ice accumulation cases are tested. The value ofHis in the range between 0.254 m and 0.354 m, the flow dischargeQis in the range between 13.1 L/s and 54.4 L/s. And the incoming ice discharge is 0.12 L/s, which is enough for the ice jam accumulation. All experiment cases are shown in Fig.4. These cases cover the normal operation conditions of inverted siphons in the Middle Route of the South-to-North Water Diversion Project. The symbol × in Fig.4 represents the critical condition for the ice transportation into the inverted siphon. The cases which are lower than the symbol × involve no ice transportation, in other cases, ice will enter the inverted siphon.

    Fig.4 The water level (H)and flow discharge (Q)of experiment cases

    Fig.5 Vertical velocity distributions

    4. Ice accumulation characteristics

    In the actual project, the water surface is higher than the top of the inverted siphon inlet, so the submerged ice will not enter the inverted siphon immediately and continue to accumulate at the inlet unless the water transportation capacity is high enough. The shape of the inverted siphon inlet also influences the vertical velocity distribution. The upper flow velocity before the inverted siphon is smaller and the location of the maximum velocity is closer to the channel bed, which is much different from the common open water flow or the ice covered flow (Fig.5)[15-17]. Under theinfluences of above factors, the ice accumulation and its distribution before the inverted siphon have their own characteristics.

    Fig.6 Ice jam distributions before inverted siphon (constant value ofQwith differentH)

    Under the same flow discharge condition, the smaller the water depth, the larger the ice jam thickness becomes. This is because a smaller water depth means a higher Froude number when the flow discharge is fixed, and a larger ice jam thickness is needed to balance the water thrust (Fig.6). Similarly, under the same water level condition, a larger flow discharge leads to a larger ice jam thickness (Fig.7). But the largest ice jam thickness is not found at the critical case that the ice is just not transported into the inverted siphon. When the ice transportation discharge of the channel is less than the upstream incoming ice discharge, the ice jam will be thickened. After the flow discharge is increased to a certain level, along with the enhanced water thrust, more ice will be transported downstream, and the ice jam thickness tends to decrease, the leading edge of the ice jam will also not be developed upstream. Figure 8 shows the ice jam thickness distribution under different flow discharge conditions when the water depthH=0.345 m. It is obvious that the ice jam thickness whenQ=46.6 L/sis larger than that whenQ=42.6 L/s, but whenQincreases to 49.7 L/s, the ice jam thickness decreases (whereSis the distance from the inlet of the inverted siphon). Overall, the maximum ice jam thickness is close to the submerged depth(H1). This is because when the ice jam thickness is greater than the submerged depth (H1), the adhesiveness among the ice is hard to balance the drag force of the water.

    Fig.7 Ice jam distributions before inverted siphon (constant value ofHwith differentQ)

    Fig.8 Ice jam thickness distribution under different flow discharge conditions(H=0.345 m)

    For the distribution of the ice jam thickness along the channel, the upstream thickness is slightly less than that downstream. One reason may be that the ice jam turns the open water flow to an ice covered flow and the area of the flow section is also reduced, so the water depth along the channel increases and then the Froude number of the channel will decrease along with the development of the ice jam. In critical cases, when the water depthH=0.254 m-0.304 m, 0.309 m-0.334 m and 0.339 m-0.354 m, the average ice jam thickness along channel is about 0.02 m-0.04 m, 0.04 m-0.06 m and 0.05 m~0.10 m, respectively.

    Along with the increasing value ofH1/H, the critical Froude number increases, which is used to judge if the ice is transported or not. At a low submerged depth(H1), the critical Froude number is about 0.06, at a high submerged depth (H1), the critical Froude number can be increased to 0.08-0.09. Obviously, the large submerged depthH1is not advantageous for the ice transportation downstream. Along with the increase of the submerged depth(H1), a greater force is needed to overcome the buoyancy and the increased transportation distance.

