徐國(guó)瑞張育新張 霜馬克明?
(1 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085)
(2 中國(guó)科學(xué)院大學(xué),北京 100049)
海拔對(duì)表居土壤動(dòng)物不同取食功能群多度分布的影響*
徐國(guó)瑞1,2張育新1張 霜1馬克明1?
(1 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085)
(2 中國(guó)科學(xué)院大學(xué),北京 100049)
物種多度分布格局是群落生態(tài)學(xué)研究的前沿領(lǐng)域之一。海拔梯度下開(kāi)展土壤動(dòng)物多度分布研究有利于認(rèn)識(shí)分解者群落的構(gòu)建過(guò)程如何響應(yīng)環(huán)境變化。選用5種常見(jiàn)的生態(tài)位分配模型(斷棍模型、生態(tài)位優(yōu)先占領(lǐng)模型、生態(tài)位重疊模型、隨機(jī)分配模型和優(yōu)勢(shì)優(yōu)先模型),分別采用個(gè)體數(shù)量與生物量作為多度表征指標(biāo),對(duì)分布于北京東靈山遼東櫟林下不同海拔范圍的表居土壤動(dòng)物群落整體與不同取食功能群(雜食者、植食者、捕食者、腐食者)的相對(duì)多度分布進(jìn)行研究。結(jié)果表明,擬合表居土壤動(dòng)物群落整體的最優(yōu)生態(tài)位分配模型不受海拔影響,均為斷棍模型。但表居土壤動(dòng)物各功能群多度分布受海拔影響,雜食者隨海拔升高,最優(yōu)模型由斷棍模型轉(zhuǎn)變?yōu)樯鷳B(tài)位優(yōu)先占領(lǐng)模型,而植食者與之相反。多度表征指標(biāo)選擇影響擬合表居土壤動(dòng)物不同功能群(捕食者和腐食者)多度分布的最優(yōu)模型??傮w而言,海拔和多度指標(biāo)選擇并未影響表居土壤動(dòng)物整體的多度分布,但對(duì)表居土壤動(dòng)物中不同取食功能群的多度分布有影響。
土壤動(dòng)物群落;食性;生態(tài)位分配模型;群落構(gòu)建;海拔
物種多度分布是群落生態(tài)學(xué)研究的根本和核心問(wèn)題之一。多度格局是群落中各物種建立平衡最重要的體現(xiàn),是資源競(jìng)爭(zhēng)以及種群動(dòng)態(tài)過(guò)程的結(jié)果。為從生物學(xué)機(jī)制上解釋群落多度分布,闡明其背后的群落構(gòu)建過(guò)程,生態(tài)學(xué)家們相繼提出了眾多生態(tài)位分配模型,如Macarthur的斷棍模型[1]、Sugihara的生態(tài)位等級(jí)[2]以及Tokeshi的冪分形模型[3]等。這些機(jī)制模型假定生態(tài)位分化是物種共存的先決條件,多度與其分配的生態(tài)位大小存在直接關(guān)系[1-3],物種在單維或多維空間逐級(jí)破碎有限資源庫(kù)最終形成了群落中各物種間的多度分布格局[2]。生態(tài)位分配模型在不同生物群落中相繼應(yīng)用,但在土壤動(dòng)物中的研究較少,尤其是表居土壤動(dòng)物。
土壤動(dòng)物是生態(tài)系統(tǒng)中重要的生物組分,通過(guò)分解[4]、擾動(dòng)[5]、生物級(jí)聯(lián)[6]以及直接取食微生物和植物等,在生態(tài)系統(tǒng)功能過(guò)程[7]和生物地球化學(xué)循環(huán)中起著重要作用[8]。以往的研究主要集中描述環(huán)境或干擾梯度下土壤動(dòng)物群落的多樣性與結(jié)構(gòu)變化[9],少有研究關(guān)注土壤動(dòng)物群落多度分布格局及其可能的群落構(gòu)建過(guò)程??