• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ice accumulation and thickness distribution before inverted siphon*

    2017-03-09 09:09:29HuiFu付輝XinleiGuo郭新蕾KailinYang楊開林TaoWang王濤YongxinGuo郭永鑫
    關(guān)鍵詞:王濤

    Hui Fu (付輝), Xin-lei Guo (郭新蕾), Kai-lin Yang (楊開林), Tao Wang (王濤), Yong-xin Guo (郭永鑫)

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail:fuhui_iwhr@126.com

    (Received November 25, 2015, Revised February 3, 2016)

    Ice accumulation and thickness distribution before inverted siphon*

    Hui Fu (付輝), Xin-lei Guo (郭新蕾), Kai-lin Yang (楊開林), Tao Wang (王濤), Yong-xin Guo (郭永鑫)

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail:fuhui_iwhr@126.com

    (Received November 25, 2015, Revised February 3, 2016)

    In winter, the safe operation and the water transfer efficiency of an inverted siphon are big concerns for water diversion projects in a high latitude area. This paper takes the Tanghe inverted siphon of the Middle Route of the South-to-North Water Diversion Project in China as an example, and carries out experimental studies under the real ice condition with different water levels, flow discharges and submerged depths. The ice accumulation process and the ice jam thickness distribution before the inverted siphon are tested and measured. The characteristics of the ice jam distribution and the relationship betweenti/H(ratio of ice jam thicknesstito total water levelH) andFri(Froude number under ice jam) are analyzed. An equation for the ice jam thickness calculation before the inverted siphon is put forward. Analysis results might help the thickness prediction and the ice jam prevention of similar water diversion projects during ice period.

    Inverted siphon, ice jam, water diversion, ice thickness, real ice experiment

    Introduction

    For open channel water diversion projects in northern China, the ice jam is an important issue in winter. Examples of such projects include the Water Diversion Project from Yellow River to Qingdao City and the Water Diversion Project from Yellow River to Tianjin City[1]. Inverted siphons are commonly used in water diversion projects. Once one of them is jammed along the channel, the safe operation of the whole project will be threatened. Inverted siphons usually were reported to be jammed by ice, such as the inverted siphons of the Shahe irrigation district in 2003 and the water diversion project from Yellow River to Baiyangdian in 2008. For preventing inverted siphonsfrom ice jam, the discharge of the Beijing-Shijiazhuang section in the Middle Route of the South-to-North Water Diversion Project was reduced to about 10 m3/s, only 1/6 of the design discharge. So the water diversion efficiency of the water diversion projects is significantly lowered during the ice period.

    At present, the safe operation of inverted siphons during ice period is not well studied, apart from the studies of ice transportation through a submerged gate[2,3]. The ice jam formation and the thickness distribution are issues to be explored for inverted siphons. To prevent the ice jam, a conservative value of Froude number was usually used for the safe operation of inverted siphons[4-8], which would sharply decrease the water transfer capacity in winter. So a better understanding of the ice jam thickness along the channel is urgently desirable.

    With Tanghe inverted siphon of the Middle Route of the South-to-North Water Diversion Project in China as an example, the ice accumulation processes before the inverted siphon were tested under the real ice condition by the experiment platform of China Institute of Water Resources and Hydropower Research[9]. The characteristics of the ice jam distribution and the relationship betweenti/HandFriare analyzed in this paper. And then an equation for the icejam thickness calculation before an inverted siphon is put forwarded.

    1. Ice entrainment and transportation

    According to hydrostatics, the forces on the ice floe are balanced by gravity and buoyancy. But according to hydrodynamics, the additional Bernoulli’s effect and the flow separation should be considered (as shown in Fig.1).

    Fig.1 Negative pressure distribution caused by Bernoulli effect and flow separation

    The critical conditions of the ice entrainment can be described by[10]

    whereVcris the critical velocity upstream of the ice,gis the acceleration of gravity,ρiandρwrepresent the densities of ice and water respectively,tis the thickness of the ice floe, andKis the coefficient.

    The critical condition of the under-turning submergence can be described as[10]

    whereVcis the flow velocity in the upstream open channel,Vuis the flow velocity under the ice,Lis the length of the ice,αis the under-turning angle when the leading edge of ice just submerges,tiis the ice thickness below the water surface.

    The under-turning angleαcan be calculated by

    When the ice submerges at the leading edge of the ice jam, it may be transported downstream or accumulated at the bottom of the ice jam, which will thicken the ice jam. This critical hydraulic conditions can be described as[11]

    wheresjis the porosity of the ice jam,si=ρi/ρw.

    For the last 30 years, it has been believed that the most important variables were the Froude number based on velocity, the submerged depth or the ratio of the submerged depth to the full water depth. Pretty good discrimination between the ice entrainment and the non-entrainment has been achieved using these variables.