    Table 1 The values ofk,bandSfor all sections

    5. Ice jam thickness calculation along the channel

    The larger the Froude number under the ice jamFri, the larger the ice jam thickness is needed to balance the water thrust. So the ice jam thickness is closely related to the Froude number under the ice jam. In our experiments, the value ofH1/Hvaries from 0.039 to 0.330, andFr(Froude number of open channel upstream) ranges from 0.039 to 0.109. It is obvious that the ice jam thickness before the inverted siphon is closely related to the total water depthH(whenHis fixed, it is related to the submerged depthH1=H?244) and the Froude number under the ice jamFri. According to the plots ofti/HversusFriof all experiment cases, the following linear equation is found to describe the relationship betweenti/HandFri

    wherekandbare coefficients, varying with the distance from the inlet of the inverted siphon.

    Equation (5) can be used to calculate the ice jam thickness along the channel. The value ofkis in the range between 1.832 and 2.258, with a mean value of 2.022, the value ofbis in the range between 0.044 and 0.094, with a mean value of 0.063. All values ofkandbare shown in Table 1. On the whole, the values ofkandbdo not have a large variation.

    The comparison of the measured data and the calculation results of Section 1, Section 9 and Section 19 are shown in Figs.9(a)-9(c), respectively. The mean values ofti/HandFriin all cases are shown in Fig.9(d) (one case corresponds to one data point,ti/HandFriare the mean values of all sections). Figure 9 shows that with the increase ofFri, the criticalti/His also increased. For the section which is closer to the inlet of the inverted siphon, the values ofkandbare larger, on the other hand, the values are smaller for the section away from the inlet of the inverted siphon. This is because the ice jam thickness at the section near the inlet is larger than that at the section far away from it. Symbol × represents the critical case in Fig.9(d). In a low submerged depth case, the value of the criticalFriis about 0.07-0.08, in a high submerged depth case, the value of the criticalFriis about 0.10-0.12. Figure 9 shows that Eq.(5) can fit the measured data well, which can be used to predict the ice jam thickness along the channel by coefficients shown in Table 1. For the mean value calculation in every case, the coefficients shown in Fig.9(d) can be used.

    It is interesting that our experiment results have a similar tendency as those at the upper Hequ reach of the Yellow River (1982-1989) and St. Lawrence River (1947-1950)[18-20]. For St. Lawrence River, the Froude number under the ice jam is between 0.05 and 0.25, which is also similar to our experiments (Fig.10). For the upper Hequ reach jam, the larger the value ofFri, the larger the value ofti/Hwill be, but for the lowerHequ reach jams, asFriincreases,ti/Hdecreases (Fig11). One main reason may be that after the formation of the upper ice jam, the ice supply for the lower reach is decreased. Along with a larger Froude number, the water transport capacity is larger and may exceed the incoming ice supply, soFriincreases,ti/Hdecreases for the lower Hequ reach. This shows that the ice discharge also plays an important role in the ice jam process.

    Fig.9 The comparison of measured data and calculations

    Fig.10 Relationship betweenFriandti/Hof St. Lawrence River

    Fig.11 Relationship betweenFriandti/Hof Hequ reach

    6. Conclusions

    Based on real ice experiments under different hydraulic conditions, the ice jam accumulation process before the inlet of the inverted siphon is studied. With an ice discharge of 0.12 L/s, it is shown that the larger the Froude number under the ice jam(Fri), the larger the dimensionless ice jam thickness(ti/H)will be. The ice jam thickness(ti)is not always increased. When the Froude number of the upstream open channel is large enough (about 0.1 in the experiments), the ice jam thickness(ti)has a tendency to decrease, as shown in Fig.8. The ice supply is also an important factor for the ice jam thickness, an insufficient ice supply may lead to opposite results, just as in the lower Hequ reach of Yellow River. For a water diversion project, the length of every section is about tens of kilometers and the ice jam begins from a downstream hydraulic control structure, just as an inverted siphon, a gate and so on, so the ice supply is considered to be sufficient.

