董 萌趙運(yùn)林蔣道松周小梅李必才庫(kù)文珍
(1 湖南城市學(xué)院化學(xué)與環(huán)境工程學(xué)院,湖南益陽(yáng) 413000)
(2 中南林業(yè)科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,長(zhǎng)沙 410018)
基于東亞金發(fā)蘚監(jiān)測(cè)土壤鎘污染的生物學(xué)機(jī)理*
董 萌1趙運(yùn)林2蔣道松1周小梅1李必才1庫(kù)文珍1
(1 湖南城市學(xué)院化學(xué)與環(huán)境工程學(xué)院,湖南益陽(yáng) 413000)
(2 中南林業(yè)科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,長(zhǎng)沙 410018)
采用對(duì)鎘具有高敏感性特征的苔蘚植物——東亞金發(fā)蘚(Pogonatum inflexum)為材料,以不同濃度梯度鎘污染基質(zhì)作為脅迫條件,觀測(cè)該植物在鎘脅迫下的生長(zhǎng)發(fā)育狀況、鎘富集能力、葉綠素含量、可溶性蛋白含量及MDA含量,并分析比較了各項(xiàng)指標(biāo)變化特征與土壤中全鎘含量及有效鎘含量的相關(guān)性。結(jié)果顯示,供試土壤中有效鎘含量約占全鎘含量的20%~40%,東亞金發(fā)蘚對(duì)鎘的富集能力總體較弱,其最大富集濃度值為1.627 mg kg-1,最高富集系數(shù)為63.9%,植株富集濃度與土壤有效鎘含量之間的相關(guān)性高于全鎘;東亞金發(fā)蘚對(duì)鎘污染表現(xiàn)出顯著反應(yīng)特征,植株孢子體和配子體受害癥狀明顯,1~2 mg kg-1以上的鎘脅迫(土壤有效鎘含量大于0.559 mg kg-1時(shí))即可使葉部黃化、褐變,5 mg kg-1的鎘處理導(dǎo)致蒴柄彎折、植株枯亡;東亞金發(fā)蘚葉綠素含量、可溶性蛋白含量、丙二醛(MDA)含量等生理指標(biāo)變化特征受鎘脅迫影響明顯,且與有效鎘含量呈顯著相關(guān)性,適合作為東亞金發(fā)蘚監(jiān)測(cè)土壤鎘污染及鎘生物有效性的指示指標(biāo)。
東亞金發(fā)蘚;生物監(jiān)測(cè);土壤鎘污染;鎘生物有效性
鎘(Cd)是一種對(duì)生物體具有強(qiáng)毒性的重金屬元素,在土壤中較穩(wěn)定、易于積累和難以消除。當(dāng)前,土壤鎘污染已成為困擾許多國(guó)家糧食安全和人類健康的世界性環(huán)境問(wèn)題,受到越來(lái)越廣泛的關(guān)注[1]。如何客觀、準(zhǔn)確地評(píng)價(jià)土壤鎘污染及其生物有效性,已成為實(shí)際操作中需要解決的關(guān)鍵問(wèn)題。近年來(lái),苔蘚植物監(jiān)測(cè)法在大氣鎘污染監(jiān)測(cè)中得到廣泛應(yīng)用[2-4],該類植物由于結(jié)構(gòu)簡(jiǎn)單、細(xì)胞分化程度低,植株體表面無(wú)角質(zhì)層、蠟質(zhì)層覆蓋,對(duì)環(huán)境污染物敏感性強(qiáng),鎘等重金屬離子或顆??芍苯油ㄟ^(guò)表層薄壁細(xì)胞吸收或吸附進(jìn)入,導(dǎo)致植株迅速表現(xiàn)出受害癥狀,因此適于進(jìn)行環(huán)境污染監(jiān)測(cè)。例如:廣泛分布于地中海區(qū)域的柏狀灰蘚和側(cè)生蘚不僅能有效監(jiān)測(cè)當(dāng)?shù)卮髿釩d、Cr、Hg等污染狀況,而且可通過(guò)植物體中氮同位素標(biāo)記來(lái)識(shí)別定位氮排放源[5];歐洲學(xué)者[6-8]研究和比較了灰蘚、泥炭蘚、大絹蘚、青蘚對(duì)城市郊區(qū)大氣中鎘等重金屬的吸附特征,以此作為監(jiān)測(cè)效果的重要依據(jù),并發(fā)現(xiàn)了大絹蘚莖葉的不同老化程度對(duì)監(jiān)測(cè)鎘污染有較大影響;利用裝有泥炭蘚的苔蘚袋法在芬蘭等國(guó)家目前已作為標(biāo)準(zhǔn)化監(jiān)測(cè)手段。同樣,利用某種對(duì)土壤鎘離子具有較低耐受性的植物,通過(guò)其生長(zhǎng)狀況和生理反應(yīng)來(lái)指示土壤鎘污染及修復(fù)效果,可具有較強(qiáng)的直觀性和說(shuō)服力;充當(dāng)這一檢驗(yàn)標(biāo)準(zhǔn)的植物體,個(gè)體大小應(yīng)適宜,組織進(jìn)化程度盡可能簡(jiǎn)單,易受到環(huán)境毒害并表現(xiàn)出癥狀。本研究以前期篩選到的一種對(duì)鎘具有強(qiáng)敏感性的孢子植物——東亞金發(fā)蘚(Pogonatum inflexum)為材料,將其植入不同濃度梯度鎘污染的土壤中,通過(guò)觀測(cè)其生長(zhǎng)反應(yīng)特征、生理指標(biāo)變化及其與土壤有效態(tài)鎘含量的“劑量—效應(yīng)”關(guān)系,初步探索鎘的生物有效性對(duì)植物生長(zhǎng)的影響,從而為進(jìn)一步研究土壤鎘污染的生物監(jiān)測(cè)機(jī)理提供理論依據(jù)和技術(shù)參考。
1.1 供試材料
供試植物源材料——東亞金發(fā)蘚植株及土壤基質(zhì)均采自南洞庭湖濕地的東南洲附近(28°52′34.14″ N,112° 23′ 39.36″ E),采集方式為小塊區(qū)域水平鏟集法(東亞金發(fā)蘚基部叢集群生),植株根部帶土厚度約2 cm;源材料帶回實(shí)驗(yàn)室后放置于水箱中的網(wǎng)狀支架上,根部浸沒(méi)于水中并輕微搖動(dòng)數(shù)小時(shí),盡量保障根部結(jié)構(gòu)不受損傷,去除根部泥土后移植于經(jīng)過(guò)處理的淺盤土壤基質(zhì)中。土壤基本理化性質(zhì)見(jiàn)表1。
1.2 試驗(yàn)方法