    2. Experimental set up

    A series of experiments are conducted in a flume of 50 m long, 0.8 m wide and 0.8 m high. A 6 m long inverted siphon is used to model the typical Tanghe inverted siphon, and the model scale is 1:23.4 (according to the width of the flume and the prototype dimension of Tanghe inverted siphon). Because of the limitation of the laboratory length, the horizontal length of the inverted siphon model is shortened. And the height of the inverted siphon inlet is 0.244 m. Ice pieces of average dimension of 0.276 m×0.0186 m× 0.0025 m are used to model the ice accumulation and the transportation at the inlet of the inverted siphon. The use of a real ice material can overcome many disadvantages of plastic and paraffin, such as the friction coefficient, the adhesiveness, and the soakage[12-14]. The detailed arrangement of the inverted siphon and the flume is shown in Fig.2. The simplified shape of the inverted siphon inlet is shown in Fig.3, whereH1is the submerged depth from the water surface to the top of the inlet. A thickness measuring section is set every 0.1 m, with nineteen sections (Section 1 to Section 19) before the inlet of the inverted siphon.

    Fig.2 Layout of inverted siphon experiment

    Fig.3 Simplified figure of inverted siphon inlet

    The real ice experiment platform is automatically operated, and it consists of the control computer, the DDC device drive and the data collecting module, the axial flow fans, the centrifugal fans, the heating system, the temperature feed-back system, 9 refrigeration units and so on. 27 high-accuracy temperature sensors are distributed along the platform to provide real-time temperatures for the temperature control system . By an air temperature control system, the lowest laboratory temperature can be reduced to ?15oC, with a control accuracy of ±0.5oC and the temperature fluctuation of less than 1oC.

    3. Experiment cases

    49 ice accumulation cases are tested. The value ofHis in the range between 0.254 m and 0.354 m, the flow dischargeQis in the range between 13.1 L/s and 54.4 L/s. And the incoming ice discharge is 0.12 L/s, which is enough for the ice jam accumulation. All experiment cases are shown in Fig.4. These cases cover the normal operation conditions of inverted siphons in the Middle Route of the South-to-North Water Diversion Project. The symbol × in Fig.4 represents the critical condition for the ice transportation into the inverted siphon. The cases which are lower than the symbol × involve no ice transportation, in other cases, ice will enter the inverted siphon.

    Fig.4 The water level (H)and flow discharge (Q)of experiment cases

    Fig.5 Vertical velocity distributions

    4. Ice accumulation characteristics

    In the actual project, the water surface is higher than the top of the inverted siphon inlet, so the submerged ice will not enter the inverted siphon immediately and continue to accumulate at the inlet unless the water transportation capacity is high enough. The shape of the inverted siphon inlet also influences the vertical velocity distribution. The upper flow velocity before the inverted siphon is smaller and the location of the maximum velocity is closer to the channel bed, which is much different from the common open water flow or the ice covered flow (Fig.5)[15-17]. Under theinfluences of above factors, the ice accumulation and its distribution before the inverted siphon have their own characteristics.

    Fig.6 Ice jam distributions before inverted siphon (constant value ofQwith differentH)

    Under the same flow discharge condition, the smaller the water depth, the larger the ice jam thickness becomes. This is because a smaller water depth means a higher Froude number when the flow discharge is fixed, and a larger ice jam thickness is needed to balance the water thrust (Fig.6). Similarly, under the same water level condition, a larger flow discharge leads to a larger ice jam thickness (Fig.7). But the largest ice jam thickness is not found at the critical case that the ice is just not transported into the inverted siphon. When the ice transportation discharge of the channel is less than the upstream incoming ice discharge, the ice jam will be thickened. After the flow discharge is increased to a certain level, along with the enhanced water thrust, more ice will be transported downstream, and the ice jam thickness tends to decrease, the leading edge of the ice jam will also not be developed upstream. Figure 8 shows the ice jam thickness distribution under different flow discharge conditions when the water depthH=0.345 m. It is obvious that the ice jam thickness whenQ=46.6 L/sis larger than that whenQ=42.6 L/s, but whenQincreases to 49.7 L/s, the ice jam thickness decreases (whereSis the distance from the inlet of the inverted siphon). Overall, the maximum ice jam thickness is close to the submerged depth(H1). This is because when the ice jam thickness is greater than the submerged depth (H1), the adhesiveness among the ice is hard to balance the drag force of the water.

    Fig.7 Ice jam distributions before inverted siphon (constant value ofHwith differentQ)

    Fig.8 Ice jam thickness distribution under different flow discharge conditions(H=0.345 m)

    For the distribution of the ice jam thickness along the channel, the upstream thickness is slightly less than that downstream. One reason may be that the ice jam turns the open water flow to an ice covered flow and the area of the flow section is also reduced, so the water depth along the channel increases and then the Froude number of the channel will decrease along with the development of the ice jam. In critical cases, when the water depthH=0.254 m-0.304 m, 0.309 m-0.334 m and 0.339 m-0.354 m, the average ice jam thickness along channel is about 0.02 m-0.04 m, 0.04 m-0.06 m and 0.05 m~0.10 m, respectively.