    The relationship between the dimensionlessti/HandFriis also investigated in this paper. And a linear equation with the two coefficientskandbis found to describe the ice jam thickness distribution along the channel. And the value of the coefficientkis in the range between 1.832 and 2.258, the value of the coefficientbis in the range between 0.044 and 0.094.

    These analysis results may help the ice jam prevention and the safe operation of similar water diversion projects in a high latitude area during ice period.

    [1] Fu H., Yang K. L., Wang T. et al. Progress in the study of river ice hydraulics [J].South-to-North Water Transfers and Water Science and Technology, 2010, 8(1): 14-18(in Chinese).

    [2] Fu H., Yang K. L., Guo Y. X. et al. An experimental study on ice jam prevention of typical inverted siphon for Southto-North Water Diversion Project [J].Advances in Water Science, 2013, 24(5): 736-740(in Chinese).

    [3] Ashton G. D. Ice entrainment through submerged gate [C].19th IAHR International Symposium on Ice. Vancouver, British Columbia, Canada, 2008, 129-138.

    [4] Beltao S., Carter T., Rowsell R. Measurements and analysis of ice breakup and jamming characteristics in the Mackenzie Delta, Canada [J].Cold Regions Science and Technology, 2012, 82(4): 570-576.

    [5] Shen H. T. Mathematical modeling of river ice processes [J].Cold Regions Science and Technology, 2010, 62(1): 3-13.

    [6] Guo X. L., Yang K. L., Fu H. et al. Simulation and analysis of ice processes in an artificial open channel [J].Journal of Hydrodynamics, 2013, 25(4): 542-549.

    [7] Dow K. E., Hicks F. E., Steffler P. M. Experimental investigation of the pressure distribution beneath a floating ice block [J].Journal of Hydraulic Engineering,ASCE, 2011, 137(4): 399-411.

    [8] Ashton G. D. River and lake ice thickening, thinning, and snow ice formation [J].Cold Regions Science and Technology, 2011, 68(1): 3-19.

    [9] Fu H., Yang K. L., Tan S. W. et al. Development and application of low temperature ice-hydrodynamics experiment platform [J].Journal of Hydraulic Engineering, 2013, 44(3): 355-360(in Chinese).

    [10] Ashton G. D. Froude criterion for ice block stability [J].Journal of Glaciology, 1974, 13(68): 307-313.

    [11] Shen H. T. Mathematical modeling of river ice processes [J].Cold Regions Science and Technology, 2010, 62(1): 3-13.

    [12] Matsumoto K., Koshizuka M., Honda M. et al. Measurement on nano scale by scanning probe microscope for obtaining real ice adhesion force [J].International Journal of Refrigeration, 2014, 41(5): 181-189.

    [13] Wang J., Chen P. P., SUI J. Progress in studies on ice accumulation in river bends [J].Journal of Hydrodynamics, 2011, 23(6): 737-744.

    [14] Wang J., Shi F. Y., Chen P. P. et al. Impact of bridge pier on the stability of ice jam [J].Journal of Hydrodynamics, 2015, 27(6): 865-871.

    [15] Sui J., Wang J., He Y. et al. Velocity profiles and incipient motion of frazil particles under ice cover [J].International Journal of Sediment Research, 2010, 25(1): 39-51.

    [16] Beltaos S. Progress in the study and management of river ice jams [J].Cold Regions Science and Technology, 2008, 51(1): 2-19.

    [17] Yamazaki M., Koyama S., Ken-Ichi H. et al. Accumulation of frazil slush and velocity distribution under the ice cover [J].Journal of Dynamic Systems Measurement and Control, 2014, 136(3): 696-706.

    [18] SUI J., Karney B., Fang D. Variation in water level under ice-jammed condition–Field investigation and experimental study [J].Nordic Hydrology, 2005, 36(1): 65-84.

    [19] SUI J., KARNEY B., SUN Z. et al. Field investigation of frazil jam evolution?A case study [J].Journal of Hydraulic Engineering,ASCE, 2002, 128(8): 781-787.