分別稱取2.0 kg風(fēng)干土壤基質(zhì),平鋪于直徑35 cm、高6 cm的聚乙烯淺盤內(nèi);溶解一定量的Cd(NO3)2·4H2O(分析純)施入,充分混勻,使淺盤內(nèi)土壤基質(zhì)干重時(shí)的Cd添加濃度分別為1.0 mg kg-1、2.0 mg kg-1、3.0 mg kg-1、4.0 mg kg-1、5.0 mg kg-1,以零添加的原土作為對(duì)照;每個(gè)處理濃度設(shè)置5盤作為重復(fù),自然陳化平衡14 d后用于植株移植。東亞金發(fā)蘚植株移栽至淺盤后,放置于接近自然環(huán)境的網(wǎng)室培養(yǎng)架上,視每天的光照、溫度、濕度等環(huán)境條件,定時(shí)噴灑300~500 ml自來(lái)水于每盤中。自移植后的第二天開(kāi)始觀察、記錄東亞金發(fā)蘚植株的形態(tài)學(xué)特征及外觀生長(zhǎng)反應(yīng),包括植株整體長(zhǎng)勢(shì)、葉數(shù)量及發(fā)育狀況、配子體與孢子體受害表征、黃化及致死情況等,直至研究過(guò)程結(jié)束。
表1 供試土壤基本理化性質(zhì)Table 1 Basic physic-chemical properties of the tested soil
1.3 樣品采集與分析
在試驗(yàn)第7天剪取東亞金發(fā)蘚植株莖葉部,用于鎘濃度及葉綠素含量等參數(shù)的測(cè)定(東亞金發(fā)蘚葉片由單層細(xì)胞構(gòu)成,葉面輕薄且貼莖生長(zhǎng),生物量小,不易單獨(dú)剪??;莖細(xì)胞構(gòu)造均一且無(wú)真正維管束,主要起支撐和光合作用):準(zhǔn)確稱取經(jīng)烘干、粉碎后的植物樣品0.1 g,加入體積比為4∶1的HNO3-HClO4混合液10 ml,WX-4000型微波密閉消解系統(tǒng)進(jìn)行消解(190 ℃、25 atm、 2 min),島津AA-6300型石墨爐原子吸收分光光度計(jì)測(cè)定樣品中的Cd含量[9];采用乙醇-丙酮混合液研磨、提取、過(guò)濾后,分光光度計(jì)法測(cè)定鮮樣品中的葉綠素含量[10];按照“0.1 mmol L-1的磷酸緩沖液(pH為7.8,含1%的聚乙烯吡咯烷酮)研磨、8 000 r min-1離心”的方式制得鮮樣品粗提取液后,采用考馬斯亮藍(lán)G250比色法測(cè)定可溶性蛋白含量,硫代巴比妥酸比色法(TBA法)測(cè)定丙二醛含量。可溶性蛋白與丙二醛的測(cè)定過(guò)程按照試劑盒說(shuō)明書進(jìn)行,測(cè)定結(jié)果依據(jù)說(shuō)明書中所列公式計(jì)算,所用試劑盒由南京建成生物工程研究所提供。
在每一濃度梯度鎘處理的土壤樣品中,用打孔混合法取少量基質(zhì)用于全鎘及有效鎘含量的分析:準(zhǔn)確稱取粉碎后土壤干樣品0.2 g,加入體積比為3∶1∶1的HCl-HNO3-HF混合液10 ml,WX-4000型微波密閉消解系統(tǒng)進(jìn)行消解后(220 ℃、35 atm、5 min),島津AA-6300型石墨爐原子吸收分光光度計(jì)測(cè)定樣品中的Cd含量;參照改良后的Tessier提取法[11]及BCR提取法[12],樣品中加入20 ml濃度為0.1 mol L-1的CH3COOH(有效鎘萃取劑),充分混勻后,室溫振蕩12 h,10 000 r min-1離心40 min,重復(fù)該過(guò)程2次,收集全部上清液進(jìn)行蒸發(fā)后消解,島津AA-6300型石墨爐原子吸收分光光度計(jì)測(cè)定樣品Cd含量。
樣品檢測(cè)過(guò)程中,重金屬含量分析所用的標(biāo)準(zhǔn)貯備液(C=1 000 mg L-1)購(gòu)買于國(guó)家環(huán)境保護(hù)部標(biāo)準(zhǔn)樣品研究所,所用的標(biāo)準(zhǔn)參比物質(zhì)型號(hào)為GBW07437(土壤)和GBW(E)090066(植物);原子吸收儀自帶GFA-EX7i石墨爐電流發(fā)生器和ASC-6100自動(dòng)進(jìn)樣器,測(cè)定次數(shù)為3,最大測(cè)定次數(shù)為5,測(cè)定結(jié)果相對(duì)標(biāo)準(zhǔn)偏差(RSD)設(shè)定為3%;所配制標(biāo)準(zhǔn)溶液濃度范圍為:0.5、1、2、4、8(ng ml-1),標(biāo)準(zhǔn)曲線線性關(guān)系系數(shù)保證在99.7%以上;樣品加標(biāo)回收試驗(yàn)的回收率范圍為98.1%~102.6%。
1.4 數(shù)據(jù)處理與統(tǒng)計(jì)分析
所測(cè)得原始數(shù)據(jù)用Excel 2010和SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)分析,處理后數(shù)據(jù)以“平均值±標(biāo)準(zhǔn)差”的形式給出。
2.1 東亞金發(fā)蘚對(duì)土壤鎘脅迫的外觀生長(zhǎng)反應(yīng)
暴露在空氣、水體等環(huán)境中的敏感性植物體,在生長(zhǎng)過(guò)程中受到污染物質(zhì)的毒害而表現(xiàn)出一系列外觀反應(yīng)癥狀,是利用苔蘚植物進(jìn)行環(huán)境污染監(jiān)測(cè)的基礎(chǔ)和依據(jù)[13]。本研究觀測(cè)結(jié)果顯示,東亞金發(fā)蘚在根部所處鎘環(huán)境下表現(xiàn)出顯著反應(yīng)特征:對(duì)照處理(未施加鎘污染)的植株體生長(zhǎng)正常、色澤通綠,無(wú)明顯癥狀表現(xiàn)(圖1a);1.0~2.0 mg kg-1鎘處理的植株,其下方葉片最先出現(xiàn)黃化現(xiàn)象,該濃度處理下植株的孢子體尚無(wú)明顯癥狀反應(yīng),隨著鎘處理濃度增加和時(shí)間延長(zhǎng),植株葉片受害程度愈加明顯(圖1b);3.0~4.0 mg kg-1鎘處理下,植株葉片受害程度進(jìn)一步加溶,孢子體受害癥狀顯著,孢蒴及蒴柄發(fā)生褐變、彎曲,較多的孢子體呈現(xiàn)枯黃萎蔫現(xiàn)象(圖1c);4.0~5.0 mg kg-1鎘處理的大部分植株葉片呈現(xiàn)枯萎卷曲,孢子體垂落,整株呈枯亡狀態(tài)(圖1d)。