    Along with the increasing value ofH1/H, the critical Froude number increases, which is used to judge if the ice is transported or not. At a low submerged depth(H1), the critical Froude number is about 0.06, at a high submerged depth (H1), the critical Froude number can be increased to 0.08-0.09. Obviously, the large submerged depthH1is not advantageous for the ice transportation downstream. Along with the increase of the submerged depth(H1), a greater force is needed to overcome the buoyancy and the increased transportation distance.

    Table 1 The values ofk,bandSfor all sections

    5. Ice jam thickness calculation along the channel

    The larger the Froude number under the ice jamFri, the larger the ice jam thickness is needed to balance the water thrust. So the ice jam thickness is closely related to the Froude number under the ice jam. In our experiments, the value ofH1/Hvaries from 0.039 to 0.330, andFr(Froude number of open channel upstream) ranges from 0.039 to 0.109. It is obvious that the ice jam thickness before the inverted siphon is closely related to the total water depthH(whenHis fixed, it is related to the submerged depthH1=H?244) and the Froude number under the ice jamFri. According to the plots ofti/HversusFriof all experiment cases, the following linear equation is found to describe the relationship betweenti/HandFri

    wherekandbare coefficients, varying with the distance from the inlet of the inverted siphon.

    Equation (5) can be used to calculate the ice jam thickness along the channel. The value ofkis in the range between 1.832 and 2.258, with a mean value of 2.022, the value ofbis in the range between 0.044 and 0.094, with a mean value of 0.063. All values ofkandbare shown in Table 1. On the whole, the values ofkandbdo not have a large variation.

    The comparison of the measured data and the calculation results of Section 1, Section 9 and Section 19 are shown in Figs.9(a)-9(c), respectively. The mean values ofti/HandFriin all cases are shown in Fig.9(d) (one case corresponds to one data point,ti/HandFriare the mean values of all sections). Figure 9 shows that with the increase ofFri, the criticalti/His also increased. For the section which is closer to the inlet of the inverted siphon, the values ofkandbare larger, on the other hand, the values are smaller for the section away from the inlet of the inverted siphon. This is because the ice jam thickness at the section near the inlet is larger than that at the section far away from it. Symbol × represents the critical case in Fig.9(d). In a low submerged depth case, the value of the criticalFriis about 0.07-0.08, in a high submerged depth case, the value of the criticalFriis about 0.10-0.12. Figure 9 shows that Eq.(5) can fit the measured data well, which can be used to predict the ice jam thickness along the channel by coefficients shown in Table 1. For the mean value calculation in every case, the coefficients shown in Fig.9(d) can be used.

    It is interesting that our experiment results have a similar tendency as those at the upper Hequ reach of the Yellow River (1982-1989) and St. Lawrence River (1947-1950)[18-20]. For St. Lawrence River, the Froude number under the ice jam is between 0.05 and 0.25, which is also similar to our experiments (Fig.10). For the upper Hequ reach jam, the larger the value ofFri, the larger the value ofti/Hwill be, but for the lowerHequ reach jams, asFriincreases,ti/Hdecreases (Fig11). One main reason may be that after the formation of the upper ice jam, the ice supply for the lower reach is decreased. Along with a larger Froude number, the water transport capacity is larger and may exceed the incoming ice supply, soFriincreases,ti/Hdecreases for the lower Hequ reach. This shows that the ice discharge also plays an important role in the ice jam process.

    Fig.9 The comparison of measured data and calculations

    Fig.10 Relationship betweenFriandti/Hof St. Lawrence River

    Fig.11 Relationship betweenFriandti/Hof Hequ reach

    6. Conclusions

    Based on real ice experiments under different hydraulic conditions, the ice jam accumulation process before the inlet of the inverted siphon is studied. With an ice discharge of 0.12 L/s, it is shown that the larger the Froude number under the ice jam(Fri), the larger the dimensionless ice jam thickness(ti/H)will be. The ice jam thickness(ti)is not always increased. When the Froude number of the upstream open channel is large enough (about 0.1 in the experiments), the ice jam thickness(ti)has a tendency to decrease, as shown in Fig.8. The ice supply is also an important factor for the ice jam thickness, an insufficient ice supply may lead to opposite results, just as in the lower Hequ reach of Yellow River. For a water diversion project, the length of every section is about tens of kilometers and the ice jam begins from a downstream hydraulic control structure, just as an inverted siphon, a gate and so on, so the ice supply is considered to be sufficient.