紤]到表居土壤動(dòng)物極高的多樣性以及其在凋落物分解過(guò)程中的巨大作用(有研究表明表居土壤動(dòng)物在全球尺度上將凋落物分解率提高了37%[10]),開(kāi)展表居土壤動(dòng)物相對(duì)多度分布研究對(duì)于認(rèn)識(shí)多樣化的土壤動(dòng)物群落構(gòu)建過(guò)程具有重要意義。生態(tài)位分配模型本質(zhì)而言是物種具有相似的分類地位占據(jù)類似的資源,因此運(yùn)用模型擬合的時(shí)候應(yīng)該盡量考慮某一功能類群群落,而不僅僅是多樣化的混合群落[11]。國(guó)內(nèi)學(xué)者根據(jù)個(gè)體大小劃分功能群分別研究了大型和中小型土壤動(dòng)物相對(duì)多度分布,做出了有益嘗試[12-13]。取食與營(yíng)養(yǎng)循環(huán)、能量流動(dòng)直接相關(guān),根據(jù)食性劃分土壤動(dòng)物功能群更接近生態(tài)位分配模型的應(yīng)用假設(shè)。比較表居土壤動(dòng)物群落整體與不同取食功能群的相對(duì)多度分布,有利于從不同生物學(xué)作用尺度上認(rèn)識(shí)土壤動(dòng)物可能的群落構(gòu)建過(guò)程。
環(huán)境變化也可能影響生物群落構(gòu)建過(guò)程。海拔梯度為驗(yàn)證生物群落如何響應(yīng)環(huán)境變化提供了理想的自然研究平臺(tái)。作為一項(xiàng)重要的綜合性環(huán)境因素,溫度等環(huán)境因素以及生物類群會(huì)沿著海拔表現(xiàn)出某些變化規(guī)律,而這種變化勢(shì)必會(huì)給群落內(nèi)物種之間的相互作用帶來(lái)影響[14],進(jìn)而影響到生物群落的構(gòu)建過(guò)程。海拔梯度上開(kāi)展土壤動(dòng)物群落的相對(duì)多度分布研究有利于進(jìn)一步認(rèn)識(shí)環(huán)境變化是如何影響整個(gè)分解者群落構(gòu)建的。
多度表征指標(biāo)可能會(huì)影響生態(tài)位分配模型擬合結(jié)果。多度表征指標(biāo)主要包括物種的個(gè)體數(shù)量、生物量和能量利用等,但多數(shù)研究只采用個(gè)體數(shù)量,而個(gè)體數(shù)量能否反映群落內(nèi)物種間的生物量或是能量分布存在爭(zhēng)議[15]。對(duì)于多數(shù)生物類群而言,生物量分布較個(gè)體數(shù)量分布更不均勻。個(gè)體數(shù)量呈現(xiàn)出來(lái)的變異較生物量小,因此用個(gè)體數(shù)量作為生態(tài)位分配的替代參數(shù)可能會(huì)高估群落的均勻程度[15]。如果生態(tài)位等同于資源分配,生物量較個(gè)體數(shù)量更有意義,因?yàn)樯锪颗c資源分形更為相關(guān)??紤]到表居土壤動(dòng)物種群個(gè)體數(shù)量分布與生物量分布的巨大差異,有必要比較不同多度表征指標(biāo)對(duì)于其多度分布生態(tài)位分配模型擬合結(jié)果的影響。
本研究選取研究區(qū)地帶性植被遼東櫟(wutaishansea Quercus)為主要林型,在其分布的海拔樣帶上,分別以土壤動(dòng)物個(gè)體數(shù)量和生物量作為多度表征指標(biāo),研究表居土壤動(dòng)物整體及不同功能群的相對(duì)多度分布,以期回答如下問(wèn)題:(1)海拔是否影響表居土壤動(dòng)物群落整體以及不同取食功能群的構(gòu)建過(guò)程?(2)多度表征指標(biāo)是否影響表居土壤動(dòng)物群落整體以及不同取食功能群相對(duì)多度分布的生態(tài)位分配模型擬合結(jié)果?