但整個(gè)過(guò)程中植株高度變化不明顯,葉片數(shù)量也未見(jiàn)增多,其原因一方面在于苔蘚植物本身生長(zhǎng)緩慢,本觀測(cè)過(guò)程持續(xù)時(shí)間較短,因此未表現(xiàn)出株高及葉片數(shù)量的差異;另一方面本實(shí)驗(yàn)所用植株處于有性生殖期的孢子體世代,該時(shí)期植株生長(zhǎng)發(fā)育過(guò)程基本完成,故長(zhǎng)勢(shì)方面不易受環(huán)境脅迫影響。整體而言,東亞金發(fā)蘚外觀性狀對(duì)鎘脅迫表現(xiàn)出了明顯的反應(yīng)特征。國(guó)內(nèi)外相關(guān)研究結(jié)果[13-14]表明,利用苔蘚或其他一些進(jìn)化程度較低的植物(如附生植物鐵蘭)進(jìn)行大氣污染監(jiān)測(cè)時(shí),植物體外觀形態(tài)學(xué)變化可作為重要監(jiān)測(cè)依據(jù),歸因于此類植物的組織進(jìn)化和器官分化程度低,受到外界污染毒害時(shí)能快速、直觀地表現(xiàn)出癥狀。綜合本研究材料的表現(xiàn)結(jié)果來(lái)看,東亞金發(fā)蘚為較理想的土壤鎘污染監(jiān)測(cè)植物。
2.2 東亞金發(fā)蘚植株Cd含量富集特征
東亞金發(fā)蘚土壤基質(zhì)中的全鎘含量、有效鎘含量以及植株Cd含量見(jiàn)表2。本研究所采用土壤基質(zhì)自身含有一定量的鎘,故所測(cè)得全鎘含量略高于人工施加鎘濃度值;梯度濃度鎘處理?xiàng)l件下,所測(cè)得有效鎘含量約占全鎘含量的20%~40%,且隨處理濃度增加,有效鎘所占比例呈下降趨勢(shì);東亞金發(fā)蘚植株Cd含量隨處理梯度升高而增加,但整體值較低,為0.115~1.627 mg kg-1,富集系數(shù)(即植株鎘含量與土壤全鎘含量之比)介于29.9%~63.9%,隨鎘處理濃度升高而下降。
分別對(duì)土壤基質(zhì)全鎘含量、有效鎘含量與植株Cd含量進(jìn)行了相關(guān)性分析(圖2),結(jié)果顯示,東亞金發(fā)蘚植株Cd含量與基質(zhì)全鎘含量及有效鎘含量均呈正相關(guān),且與有效鎘含量的相關(guān)性高于全鎘(據(jù)復(fù)相關(guān)性系數(shù)R2大小判定)。由此可見(jiàn),東亞金發(fā)蘚對(duì)土壤中鎘的富集效率與鎘生物有效性密切相關(guān),即植株Cd含量主要受土壤有效鎘含量影響。
2.3 鎘生物有效性對(duì)植株生理狀況的影響
不同鎘處理濃度下,東亞金發(fā)蘚植株體內(nèi)葉綠素、可溶性蛋白及丙二醛(MDA)三種生理活性物質(zhì)的含量變化見(jiàn)圖3??梢钥闯觯煌潭鹊逆k脅迫對(duì)植株上述生理指標(biāo)均產(chǎn)生明顯影響,尤其是2.0 mg kg-1以上的鎘濃度顯著降低了植株葉綠素和可溶性蛋白的含量(最大下降幅度分別為87.2%和53.2%),并較大程度地增加了膜脂過(guò)氧化產(chǎn)物丙二醛的含量(最大增加幅度為61.7%)。5.0 mg kg-1鎘處理下的植株已呈枯亡狀態(tài),該濃度下葉綠素和可溶性蛋白含量呈現(xiàn)最低值;MDA含量最大值的出現(xiàn)通常預(yù)示著活體植株處于逆境脅迫最嚴(yán)重的狀態(tài)[15-16],本試驗(yàn)中當(dāng)鎘處理濃度為4.0 mg kg-1時(shí)MDA含量達(dá)到最高值,此后因植株枯亡而有所下降。結(jié)合前述鎘脅迫下植株的外觀生長(zhǎng)反應(yīng)可知,東亞金發(fā)蘚對(duì)土壤鎘污染的耐受限值遠(yuǎn)較一般的植物種類?。?7-19],3.0~5.0 mg kg-1的土壤全鎘濃度已使植株的生長(zhǎng)生理受到嚴(yán)重傷害。由此可見(jiàn),東亞金發(fā)蘚對(duì)鎘的高敏感性特征適于進(jìn)行土壤鎘污染監(jiān)測(cè)。
圖1 對(duì)照處理(a)與鎘污染處理(b-d)下的植株生長(zhǎng)狀況Fig. 1 Growth status of plants under control treatment(a)and under Cd stress(b-d)
表2 不同處理土壤基質(zhì)Cd含量與植株Cd含量Table 2 Cd contents in tested soil and plant samples relative to treatment
圖2 植株Cd含量與土壤全鎘(a)及有效鎘(b)的相關(guān)關(guān)系Fig. 2 Correlation between Cd content in plant with total(a)and available(b)Cd content in soil
圖3 不同濃度Cd處理植株葉綠素(a)、可溶性蛋白(b)及丙二醛(c)含量Fig. 3 Contents of chlorophyll(a),soluble protein(b)and MDA(c)in plants grown under Cd stress relative to Cd concentration
對(duì)東亞金發(fā)蘚生理狀況與鎘生物有效性之間的關(guān)系作了相關(guān)性分析(圖4),結(jié)果顯示,鎘脅迫能較大程度地影響植株葉綠素與可溶性蛋白含量,二者均與土壤全鎘及有效鎘之間呈顯著負(fù)相關(guān),且與有效鎘之間的相關(guān)性更強(qiáng)(復(fù)相關(guān)性系數(shù)R2分別為0.973 2和0.967 2);MDA的增加與植株所受鎘脅迫程度呈正相關(guān),且與有效鎘的相關(guān)性更強(qiáng)(R2=0.739 2﹥0.431 9)。相對(duì)于土壤全鎘,土壤有效鎘是影響植物生長(zhǎng)過(guò)程和生理狀況的主要因素。