    The relationship between the dimensionlessti/HandFriis also investigated in this paper. And a linear equation with the two coefficientskandbis found to describe the ice jam thickness distribution along the channel. And the value of the coefficientkis in the range between 1.832 and 2.258, the value of the coefficientbis in the range between 0.044 and 0.094.

    These analysis results may help the ice jam prevention and the safe operation of similar water diversion projects in a high latitude area during ice period.

    [1] Fu H., Yang K. L., Wang T. et al. Progress in the study of river ice hydraulics [J].South-to-North Water Transfers and Water Science and Technology, 2010, 8(1): 14-18(in Chinese).

    [2] Fu H., Yang K. L., Guo Y. X. et al. An experimental study on ice jam prevention of typical inverted siphon for Southto-North Water Diversion Project [J].Advances in Water Science, 2013, 24(5): 736-740(in Chinese).

    [3] Ashton G. D. Ice entrainment through submerged gate [C].19th IAHR International Symposium on Ice. Vancouver, British Columbia, Canada, 2008, 129-138.

    [4] Beltao S., Carter T., Rowsell R. Measurements and analysis of ice breakup and jamming characteristics in the Mackenzie Delta, Canada [J].Cold Regions Science and Technology, 2012, 82(4): 570-576.

    [5] Shen H. T. Mathematical modeling of river ice processes [J].Cold Regions Science and Technology, 2010, 62(1): 3-13.

    [6] Guo X. L., Yang K. L., Fu H. et al. Simulation and analysis of ice processes in an artificial open channel [J].Journal of Hydrodynamics, 2013, 25(4): 542-549.

    [7] Dow K. E., Hicks F. E., Steffler P. M. Experimental investigation of the pressure distribution beneath a floating ice block [J].Journal of Hydraulic Engineering,ASCE, 2011, 137(4): 399-411.

    [8] Ashton G. D. River and lake ice thickening, thinning, and snow ice formation [J].Cold Regions Science and Technology, 2011, 68(1): 3-19.

    [9] Fu H., Yang K. L., Tan S. W. et al. Development and application of low temperature ice-hydrodynamics experiment platform [J].Journal of Hydraulic Engineering, 2013, 44(3): 355-360(in Chinese).

    [10] Ashton G. D. Froude criterion for ice block stability [J].Journal of Glaciology, 1974, 13(68): 307-313.

    [11] Shen H. T. Mathematical modeling of river ice processes [J].Cold Regions Science and Technology, 2010, 62(1): 3-13.

    [12] Matsumoto K., Koshizuka M., Honda M. et al. Measurement on nano scale by scanning probe microscope for obtaining real ice adhesion force [J].International Journal of Refrigeration, 2014, 41(5): 181-189.

    [13] Wang J., Chen P. P., SUI J. Progress in studies on ice accumulation in river bends [J].Journal of Hydrodynamics, 2011, 23(6): 737-744.

    [14] Wang J., Shi F. Y., Chen P. P. et al. Impact of bridge pier on the stability of ice jam [J].Journal of Hydrodynamics, 2015, 27(6): 865-871.

    [15] Sui J., Wang J., He Y. et al. Velocity profiles and incipient motion of frazil particles under ice cover [J].International Journal of Sediment Research, 2010, 25(1): 39-51.

    [16] Beltaos S. Progress in the study and management of river ice jams [J].Cold Regions Science and Technology, 2008, 51(1): 2-19.

    [17] Yamazaki M., Koyama S., Ken-Ichi H. et al. Accumulation of frazil slush and velocity distribution under the ice cover [J].Journal of Dynamic Systems Measurement and Control, 2014, 136(3): 696-706.

    [18] SUI J., Karney B., Fang D. Variation in water level under ice-jammed condition–Field investigation and experimental study [J].Nordic Hydrology, 2005, 36(1): 65-84.

    [19] SUI J., KARNEY B., SUN Z. et al. Field investigation of frazil jam evolution?A case study [J].Journal of Hydraulic Engineering,ASCE, 2002, 128(8): 781-787.

    [20] Michel B. Comparison of field data with theories on ice cover progression in large rivers [J].Canadian Journal of Civil Engineering, 1984, 11(4): 798-814.

    * Project supported by the National Natural Science Foundation of China (Grant No. 51679263), the Special Scientific Research Fund of Public Welfare Profession of China (Grant No. 201501025), and the Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (Grant No. 2015TS04).