    [20] Michel B. Comparison of field data with theories on ice cover progression in large rivers [J].Canadian Journal of Civil Engineering, 1984, 11(4): 798-814.

    * Project supported by the National Natural Science Foundation of China (Grant No. 51679263), the Special Scientific Research Fund of Public Welfare Profession of China (Grant No. 201501025), and the Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (Grant No. 2015TS04).

    Biography:Hui Fu (1981-), Male, Master, Senior Engineer

    Xin-lei Guo, E-mail: guoxinlei@163.com

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?
    王濤作品
    亚洲av成人av| 久久精品人妻少妇| 国产日韩欧美在线精品| 国产精华一区二区三区| 国产三级在线视频| 欧美最黄视频在线播放免费| 如何舔出高潮| 国产精品美女特级片免费视频播放器| 97热精品久久久久久| 久久精品综合一区二区三区| 国产精品福利在线免费观看| 免费观看在线日韩| 黄色一级大片看看| 精品久久久久久久人妻蜜臀av| 免费看日本二区| 性色avwww在线观看| 国产av不卡久久| 哪个播放器可以免费观看大片| 不卡一级毛片| 三级男女做爰猛烈吃奶摸视频| 你懂的网址亚洲精品在线观看 | 中国美女看黄片| 丰满人妻一区二区三区视频av| 午夜福利在线在线| 成年女人看的毛片在线观看| 日日摸夜夜添夜夜添av毛片| 男女那种视频在线观看| 别揉我奶头 嗯啊视频| 热99re8久久精品国产| 嫩草影院新地址| eeuss影院久久| av在线蜜桃| 国产成人午夜福利电影在线观看| 性欧美人与动物交配| 18禁裸乳无遮挡免费网站照片| 色综合亚洲欧美另类图片| av.在线天堂| 久久久欧美国产精品| 能在线免费看毛片的网站| 成人毛片60女人毛片免费| 午夜福利视频1000在线观看| 日本黄色视频三级网站网址| 中出人妻视频一区二区| 亚洲av免费在线观看| 精品久久久久久成人av| 国产精品一及| 蜜桃久久精品国产亚洲av| 夜夜爽天天搞| av天堂在线播放| 久久久精品大字幕| 欧美丝袜亚洲另类| 91久久精品国产一区二区成人| 又粗又硬又长又爽又黄的视频 | 久久久久久久午夜电影| 亚洲av免费在线观看| 亚洲欧洲国产日韩| av国产免费在线观看| 婷婷色综合大香蕉| 国产精品福利在线免费观看| 在线观看av片永久免费下载| 91久久精品电影网| 九九在线视频观看精品| 成年女人看的毛片在线观看| 亚洲精品自拍成人| 国内少妇人妻偷人精品xxx网站| 波野结衣二区三区在线| 亚洲中文字幕一区二区三区有码在线看| 欧美三级亚洲精品| 亚洲人成网站在线播放欧美日韩| 全区人妻精品视频| 夫妻性生交免费视频一级片| 在线a可以看的网站| www.av在线官网国产| 亚洲,欧美,日韩| 亚洲欧美日韩东京热| 伊人久久精品亚洲午夜| 国内精品久久久久精免费| 欧美极品一区二区三区四区| 国产单亲对白刺激| 国产美女午夜福利| 男插女下体视频免费在线播放| а√天堂www在线а√下载| 色哟哟·www| 丰满人妻一区二区三区视频av| 黄片无遮挡物在线观看| 色哟哟哟哟哟哟| 夫妻性生交免费视频一级片| 国产免费男女视频| 看片在线看免费视频| 国产 一区 欧美 日韩| 内地一区二区视频在线| 