圖4 植株葉綠素、可溶性蛋白、丙二醛含量與土壤全鎘(a,c,e)及有效鎘(b,d,f)的相關(guān)關(guān)系Fig. 4 Correlation between contents of chlorophyll,soluble protein and MDA in plant with total(a,c,e)and available(b,d,f)Cd content in soils
3.1 生物監(jiān)測(cè)法在環(huán)境鎘污染監(jiān)測(cè)中的應(yīng)用
如何對(duì)土壤鎘污染及其生物有效性進(jìn)行科學(xué)、有效的評(píng)價(jià),是當(dāng)前土壤鎘污染修復(fù)領(lǐng)域面臨的一個(gè)現(xiàn)實(shí)問(wèn)題。尤其是經(jīng)修復(fù)治理后的土壤鎘含量是否達(dá)到安全濃度標(biāo)準(zhǔn),最終應(yīng)以生存于其中的動(dòng)植物生長(zhǎng)發(fā)育狀況予以評(píng)判。該方面研究多見(jiàn)于動(dòng)物毒理學(xué)實(shí)驗(yàn),例如通過(guò)觀測(cè)蝸牛、蚯蚓、彈尾目昆蟲(chóng)以及陸生等足類軟體動(dòng)物的生理和行為特征,可有效檢驗(yàn)重金屬污染土壤的修復(fù)效果[20-21];對(duì)鯰魚的生長(zhǎng)狀況及各部分器官中重金屬的蓄積情況進(jìn)行分析,能間接反映出浮萍、滿江紅等水生植物對(duì)尾礦污水及底泥的處理質(zhì)量[22]。對(duì)于苔蘚植物而言,由于其自身具有結(jié)構(gòu)簡(jiǎn)單、組織分化程度低等特征,對(duì)環(huán)境中污染物質(zhì)的敏感性較強(qiáng),近年來(lái)廣泛用于環(huán)境污染監(jiān)測(cè)研究。例如苔蘚、地衣、菌類,以及一些附生植物(如鐵蘭等),此類植物表面無(wú)角質(zhì)層、蠟質(zhì)層覆蓋,污染物可直接通過(guò)表層薄壁細(xì)胞吸附進(jìn)入,故它們對(duì)大氣中的重金屬粉塵顆粒、汞蒸汽等物質(zhì)極為敏感,一直作為大氣污染監(jiān)測(cè)的理想植物[3,8,23-26]。此外,苔蘚植物監(jiān)測(cè)法還具有對(duì)環(huán)境擾動(dòng)性小、操作簡(jiǎn)單、耗費(fèi)低、監(jiān)測(cè)周期短、可實(shí)現(xiàn)原位動(dòng)態(tài)實(shí)時(shí)監(jiān)測(cè)等優(yōu)點(diǎn),進(jìn)一步提高了其應(yīng)用價(jià)值[8]。但這些植物能否用于監(jiān)測(cè)土壤中的重金屬,目前為止少有人研究。理論上,這些植物的假根對(duì)表層土壤也具有較強(qiáng)的感應(yīng)能力,土壤重金屬離子可迅速通過(guò)假根薄壁細(xì)胞而對(duì)植物體造成傷害,與利用其地上部分監(jiān)測(cè)大氣污染在原理上具有相似性,該方面值得進(jìn)行探索試驗(yàn)。
本研究所選用的東亞金發(fā)蘚具備適于監(jiān)測(cè)土壤鎘污染的一系列特征:對(duì)土壤中的鎘具有強(qiáng)敏感性,易受到鎘離子毒害并在短時(shí)間內(nèi)表現(xiàn)出癥狀;植株大小適宜,其孢子體世代的成熟植株高度可達(dá)10 cm,易于進(jìn)行生長(zhǎng)指標(biāo)觀測(cè);植株結(jié)構(gòu)較簡(jiǎn)單,無(wú)真正的維管束分化,孢子體寄生于配子體上,各器官的細(xì)胞構(gòu)造均一且多為單細(xì)胞層,這些特征均適于進(jìn)行顯微觀察。國(guó)內(nèi)外研究資料中,頂生蘚屬和側(cè)生蘚屬[7]對(duì)Cd等重金屬的低吸收值和高靈敏度特征為其監(jiān)測(cè)大氣重金屬污染提供了應(yīng)用依據(jù);鱗葉蘚和尖葉美喙蘚[27]的膜脂過(guò)氧化程度、抗氧化酶防御系統(tǒng)活性受Cd影響明顯,且葉綠素?zé)晒庵?、花青素含量等在Cd脅迫下亦有顯著變化,據(jù)此可辨別Cd、Hg等重金屬的污染類別及毒性大小。結(jié)合本研究結(jié)果認(rèn)為,東亞金發(fā)蘚植株耐Cd含量低,易受到鎘離子傷害,植株外觀形態(tài)、葉綠素含量、可溶性蛋白含量及MDA含量等生理參數(shù)均對(duì)鎘毒較敏感,且各項(xiàng)指標(biāo)的反應(yīng)程度較好地對(duì)應(yīng)了土壤中的鎘含量變化,因此這些指標(biāo)參數(shù)適合用于指示東亞金發(fā)蘚監(jiān)測(cè)土壤鎘污染。
3.2 環(huán)境鎘污染及其生物有效性的評(píng)價(jià)方法
重金屬長(zhǎng)期存在于土壤中,各種化學(xué)形態(tài)之間不斷發(fā)生相互轉(zhuǎn)化,并伴隨著吸附-解吸、溶解-沉淀、氧化-還原、甲基化-去甲基化等多種動(dòng)態(tài)理化過(guò)程,其生物有效性、毒性大小和生態(tài)風(fēng)險(xiǎn)程度也處于不斷變化中[28]。較多的研究[29-31]認(rèn)為,土壤全鎘含量雖可作為衡量其污染程度和生態(tài)風(fēng)險(xiǎn)的依據(jù),但鎘生物有效性則是更科學(xué)的評(píng)價(jià)參數(shù)。原因在于,土壤中真正對(duì)生物生長(zhǎng)造成影響的鎘,取決于能被生物體吸收利用的那部分有效態(tài)含量。