    Biography:Hui Fu (1981-), Male, Master, Senior Engineer

    Xin-lei Guo, E-mail: guoxinlei@163.com

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?
    王濤作品
    老汉色av国产亚洲站长工具| 亚洲久久久国产精品| 一夜夜www| 美女福利国产在线| 欧美色视频一区免费| 另类亚洲欧美激情| 久久精品国产综合久久久| 亚洲人成77777在线视频| 久久婷婷成人综合色麻豆| 国产男女内射视频| 电影成人av| 怎么达到女性高潮| 757午夜福利合集在线观看| 一级,二级,三级黄色视频| 黄片播放在线免费| 精品亚洲成国产av| 色老头精品视频在线观看| 亚洲,欧美精品.| e午夜精品久久久久久久| 天天影视国产精品| 王馨瑶露胸无遮挡在线观看| 十分钟在线观看高清视频www| 国产精华一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产精品99久久99久久久不卡| 精品国产国语对白av| 黄片大片在线免费观看| www.自偷自拍.com| 大型av网站在线播放| 精品国产亚洲在线| 亚洲成人手机| 亚洲精品国产色婷婷电影| 99久久国产精品久久久| 波多野结衣av一区二区av| 老司机靠b影院| 欧美性长视频在线观看| 欧美最黄视频在线播放免费 | 国产片内射在线| 色综合欧美亚洲国产小说| 69av精品久久久久久| 91成人精品电影| 国产精品电影一区二区三区 | 搡老熟女国产l中国老女人| 香蕉国产在线看| 亚洲午夜精品一区,二区,三区| 亚洲成人免费av在线播放| 欧美精品啪啪一区二区三区| 亚洲自偷自拍图片 自拍| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美98| 亚洲熟妇熟女久久| 午夜影院日韩av| 午夜91福利影院| 国产成人精品久久二区二区91| 精品第一国产精品| 亚洲专区国产一区二区| 久久久久久亚洲精品国产蜜桃av| 最新的欧美精品一区二区| 中文字幕人妻丝袜制服| 亚洲成人国产一区在线观看| 在线永久观看黄色视频| 成年动漫av网址| 免费在线观看影片大全网站| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区久久| 人人澡人人妻人| 久久草成人影院| 无人区码免费观看不卡| 国产色视频综合| 亚洲性夜色夜夜综合| 久久精品亚洲av国产电影网| 亚洲人成电影免费在线| 亚洲精品国产一区二区精华液| 亚洲久久久国产精品| 天天操日日干夜夜撸| x7x7x7水蜜桃| 免费一级毛片在线播放高清视频 | 丰满人妻熟妇乱又伦精品不卡| 咕卡用的链子| 国产精品99久久99久久久不卡| 亚洲三区欧美一区| 国产熟女午夜一区二区三区| 手机成人av网站| 成熟少妇高潮喷水视频| 国产精品亚洲av一区麻豆| 一级作爱视频免费观看| 69精品国产乱码久久久| 久9热在线精品视频| 人妻久久中文字幕网| www.精华液| 91老司机精品| 一区二区三区国产精品乱码| 成人永久免费在线观看视频| 中文字幕高清在线视频| 亚洲欧美日韩高清在线视频| 50天的宝宝边吃奶边哭怎么回事| 免费av中文字幕在线| 久久午夜综合久久蜜桃| 人人妻人人添人人爽欧美一区卜| 亚洲精品成人av观看孕妇| 国产xxxxx性猛交| 国产一区二区三区在线臀色熟女 | e午夜精品久久久久久久| 看黄色毛片网站| 国产精品久久久久久精品古装| 午夜福利欧美成人| 大型av网站在线播放| 首页视频小说图片口味搜索| 欧美人与性动交α欧美软件| 涩涩av久久男人的天堂| 久久人妻福利社区极品人妻图片| 女警被强在线播放| 久久ye,这里只有精品| 高清欧美精品videossex| av电影中文网址| 国产成人精品在线电影| 国产免费现黄频在线看| 一夜夜www| videosex国产| 午夜91福利影院| 精品久久蜜臀av无| 国产亚洲欧美98| 精品国产一区二区久久| www.精华液| 日韩免费高清中文字幕av| 九色亚洲精品在线播放| 女人被躁到高潮嗷嗷叫费观| 国产不卡一卡二| 捣出白浆h1v1| 一级,二级,三级黄色视频| 老司机午夜十八禁免费视频| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美一区二区三区久久| 国产亚洲精品一区二区www | 国产日韩一区二区三区精品不卡| 免费黄频网站在线观看国产| 国产精品 欧美亚洲| 人妻久久中文字幕网| 欧美日韩福利视频一区二区| 首页视频小说图片口味搜索| 怎么达到女性高潮| 亚洲中文字幕日韩| 国产日韩欧美亚洲二区| 在线观看免费视频网站a站| 女人久久www免费人成看片| 欧美日韩亚洲综合一区二区三区_| 成人手机av| 在线观看日韩欧美| 黄色片一级片一级黄色片| 久久香蕉国产精品| 欧美亚洲日本最大视频资源| 