毛片一级片免费看久久久久| 久久精品影院6| 久久精品影院6| 天堂√8在线中文| 爱豆传媒免费全集在线观看| 久久这里只有精品中国| 午夜a级毛片| 婷婷六月久久综合丁香| avwww免费| 一区福利在线观看| 亚洲精品成人久久久久久| 亚洲成人中文字幕在线播放| 中文欧美无线码| 国产亚洲5aaaaa淫片| 欧美日本亚洲视频在线播放| 免费看a级黄色片| 亚洲精品久久久久久婷婷小说 | 高清毛片免费看| 国产91av在线免费观看| 极品教师在线视频| 免费看日本二区| 欧美丝袜亚洲另类| 国产精品伦人一区二区| 性欧美人与动物交配| 亚洲国产色片| 中文字幕精品亚洲无线码一区| 在线免费观看不下载黄p国产| 午夜爱爱视频在线播放| 免费看av在线观看网站| 成人鲁丝片一二三区免费| 尤物成人国产欧美一区二区三区| 高清毛片免费看| 久久久a久久爽久久v久久| 乱码一卡2卡4卡精品| 午夜精品一区二区三区免费看| 99久久精品一区二区三区| 日韩在线高清观看一区二区三区| 国产精品不卡视频一区二区| 成人一区二区视频在线观看| 日韩大尺度精品在线看网址| 国产探花在线观看一区二区| 国产色爽女视频免费观看| 老师上课跳d突然被开到最大视频| 国产久久久一区二区三区| 一级av片app| 嘟嘟电影网在线观看| 免费看日本二区| 国产精品久久久久久久久免| 久久精品久久久久久久性| 99热这里只有是精品在线观看| 一进一出抽搐动态| 国产成人aa在线观看| 精品人妻熟女av久视频| 国产淫片久久久久久久久| 国产亚洲av嫩草精品影院| 午夜免费激情av| 一本一本综合久久| 51国产日韩欧美| 99在线视频只有这里精品首页| 能在线免费观看的黄片| 日本撒尿小便嘘嘘汇集6| 三级毛片av免费| 老司机福利观看| 国产高清三级在线| 小蜜桃在线观看免费完整版高清| 免费av观看视频| 91狼人影院| 久久久久久久久久久免费av| 只有这里有精品99| 3wmmmm亚洲av在线观看| 我要看日韩黄色一级片| 岛国在线免费视频观看| 天天躁日日操中文字幕| 美女内射精品一级片tv| 插阴视频在线观看视频| 久久人人爽人人片av| 国产一级毛片在线| 一级av片app| 99久久人妻综合| 一级毛片aaaaaa免费看小| 国产伦精品一区二区三区四那| 赤兔流量卡办理| 搞女人的毛片| 色综合色国产| 日本成人三级电影网站| 日本黄色视频三级网站网址| 欧美精品一区二区大全| 日日啪夜夜撸| 久久久久久久久大av| 亚洲精品色激情综合| 免费人成视频x8x8入口观看| 亚洲四区av| 性欧美人与动物交配| 国产又黄又爽又无遮挡在线| 久久久欧美国产精品| 精品不卡国产一区二区三区| 亚洲成人中文字幕在线播放| 中文字幕熟女人妻在线| 午夜免费激情av| 成人亚洲精品av一区二区| 免费黄网站久久成人精品| 蜜桃久久精品国产亚洲av| 97热精品久久久久久| 丝袜美腿在线中文| 男人的好看免费观看在线视频| 成人av在线播放网站| 亚洲不卡免费看| 亚洲,欧美,日韩| 国产老妇女一区| 悠悠久久av| av免费观看日本| 久久精品夜夜夜夜夜久久蜜豆| 国产精品免费一区二区三区在线| 亚洲内射少妇av| 超碰av人人做人人爽久久| 国产高清有码在线观看视频| 好男人视频免费观看在线| 午夜福利在线观看吧| 亚洲av免费高清在线观看| 三级毛片av免费| 别揉我奶头 嗯啊视频| 欧美最黄视频在线播放免费| 中文资源天堂在线| 国产黄片美女视频| 国产成人精品久久久久久| 大型黄色视频在线免费观看| 91av网一区二区| 高清日韩中文字幕在线| a级毛片a级免费在线| 一区二区三区四区激情视频 | 亚洲av成人精品一区久久| 欧美日本视频| 久久久久国产网址| 亚洲国产高清在线一区二区三| 此物有八面人人有两片| 哪个播放器可以免费观看大片| 国产精品一及| 国产精品三级大全| 日本免费a在线| 99久久无色码亚洲精品果冻| 美女内射精品一级片tv| 一进一出抽搐动态| 国产亚洲欧美98| 日本在线视频免费播放| 