對(duì)鎘生物有效性的評(píng)價(jià),多見(jiàn)于利用有機(jī)酸、螯合劑等化學(xué)淋洗劑提取有效態(tài)的方式進(jìn)行[28-30]。相對(duì)于此類化學(xué)檢測(cè)法,生物測(cè)試法則可借助生物體自身特征來(lái)反映鎘生物有效性,如歐洲赤松在修復(fù)土壤鎘污染時(shí),其松針中的鎘含量能較好地指示土壤中鎘的生物可利用性,同時(shí)也能反映出土壤理化性質(zhì)[32];利用玉米植株處理含鎘廢液后,可根據(jù)其葉片中葉綠素?zé)晒庵底兓皬U液對(duì)青藻菌光合效應(yīng)的抑制程度來(lái)評(píng)測(cè)廢水中鎘的生物有效性[33];也有研究表明,化學(xué)測(cè)定法與生物測(cè)試法評(píng)價(jià)土壤重金屬生物有效性時(shí),二者在結(jié)果上具有統(tǒng)一性,但相比而言后者靈敏度更高,甚至可用以區(qū)別添加不同改良劑后的效果[20,31]。綜合而言,建議優(yōu)先考慮生物監(jiān)測(cè)手段,或?qū)煞N方法相結(jié)合,互為補(bǔ)充,共同評(píng)價(jià)土壤重金屬的生物有效性。本研究中,以提取的有效態(tài)鎘含量作為土壤鎘生物有效性的指示參數(shù),并探析其與東亞金發(fā)蘚生長(zhǎng)發(fā)育狀況、植株Cd含量、葉綠素含量、可溶性蛋白含量、MDA含量等指標(biāo)之間的量效關(guān)系,結(jié)果表明鎘生物有效性與上述指標(biāo)變化密切相關(guān),進(jìn)一步證實(shí)了鎘生物有效性在很大程度上影響植物生長(zhǎng)和生理,因此可作為綜合反映土壤鎘污染及生態(tài)安全性的重要依據(jù)。
東亞金發(fā)蘚植株對(duì)土壤中鎘的富集水平低、耐受性弱、敏感度高,易感應(yīng)鎘污染并在短時(shí)間內(nèi)表現(xiàn)出癥狀,可作為有效監(jiān)測(cè)土壤鎘污染的植物材料;植株外觀形態(tài)、葉綠素含量、可溶性蛋白含量及MDA含量能直接反映土壤的鎘脅迫程度,可作為東亞金發(fā)蘚監(jiān)測(cè)土壤鎘污染的指示指標(biāo);植株Cd含量、生長(zhǎng)發(fā)育狀況及生理指標(biāo)變化均與土壤中有效鎘含量呈顯著相關(guān)關(guān)系,且相關(guān)性大于土壤中全鎘含量。因此,鎘生物有效性在很大程度上影響植物生長(zhǎng),并可用于反映土壤鎘污染及生態(tài)安全性。
[1]Lalor G C. Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment. Science of the Total Environment,2008,400(1/3):162—172
[2]Basile A,Sorbo S,Cardi M,et al. Effects of heavy metals on ultrastructure and Hsp70 induction in Lemna minor L. exposed to water along the Sarno River,Italy. Ecotoxicology and Environmental Safety,2015,114:93—101
[3]Abril G A,Wannaz E D,Mateos A C,et al. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results. Atmospheric Environment,2014,82 (5):154—163
[4]Conti M E,Cecchetti G. Biological monitoring:lichens as bioindicators of air pollution assessment—A review. Environmental Pollution,2001,114(3):471—492 [5]Izquieta-Rojano S,Elustondo D,Ederra A,et al. Pleurochaete squarrosa(Brid.)Lindb. as an alternative moss species for biomonitoring surveys of heavy metal,nitrogen deposition and δ15N signatures in a Mediterranean area. Ecological Indicators,2016,60:1221—1228
[6]Boquete M T,Aboal J R,Carballeira A,et al. Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmospheric Environment,2014,86(3):28—34
[7]González A G,Pokrovsky O S. Metal adsorption on mosses:Toward a universal adsorption model. Journal of Colloid and Interface Science,2014,415(2):169—178
[8]Lodenius M. Use of plants for biomonitoring of airborne mercury in contaminated areas. Environmental Research,2013,125(8):113—123
[9]Polechońska L,Klink A. Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L.(reed canary grass). Journal of Geochemical Exploration,2014,146:27—33
[10]Harguinteguy C A,Pignata M L,F(xiàn)ernández-Cirelli A. Nickel,lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecological Engineering,2015,82:512—516
[11]朱嬿婉,沈壬水,錢欽文. 土壤中金屬元素的五個(gè)組分的連續(xù)提取法. 土壤,1989,21(3):163—166