精品视频人人做人人爽| 女性生殖器流出的白浆| 一级片免费观看大全| 别揉我奶头~嗯~啊~动态视频| 久久亚洲精品不卡| 在线观看66精品国产| 欧美性长视频在线观看| 91大片在线观看| 这个男人来自地球电影免费观看| 欧美精品人与动牲交sv欧美| 天天操日日干夜夜撸| 一进一出抽搐动态| 欧美在线黄色| 人妻丰满熟妇av一区二区三区 | 露出奶头的视频| 亚洲九九香蕉| 国产精品久久久av美女十八| 亚洲精品自拍成人| 久久国产乱子伦精品免费另类| 色尼玛亚洲综合影院| 午夜久久久在线观看| 欧美最黄视频在线播放免费 | 久久精品国产亚洲av高清一级| 中文字幕人妻丝袜制服| 欧美日韩福利视频一区二区| 成人国语在线视频| 18禁美女被吸乳视频| 9热在线视频观看99| 在线十欧美十亚洲十日本专区| 欧美日韩国产mv在线观看视频| 香蕉久久夜色| 一边摸一边做爽爽视频免费| 一进一出抽搐gif免费好疼 | 久久精品aⅴ一区二区三区四区| 亚洲成av片中文字幕在线观看| 国产三级黄色录像| 成年人午夜在线观看视频| 在线av久久热| 日本wwww免费看| xxx96com| 国产精品久久久久成人av| 久久香蕉精品热| 精品人妻1区二区| 国产三级黄色录像| 视频在线观看一区二区三区| 夜夜夜夜夜久久久久| 黄色a级毛片大全视频| 午夜福利影视在线免费观看| 女人被躁到高潮嗷嗷叫费观| 精品一区二区三卡| 精品久久久久久久毛片微露脸| 免费看十八禁软件| 一级片'在线观看视频| 好看av亚洲va欧美ⅴa在| 高清欧美精品videossex| 999久久久精品免费观看国产| 久久天堂一区二区三区四区| 亚洲国产看品久久| 波多野结衣一区麻豆| 中文字幕人妻熟女乱码| 香蕉国产在线看| 精品国产乱子伦一区二区三区| 99国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 一个人免费在线观看的高清视频| a在线观看视频网站| 欧美亚洲 丝袜 人妻 在线| 国产成人精品久久二区二区91| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 国产熟女午夜一区二区三区| 亚洲精品国产一区二区精华液| 精品一区二区三区av网在线观看| 老司机在亚洲福利影院| 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀| а√天堂www在线а√下载 | 最近最新中文字幕大全电影3 | 美女高潮到喷水免费观看| 又黄又爽又免费观看的视频| 美女国产高潮福利片在线看| 99久久人妻综合| 久久久国产精品麻豆| 69精品国产乱码久久久| 男男h啪啪无遮挡| 久久久久久久国产电影| 国产精品国产av在线观看| 国产精品九九99| 亚洲精品美女久久久久99蜜臀| 精品免费久久久久久久清纯 | 麻豆乱淫一区二区| 国产一区二区三区视频了| 午夜免费成人在线视频| 91成年电影在线观看| bbb黄色大片| 国产1区2区3区精品| 欧美日韩亚洲高清精品| 欧美黄色片欧美黄色片| 欧美日韩成人在线一区二区| 伦理电影免费视频| 麻豆乱淫一区二区| 在线免费观看的www视频| 啪啪无遮挡十八禁网站| 午夜久久久在线观看| 又黄又粗又硬又大视频| 麻豆乱淫一区二区| av欧美777| 一进一出好大好爽视频| 中文字幕人妻丝袜制服| aaaaa片日本免费| 成人手机av| 校园春色视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲精品中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲美女黄片视频| 午夜免费观看网址| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片 | 90打野战视频偷拍视频| 国产精品九九99| 久久久久久久精品吃奶| 国产成人av教育| www.精华液| 美女扒开内裤让男人捅视频| 最近最新中文字幕大全电影3 | 中出人妻视频一区二区| 两个人看的免费小视频| 十分钟在线观看高清视频www| 欧美日韩亚洲国产一区二区在线观看 | 日本欧美视频一区| 欧美午夜高清在线| 亚洲一区二区三区欧美精品| 久久久久久亚洲精品国产蜜桃av| 国产高清国产精品国产三级| a级毛片黄视频| 亚洲精品中文字幕在线视频| 日韩一卡2卡3卡4卡2021年| 人妻久久中文字幕网| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 亚洲av日韩精品久久久久久密| 69精品国产乱码久久久| 丝袜美足系列| 丝瓜视频免费看黄片| 丝袜美腿诱惑在线| 日本撒尿小便嘘嘘汇集6| 两性午夜刺激爽爽歪歪视频在线观看 | 国产熟女午夜一区二区三区| 久久久久国产一级毛片高清牌| 黄片播放在线免费| 国产亚洲精品久久久久久毛片 | 人人妻人人澡人人爽人人夜夜| 叶爱在线成人免费视频播放| 亚洲午夜理论影院| a级毛片黄视频| 