国产成人精品一,二区 | 午夜a级毛片| 欧美精品国产亚洲| 国产精品精品国产色婷婷| 美女cb高潮喷水在线观看| 欧美高清性xxxxhd video| 国内精品久久久久精免费| 人妻制服诱惑在线中文字幕| 久久精品91蜜桃| 精品人妻视频免费看| 久久久久久久久大av| a级毛片免费高清观看在线播放| 99久久无色码亚洲精品果冻| 简卡轻食公司| 国产久久久一区二区三区| 亚洲丝袜综合中文字幕| 亚洲,欧美,日韩| 亚洲人成网站在线播放欧美日韩| 国产精品乱码一区二三区的特点| 欧美三级亚洲精品| 欧美日本亚洲视频在线播放| 99热网站在线观看| 天美传媒精品一区二区| 亚洲精品国产av成人精品| 午夜爱爱视频在线播放| 91精品国产九色| 国产午夜精品一二区理论片| 国产成人精品久久久久久| 99热网站在线观看| 成人午夜高清在线视频| 国产精品一区www在线观看| 免费黄网站久久成人精品| 国产精品电影一区二区三区| .国产精品久久| 亚洲美女视频黄频| 亚洲国产精品成人综合色| 国产精品久久久久久久久免| 久久人妻av系列| 少妇熟女aⅴ在线视频| 亚洲欧美精品自产自拍| 日韩欧美一区二区三区在线观看| 欧美性猛交黑人性爽| 亚洲va在线va天堂va国产| 麻豆av噜噜一区二区三区| 男女那种视频在线观看| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲精品av一区二区| 91狼人影院| 91久久精品电影网| 国产亚洲91精品色在线| 免费观看的影片在线观看| 亚洲在线观看片| 亚洲国产高清在线一区二区三| www.色视频.com| 精品久久久久久久末码| 亚洲第一电影网av| 国产精品国产高清国产av| 亚洲成人精品中文字幕电影| 91久久精品国产一区二区三区| 可以在线观看的亚洲视频| 青春草视频在线免费观看| 美女脱内裤让男人舔精品视频 | 亚洲av熟女| 久久精品国产亚洲av天美| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观| 欧美性感艳星| 一进一出抽搐动态| 国产乱人视频| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| a级毛色黄片| 一级毛片aaaaaa免费看小| 91久久精品电影网| 97超视频在线观看视频| 日韩欧美精品免费久久| 日本三级黄在线观看| 国产高清不卡午夜福利| 色综合亚洲欧美另类图片| 日韩高清综合在线| 午夜久久久久精精品| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| 欧美xxxx黑人xx丫x性爽| 丝袜喷水一区| 国产成人午夜福利电影在线观看| 国语自产精品视频在线第100页| 亚洲成人精品中文字幕电影| 免费观看人在逋| 中国美女看黄片| 亚洲一区高清亚洲精品| 91精品国产九色| 日韩欧美在线乱码| 亚洲精品日韩在线中文字幕 | 国产精品一二三区在线看| 亚洲无线观看免费| 欧美日本亚洲视频在线播放| 18禁在线播放成人免费| 51国产日韩欧美| 成人欧美大片| 亚洲精品乱码久久久久久按摩| 亚洲内射少妇av| 精品一区二区三区视频在线| kizo精华| 日本色播在线视频| 精品久久久久久久末码| 久久精品国产亚洲av天美| 白带黄色成豆腐渣| 婷婷色综合大香蕉| 国产黄色小视频在线观看| 女人被狂操c到高潮| 成人永久免费在线观看视频| 免费看a级黄色片| 嫩草影院精品99| 99热这里只有是精品在线观看| 国内精品一区二区在线观看| 久久99热这里只有精品18| 亚洲五月天丁香| 免费观看精品视频网站| 又粗又爽又猛毛片免费看| 一级二级三级毛片免费看| 人妻久久中文字幕网| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| 欧美激情在线99| 内地一区二区视频在线| 成年女人看的毛片在线观看| 亚洲国产欧美在线一区| 国产精品嫩草影院av在线观看| 亚洲在线观看片| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 99久国产av精品| 99久久九九国产精品国产免费| 丰满的人妻完整版| 国产精华一区二区三区| 麻豆一二三区av精品| 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 在线播放国产精品三级| av.