1.1 研究區(qū)概況
北京森林生態(tài)系統(tǒng)定位研究站(40°00″~40°02″N,115°26″~115°30″E)位于北京市西郊門頭溝區(qū)的東靈山,距離北京市約100 km。東靈山屬太行山系,是小五臺(tái)山向東延伸的支脈,與百花山山體相連,最高海拔2 303 m。該區(qū)屬于暖溫帶半濕潤(rùn)大陸季風(fēng)氣候,年均溫度5~10℃,無(wú)霜期長(zhǎng),年均降雨500~650 mm,多集中在夏季。土壤類型主要包括粗骨褐土(海拔1 000 m以下,本區(qū)地帶性土類褐色土)、山地棕壤(海拔1 000~1 800 m的中山地帶)和亞高山草甸土(1 800~2 300 m的山地頂部)。植被類型主要以暖溫帶落葉闊葉林為主。櫟屬(Quercus spp.)是本區(qū)域的地帶性植被。
1.2 樣帶調(diào)查法
本研究采取樣帶調(diào)查法,在西坡沿著海拔梯度選擇有遼東櫟林分布的若干山體進(jìn)行調(diào)查。共調(diào)查了10條樣帶,樣帶寬度為10 m,長(zhǎng)度依據(jù)具體山體和坡位不同80~180 m不等。10條樣帶主要分布在以下三個(gè)區(qū)域:一一二區(qū)域(海拔范圍1 020~1 240 m,總長(zhǎng)350 m,后續(xù)分析以D1表示該區(qū)域)、南溝區(qū)域(海拔范圍1 250~1 480 m,總長(zhǎng)380 m,D2)和下馬威區(qū)域(海拔范圍1 490~1 770 m,總長(zhǎng)460 m,D3),各區(qū)域的植被以及環(huán)境因素的變化情況詳見(jiàn)在海拔樣帶上的已發(fā)表研究[16]。
1.3 土壤動(dòng)物取樣法
在遼東櫟林樣帶內(nèi)連續(xù)設(shè)置10 m×10 m樣方作為基本調(diào)查單位(D1區(qū)域調(diào)查樣方35個(gè),D2區(qū)域38個(gè),D3區(qū)域46個(gè)),在每個(gè)樣方中隨機(jī)選取3個(gè)0.5 m×0.5 m的小樣方,將所有凋落物層裝入布袋,轉(zhuǎn)移至實(shí)驗(yàn)室,通過(guò)Tullgren干漏斗法獲得表居土壤動(dòng)物(干生),此法可以迅速獲得除線蟲(chóng)等濕生動(dòng)物外的多數(shù)干生土壤動(dòng)物類群。鑒定并測(cè)量個(gè)體體長(zhǎng),根據(jù)體長(zhǎng)—質(zhì)量轉(zhuǎn)化方程計(jì)算土壤動(dòng)物質(zhì)量[17]。相對(duì)多度由計(jì)算各區(qū)域內(nèi)土壤動(dòng)物各種群個(gè)體數(shù)量和生物量占該區(qū)域內(nèi)各種群內(nèi)部最大的個(gè)體數(shù)量和生物量的比例獲得。根據(jù)土壤動(dòng)物取食特性,將其劃分為四大取食功能群:雜食性(Omnivores,縮寫為O),植食性(Phytophage,Ph),捕食性(Predators,Pr),腐食性(Saprozoic,S)。
1.4 數(shù)據(jù)處理
本文以區(qū)域?yàn)榉治鰡挝?,分別研究各海拔梯度下土壤動(dòng)物群落總體以及不同土壤動(dòng)物功能群的相對(duì)多度分布。所有圖均在SigmaPlot12.0中繪制完成。
運(yùn)用R3.0.2[18]的“vegan”包進(jìn)行重抽樣,獲得不同抽樣點(diǎn)的物種累計(jì)數(shù)。
物種相對(duì)多度排序(rank-abundance)圖,又稱為Whittaker圖,可以同時(shí)解釋群落多樣性的兩個(gè)方面,即群落所含物種的豐富程度和均勻程度。物種的豐富程度由曲線在橫軸上的長(zhǎng)度來(lái)反映,曲線越寬,表示物種的組成越豐富;物種組成的均勻程度由曲線的形狀來(lái)反映,曲線越平坦,表示物種組成的均勻程度越高。本文分別選取個(gè)體數(shù)量和生物量作為多度表征指標(biāo)。