Zhu Y W,Shen R S,Qian Q W. Sequential extraction for five components of heavy metals in soil(In Chinese). Soils,1989,21(3):163—166
[12]陳英旭. 土壤重金屬的植物污染化學(xué). 北京:科學(xué)出版社,2008:3—5
Chen Y X. Phytochemistry of soil heavy metal pollution (In Chinese). Beijing:Science Press,2008:3—5
[13]Sree K S,Keresztes á,Mueller-Roeber B,et al. Phytotoxicity of cobalt ions on the duckweed Lemna minor-Morphology,ion uptake,and starch accumulation. Chemosphere,2015,131:149—156
[14]Li P,Pemberton R,Zheng G L. Foliar trichomeaided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution. Chemosphere,2015,119:662—667
[15]Bernard F,Brulle F,Dumez S,et al. Antioxidant responses of Annelids,Brassicaceae and Fabaceae to pollutants:A review. Ecotoxicology and Environmental Safety,2015,114:273—303
[16]T echato K,Salaeh A,van Beem N C. Us e of atmospheric epiphyte Tillandsia usneoides (Bromeliaceae)as biomonitor. APCBEE Procedia,2014,10:49—53
[17]Khaokaew S,Landrot G. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District,Tak Province,Thailand:(1)Determination of Cd-hyperaccumulating plants. Chemosphere,2015,138:883—887
[18]van Oosten M J,Maggio A. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany,2015,111:135—146
[19]Klink A,Macio? A,Wis?ocka M,et al. Metal accumulation and distribution in the organs of Typha latifolia L.(cattail)and their potential use in bioindication. Limnologica,2013,43(3):164-168 [20]Udovic M,Drobne D,Lestan D. An in vivo invertebrate bioassay of Pb,Zn and Cd stabilization in contaminated soil. Chemosphere,2013,92(9):1105-1110
[21]許杰,柯欣,宋靜,等. 彈尾目昆蟲(chóng)在土壤重金屬污染生態(tài)風(fēng)險(xiǎn)評(píng)估中的應(yīng)用. 土壤學(xué)報(bào),2007,44(3):544—549
Xu J,Ke X,Song J,et al. Role of collembola in assessment of ecological risk of heavy metal contamination of soils(In Chinese). Acta Pedologica Sinica,2007,44(3):544—549
[22]Bharti S,Banerjee T K. Bioassay analysis of efficacy of phytoremediation in decontamination of coal mineeffluent. Ecotoxicology and Environmental Safety,2013,92(3):312—319
[23]Giordano S,Adamo P,Spagnuolo V,et al. Accumulation of airborne trace elements in mosses,lichens and synthetic materials exposed at urban monitoring stations:Towards a harmonisation of the moss-bag technique. Chemosphere,2013,90(2):292—299
[24]Paoli L,Corsini A,Bigagli V,et al. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution,2012,161(1):70-75
[25]Serbula S M,Miljkovic D D,Kovacevic R M,et al. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety,2012,76:209—214
[26]安麗,曹同,俞鷹浩. 上海市小羽蘚屬植物重金屬含量及其與環(huán)境的關(guān)系. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(8):1490—1494
An L,Cao T,Yu Y H. Heavy metals contents in Haplocladium and their relationships with Shanghai City environment(In Chinese). Chinese Journal of Applied Ecology,2006,17(8):1490—1494