精品人妻1区二区| 成人免费观看视频高清| 久久久久国内视频| 精品久久久久久久久久免费视频 | 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 大型黄色视频在线免费观看| 国产一区二区三区综合在线观看| 精品人妻熟女毛片av久久网站| 国产男靠女视频免费网站| 日本精品一区二区三区蜜桃| 1024视频免费在线观看| 夜夜夜夜夜久久久久| 97人妻天天添夜夜摸| 亚洲精品美女久久av网站| 很黄的视频免费| 国产乱人伦免费视频| 亚洲av成人av| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 欧美在线黄色| 一级作爱视频免费观看| 又黄又爽又免费观看的视频| 午夜福利,免费看| 99热网站在线观看| 欧美 亚洲 国产 日韩一| 亚洲少妇的诱惑av| 亚洲人成77777在线视频| 视频在线观看一区二区三区| 欧美国产精品一级二级三级| 99精品在免费线老司机午夜| 建设人人有责人人尽责人人享有的| 超碰成人久久| 国产高清videossex| 脱女人内裤的视频| 黄色成人免费大全| 国产欧美日韩一区二区三| 久久久久国内视频| 黄色a级毛片大全视频| 女人被躁到高潮嗷嗷叫费观| 1024香蕉在线观看| 久久午夜亚洲精品久久| 欧美精品av麻豆av| 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 欧美激情高清一区二区三区| 热re99久久精品国产66热6| 美国免费a级毛片| 欧美日韩亚洲高清精品| 久久久久精品人妻al黑| 一区在线观看完整版| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 国产欧美日韩一区二区三| av超薄肉色丝袜交足视频| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 他把我摸到了高潮在线观看| 久久九九热精品免费| 三上悠亚av全集在线观看| 久久国产精品影院| 男女床上黄色一级片免费看| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 精品福利观看| 男女午夜视频在线观看| 亚洲熟妇中文字幕五十中出 | 国产精品一区二区精品视频观看| 操美女的视频在线观看| 最近最新中文字幕大全电影3 | 国产极品粉嫩免费观看在线| 9色porny在线观看| 超碰97精品在线观看| 免费在线观看完整版高清| 久久国产精品大桥未久av| 久久久久久人人人人人| 国产男女超爽视频在线观看| 日韩欧美在线二视频 | 免费高清在线观看日韩| 首页视频小说图片口味搜索| 久久 成人 亚洲| 亚洲精品在线观看二区| 美女午夜性视频免费| 精品福利观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品91无色码中文字幕| 日日夜夜操网爽| 国产一区二区三区视频了| 久久久国产精品麻豆| 操美女的视频在线观看| 91大片在线观看| 亚洲午夜理论影院| 黄片播放在线免费| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品98久久久久久宅男小说| av有码第一页| 少妇的丰满在线观看| 亚洲欧美一区二区三区久久| 丁香欧美五月| 国产精品.久久久| 大片电影免费在线观看免费| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| 欧美乱妇无乱码| 91九色精品人成在线观看| 国产成人精品久久二区二区免费| 一进一出抽搐动态| 人妻丰满熟妇av一区二区三区 | 欧美黑人精品巨大| 亚洲九九香蕉| 一级片'在线观看视频| 老汉色∧v一级毛片| 久久精品熟女亚洲av麻豆精品| 视频在线观看一区二区三区| 国产精品永久免费网站| 三上悠亚av全集在线观看| 最近最新中文字幕大全免费视频| www.熟女人妻精品国产| 成人特级黄色片久久久久久久| 精品一区二区三卡| 国产无遮挡羞羞视频在线观看| 日韩熟女老妇一区二区性免费视频| 日韩有码中文字幕| 在线观看舔阴道视频| 午夜福利,免费看| 在线播放国产精品三级| av线在线观看网站| 国产精品偷伦视频观看了| 精品国产乱码久久久久久男人| 99久久综合精品五月天人人| 国产高清视频在线播放一区| 久久天躁狠狠躁夜夜2o2o| 王馨瑶露胸无遮挡在线观看| 1024香蕉在线观看| 欧美丝袜亚洲另类 | 婷婷丁香在线五月| 久久国产精品影院| 露出奶头的视频| 十八禁网站免费在线| 国产三级黄色录像| 校园春色视频在线观看| 久久精品国产a三级三级三级| 电影成人av| 精品高清国产在线一区| 亚洲av成人av| 黄色a级毛片大全视频| 1024香蕉在线观看| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 色婷婷av一区二区三区视频| 