在线天堂| 男女边吃奶边做爰视频| 日本撒尿小便嘘嘘汇集6| 国产成人freesex在线| 日韩精品有码人妻一区| 一本久久精品| 日韩在线高清观看一区二区三区| 日本色播在线视频| 69av精品久久久久久| 观看免费一级毛片| 亚洲av中文av极速乱| 久久久精品欧美日韩精品| 干丝袜人妻中文字幕| 日韩欧美在线乱码| 亚洲中文字幕一区二区三区有码在线看| 久久99蜜桃精品久久| 亚洲av.av天堂| 久久久精品94久久精品| 国产成人影院久久av| 国产亚洲欧美98| av专区在线播放| 男的添女的下面高潮视频| 高清日韩中文字幕在线| 日韩成人av中文字幕在线观看| 亚洲国产精品成人久久小说 | 欧美最黄视频在线播放免费| 少妇熟女aⅴ在线视频| 精品不卡国产一区二区三区| 亚洲精品久久久久久婷婷小说 | 免费观看的影片在线观看| 美女 人体艺术 gogo| 国产v大片淫在线免费观看| 国产色婷婷99| 久久鲁丝午夜福利片| 人妻夜夜爽99麻豆av| 五月伊人婷婷丁香| 99热只有精品国产| 久久综合国产亚洲精品| 能在线免费观看的黄片| 国产免费男女视频| 国产精品av视频在线免费观看| 一区二区三区免费毛片| 欧美一级a爱片免费观看看| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 婷婷色av中文字幕| 国产精品一区二区三区四区免费观看| 色综合亚洲欧美另类图片| 麻豆av噜噜一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 国产精品精品国产色婷婷| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 最近视频中文字幕2019在线8| 欧美成人免费av一区二区三区| 人人妻人人澡人人爽人人夜夜 | 99精品在免费线老司机午夜| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 可以在线观看毛片的网站| 人人妻人人澡欧美一区二区| 欧美激情在线99| 老师上课跳d突然被开到最大视频| 日本-黄色视频高清免费观看| 国产一区二区亚洲精品在线观看| 色视频www国产| 身体一侧抽搐| 有码 亚洲区| 久久精品国产亚洲av天美| 成人毛片60女人毛片免费| 综合色丁香网| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| 欧美日韩乱码在线| 老女人水多毛片| 国产三级中文精品| 一夜夜www| 乱码一卡2卡4卡精品| 久久精品人妻少妇| 国产成人a区在线观看| 国产高清不卡午夜福利| 国产男人的电影天堂91| 干丝袜人妻中文字幕| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美| 婷婷色av中文字幕| .国产精品久久| 九色成人免费人妻av| 国产单亲对白刺激| 欧美区成人在线视频| 国产一区二区激情短视频| 男人狂女人下面高潮的视频| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 国产v大片淫在线免费观看| 高清午夜精品一区二区三区 | 中文字幕制服av| 国产一级毛片七仙女欲春2| 久久久久久久午夜电影| 久久久久性生活片| 黄色欧美视频在线观看| 夫妻性生交免费视频一级片| 美女大奶头视频| 中国国产av一级| 麻豆成人午夜福利视频| 国产亚洲av片在线观看秒播厂 | 狂野欧美白嫩少妇大欣赏| 