[27]Chen Y E,Cui J M,Yang J C,et al. Biomonitoring heavy metal contaminations by moss visible parameters. Journal of Hazardous Materials,2015,296(1):201—209
[28]Bolan N,Kunhikrishnan A,Thangarajan R,et al. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Materials,2014,266C(4):141—166
[29]Wang Q Y,Zhou D M,Cang L. Bioavailability of soil copper from different sources:integrating chemical approaches with biological indicators. Pedosphere,2014,24(1):145—152
[30]Remon E,Bouchardon J L,Le Guédard M,et al. Are plants useful as accumulation indicators of metal bioavailability? Environmental Pollution,2013,175C:1—7
[31]Tariq S R,Ashraf A. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry,2013,http://dx.doi.org/10.1016/ j.arabjc.2013.09.024
[32]Pietrzykowski M,Socha J,van Doorn N S. Linking heavy metal bioavailability(Cd,Cu,Zn and Pb)in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment,2014,470/471:501—510
[33]Lucas García J A,Grijalbo L,Ramos B,et al. Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere,2013,90(11):2654—2661
Biological Mechanisms of Using Pogonatum Inf exum to Monitor Soil Cd Pollution
DONG Meng1ZHAO Yunlin2JIANG Daosong1ZHOU Xiaomei1LI Bicai1KU Wenzhen1
(1 College of Chemistry and Environment Engineering,Hunan City University,Yiyang,Hunan 413000,China)
(2 College of Environmental Science and Engineering,Central South University of Forestry and Technology,Changsha 410018,China)
【Objective】How to monitor and assess soil Cd pollution and bioavailability is currently an issue of great concern. However,measurements of soil available Cd contents using the conventional chemical methods may only serve as certain reference,because they are not good enough to intuitively and truly reflect the damages soil Cd2+does to plants. Bryophyta are simple in structure,free of any cuticle on their surface and quite sensitive to pollutants,so they are usually used in monitoring environmental pollution. In this paper,an effective method was preliminarily studied to monitor and evaluate soil Cd pollution and Cd bioavailability using Pogonatum inflexum,a species of bryophyte highly sensitive to soil Cd. A mature plant of the sporophytic generation of Pogonatum inflexum could be as high as 10 cm. Besides,it is simple in surface structure with no vascular bundle differentiation,but with sporophytes parasitizing on gametophytes. Furthermore,the various organs of Pogonatum inflexum are homogeneous in cell structure and mostly monolayer cells.