午夜两性在线视频| 亚洲第一青青草原| 久久久久久久久久久久大奶| 超碰成人久久| 少妇裸体淫交视频免费看高清 | 欧美精品啪啪一区二区三区| 91老司机精品| 免费在线观看影片大全网站| 性色av乱码一区二区三区2| 91老司机精品| 99re在线观看精品视频| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 欧美亚洲 丝袜 人妻 在线| av不卡在线播放| 天堂动漫精品| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 视频区图区小说| 妹子高潮喷水视频| 人成视频在线观看免费观看| 午夜91福利影院| 久久精品国产清高在天天线| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区视频在线观看| 久久草成人影院| 一区二区三区激情视频| 亚洲五月天丁香| 一边摸一边抽搐一进一出视频| 老司机影院毛片| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 亚洲成av片中文字幕在线观看| 国产人伦9x9x在线观看| 久久精品aⅴ一区二区三区四区| 中出人妻视频一区二区| 12—13女人毛片做爰片一| 国产成人精品无人区| 国产午夜精品久久久久久| 人人妻人人澡人人看| 午夜两性在线视频| 久久人妻熟女aⅴ| 美国免费a级毛片| 岛国毛片在线播放| 精品少妇久久久久久888优播| 精品国产美女av久久久久小说| 精品午夜福利视频在线观看一区| 国产一区有黄有色的免费视频| 国产国语露脸激情在线看| 亚洲精品在线美女| 丝袜人妻中文字幕| 色婷婷久久久亚洲欧美| 久久香蕉国产精品| 日日摸夜夜添夜夜添小说| 天天躁夜夜躁狠狠躁躁| 怎么达到女性高潮| 国产高清激情床上av| 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| aaaaa片日本免费| 亚洲专区中文字幕在线| 亚洲人成电影免费在线| 999精品在线视频| 黄片大片在线免费观看| av免费在线观看网站| 男女下面插进去视频免费观看| 午夜91福利影院| 日韩欧美一区视频在线观看| 免费看a级黄色片| 视频在线观看一区二区三区| 国产乱人伦免费视频| 天天操日日干夜夜撸| 天天躁日日躁夜夜躁夜夜| 天天添夜夜摸| 丁香六月欧美| 日韩三级视频一区二区三区| svipshipincom国产片| 久久狼人影院| 操美女的视频在线观看| 涩涩av久久男人的天堂| av片东京热男人的天堂| 大型黄色视频在线免费观看| 国产国语露脸激情在线看| 91字幕亚洲| 国产av又大| 久久婷婷成人综合色麻豆| 中文欧美无线码| 妹子高潮喷水视频| 老鸭窝网址在线观看| 色老头精品视频在线观看| 国产精品久久久久久人妻精品电影| 热99国产精品久久久久久7| 天堂√8在线中文| 色综合欧美亚洲国产小说| 十八禁高潮呻吟视频| 久久99一区二区三区| 国产激情欧美一区二区| 男女床上黄色一级片免费看| 大片电影免费在线观看免费| 午夜福利欧美成人| 一本大道久久a久久精品| 国产av一区二区精品久久| 国产又色又爽无遮挡免费看| 精品人妻熟女毛片av久久网站| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 国产精品偷伦视频观看了| 999精品在线视频| tocl精华| 成年人午夜在线观看视频| 国产伦人伦偷精品视频| 最近最新中文字幕大全电影3 | 国产97色在线日韩免费| 建设人人有责人人尽责人人享有的| 欧美黄色片欧美黄色片| 亚洲五月婷婷丁香| 欧美人与性动交α欧美精品济南到| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩亚洲综合一区二区三区_| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 精品久久蜜臀av无| 黄色成人免费大全| 亚洲伊人色综图| 热99re8久久精品国产| 午夜激情av网站| 欧美亚洲 丝袜 人妻 在线| 岛国在线观看网站| 日韩熟女老妇一区二区性免费视频| 黄色女人牲交| 一级,二级,三级黄色视频| 精品少妇一区二区三区视频日本电影| 51午夜福利影视在线观看| 成人国语在线视频| 国产精品免费视频内射| 国内毛片毛片毛片毛片毛片| 欧美国产精品va在线观看不卡| 一夜夜www| xxxhd国产人妻xxx| 岛国毛片在线播放| 久久午夜综合久久蜜桃| 天堂动漫精品| 91麻豆av在线| 一进一出好大好爽视频| 欧美午夜高清在线| 成在线人永久免费视频| 欧美乱色亚洲激情| 一二三四社区在线视频社区8| av一本久久久久| 99国产精品免费福利视频| 成人三级做爰电影| 欧美黄色片欧美黄色片| 真人做人爱边吃奶动态| 搡老岳熟女国产| 国产高清国产精品国产三级| 亚洲第一av免费看| 久久午夜亚洲精品久久| 妹子高潮喷水视频|