看黄色毛片网站| 2022亚洲国产成人精品| 国产一区二区亚洲精品在线观看| 亚洲欧美清纯卡通| 精品久久久久久成人av| 岛国毛片在线播放| 3wmmmm亚洲av在线观看| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 亚洲经典国产精华液单| 亚洲成人中文字幕在线播放| 嫩草影院新地址| 欧美成人免费av一区二区三区| 国产极品精品免费视频能看的| 最近中文字幕高清免费大全6| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 特大巨黑吊av在线直播| 中文字幕av成人在线电影| 18禁裸乳无遮挡免费网站照片| 亚洲在久久综合| 欧美一区二区国产精品久久精品| 一本精品99久久精品77| 日韩欧美精品v在线| 一级黄片播放器| 日韩欧美 国产精品| 性插视频无遮挡在线免费观看| 欧美变态另类bdsm刘玥| 高清日韩中文字幕在线| 干丝袜人妻中文字幕| 91午夜精品亚洲一区二区三区| 久久久色成人| 国产亚洲精品久久久久久毛片| 丝袜美腿在线中文| 日韩成人伦理影院| 国产精品一区二区三区四区久久| 老师上课跳d突然被开到最大视频| 国产高清激情床上av| 亚洲欧美精品综合久久99| 中文欧美无线码| 美女 人体艺术 gogo| 国产一级毛片七仙女欲春2| 好男人视频免费观看在线| 免费无遮挡裸体视频| 亚洲av熟女| 网址你懂的国产日韩在线| 丝袜美腿在线中文| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| 两个人的视频大全免费| 男插女下体视频免费在线播放| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看| 伦精品一区二区三区| 国产一区二区三区在线臀色熟女| 99热精品在线国产| 97超视频在线观看视频| 国产视频首页在线观看| 亚洲三级黄色毛片| 国产精品免费一区二区三区在线| 免费黄网站久久成人精品| 3wmmmm亚洲av在线观看| 国产精品一二三区在线看| 99久久久亚洲精品蜜臀av| 亚洲最大成人手机在线| 熟妇人妻久久中文字幕3abv| 中国国产av一级| 亚洲性久久影院| 午夜亚洲福利在线播放| 在线观看66精品国产| 精品一区二区三区视频在线| 高清午夜精品一区二区三区 | 亚洲av二区三区四区| 国产精品久久视频播放| 亚洲av免费在线观看| 日韩视频在线欧美| 久久精品综合一区二区三区| 免费av观看视频| 最近视频中文字幕2019在线8| 成人永久免费在线观看视频| 99九九线精品视频在线观看视频| 午夜免费男女啪啪视频观看| 综合色av麻豆| 看黄色毛片网站| 久久精品综合一区二区三区| 国产精品野战在线观看| 国产男人的电影天堂91| 精品久久久噜噜| 亚洲内射少妇av| 中文字幕av在线有码专区| 青春草亚洲视频在线观看| 日韩欧美在线乱码| a级毛片a级免费在线| 欧美高清成人免费视频www| 久久久久久大精品| 波多野结衣巨乳人妻| 色综合站精品国产| 波多野结衣巨乳人妻| 国产视频首页在线观看| 亚洲国产日韩欧美精品在线观看| 久久久久久大精品| 在线国产一区二区在线| 国国产精品蜜臀av免费| 成人午夜精彩视频在线观看| 国产成人福利小说| 美女被艹到高潮喷水动态| 床上黄色一级片| 亚洲丝袜综合中文字幕| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区| 色哟哟·www| 午夜视频国产福利| 亚洲最大成人av| 亚洲无线观看免费| 国产黄片视频在线免费观看| 国产成人freesex在线| 少妇猛男粗大的猛烈进出视频 | h日本视频在线播放| 日韩高清综合在线| 国内精品美女久久久久久| 久99久视频精品免费| 国产极品天堂在线| 成人二区视频| 看非洲黑人一级黄片| 亚洲精品乱码久久久v下载方式| 国产成人91sexporn| 国产日韩欧美在线精品| 九色成人免费人妻av|