【Method】In the experiment to validate effectiveness of the method,the tested soil was prepared into media,different in Cd contamination degree(1~5 mg kg-1),for culture of Pogonatum inflexum. Growth,Cd enrichment,chlorophyll content,soluble protein content and MDA concentration of the bryophyte was observed and/or determined. Soil available Cd contents extracted with acetic acid were cited as indicator parameter for soil Cd bioavailability,and then analysis was done of correlations of the above described indices with content of soil total Cd and content of soil available Cd,separately.【Result】Results show that in the test soil,bioavailable Cd accounted for about 20%~40% of total Cd. All the indexes of Pogonatum inflexum mentioned above were closely related to soil Cd stress,especially when soil Cd concentration was higher than 3 mg kg-1. Pogonatum inflexum was low in Cd enrichment and in tolerance to Cd as well. It could enrich as high as Cd 1.627 mg kg-1,with enrichment coefficient being 63.9% and Cd concentration in Pogonatum inflexum was more closely related to soil bioavailable Cd than to soil total Cd. Pogonatum inflexum responded quite apparently to soil Cd pollution,with visible symptoms such as damaged sporophytes and gametophytes. When soil Cd concentration was higher than 1~2 mg kg-1(available Cd concentration was higher than 0.559 mg kg-1),leaves of Pogonatum inflexum turned yellow and brown;when soil Cd concentration got up to 5 mg kg-1,seta softened and kinked,till the plants withered dead. Changes in physiological and biochemical indexes of the tested plants,such as contents of chlorophyll,soluble protein and MDA,were apparently related to soil Cd stress,especially to soil bioavailable Cd contents,and corresponded well to changes in soil Cd pollution level.【Conclusion】Therefore,the contents of chlorophyll,soluble protein and MDA in Pogonatum inflexum can be used as indicators to monitor and evaluate soil Cd pollution and bioavailabilty. Pogonatum inflexum is an ideal material to be used to effectively monitor soil Cd pollution thanks to its high sensitivity to soil Cd2+and its readiness and intuitiveness in displaying damage symptoms.
Pogonatum inflexum;Biomonitoring;Cd-contaminated soil;Bioavailability of Cd
X171.5
A
10.11766/trxb201604180090
(責(zé)任編輯:盧 萍)
* 湖南省自然科學(xué)基金項(xiàng)目(2016JJ4015,2015JJ4012)和湖南省科技計(jì)劃重點(diǎn)項(xiàng)目(2010SK2004)資助 Supported by the Natural Science Foundation of Hunan Province(Nos. 2016JJ4015,2015JJ4012)and the Key Projects of Science and Technology Plan of Hunan Province(No. 2010SK2004)
董 萌(1982—),男,山東濟(jì)寧人,博士,副教授,主要從事土壤重金屬污染與修復(fù)研究。E-mail:dongmeng1001@163.com
2016-04-18;
2016-07-18;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-11-08