選擇了5個(gè)常用且容易計(jì)算的生態(tài)位分配模型[19-20]:斷棍模型(broken stick model,BSM),生態(tài)位優(yōu)先占領(lǐng)模型(niche preemption model,NPM),生態(tài)位重疊模型(overlapping niche model,ONM),隨機(jī)分配模型(random assortment model,RAM),優(yōu)勢(shì)優(yōu)先模型(dominance preemption model,DPM)。除隨機(jī)分配模型外,其余4類模型均假定個(gè)體多度與其占據(jù)的生態(tài)位大小存在一定的關(guān)系,但是強(qiáng)弱程度有別[21]。
運(yùn)用卡方分布(Chi-square test,χ2)檢驗(yàn)與比較各生態(tài)位模型的適合性。χ2越小,模型的擬合效果就越好??傮w檢驗(yàn)時(shí)χ2大于1 000、分功能群檢驗(yàn)時(shí)χ2大于100時(shí)均未通過(guò)檢驗(yàn)。
2.1 表居土壤動(dòng)物群落整體的生態(tài)位擬合模型
以個(gè)體數(shù)量為多度表征的多度秩(圖1a)表明在高海拔地區(qū)(D3),土壤動(dòng)物群落多度分布最不均勻,而低海拔(D1)與中海拔地區(qū)(D2)相對(duì)均勻。以生物量為多度表征的多度秩(圖1b)表明在優(yōu)勢(shì)類群中,各海拔的生物量分布相對(duì)均勻,但是稀有類群(不足總體多度1%的類群)的生物量分布以低海拔(D1)最不均勻,其次為高海拔(D3),中海拔(D2)最均勻。
圖1 土壤動(dòng)物群落總體多度秩Fig. 1 Rank abundance of soil fauna as a whole
從圖2中可以看出,海拔以及不同多度表征指標(biāo)對(duì)于擬合表居土壤動(dòng)物群落總體多度分布的最優(yōu)模型無(wú)影響,均為BSM模型。但通過(guò)χ2適合性檢驗(yàn)的次優(yōu)模型受二者影響,以個(gè)體數(shù)量衡量(圖2a),各海拔點(diǎn)的次優(yōu)模型為ONM模型,在低海拔地區(qū),NPM模型的擬合效果也較好。以生物量衡量(圖2b),低海拔地區(qū)與高海拔地區(qū)的次優(yōu)模型也為ONM模型,但中海拔地區(qū)的次優(yōu)模型為NPM模型。各海拔段無(wú)論以何種指標(biāo)表征多度,DPM和RAM未通過(guò)χ2適合性檢驗(yàn)。
2.2 不同表居土壤動(dòng)物功能群的生態(tài)位擬合模型
圖2 沿海拔土壤動(dòng)物群落生態(tài)位模型χ2適合性檢驗(yàn)Fig. 2 Chi-square(χ2)fitting test on different niche models of soil fauna along elevation
圖3 不同功能群多度秩Fig. 3 Rank abundance of various feeding groups of the soil fauna
由個(gè)體數(shù)量表征的多度秩可以看出,對(duì)于植食者(圖3b1)和捕食者(圖3c1)而言,海拔越高,土壤動(dòng)物群落越不均勻;雜食者(圖3a1)和腐食者(圖3d1)變化不大。而以生物量秩為表征的多度秩表明對(duì)于植食者(圖3b2)而言,海拔越高,土壤動(dòng)物群落越不均勻;而雜食者(圖3a2)、捕食者(圖3c2)和腐食者(圖3d2)變化不大。
海拔對(duì)表居土壤動(dòng)物各取食功能群的相對(duì)多度分布影響不同,隨海拔升高,雜食者(圖4a1,圖4a2)最優(yōu)模型由BSM轉(zhuǎn)變?yōu)镹PM;植食者(圖4b1,圖4b2)與其相反。多度表征指標(biāo)影響擬合捕食者和腐食者相對(duì)多度分布的最優(yōu)生態(tài)位分配模型,以個(gè)體數(shù)量為表征的相對(duì)多度分布擬合結(jié)果表明,捕食者(圖4c1)隨海拔升高最優(yōu)模型由NPM轉(zhuǎn)為NPM和BSM共優(yōu);腐食者(圖4d1)群落在中海拔的最優(yōu)模型為BSM,而在兩端模型中以RAM最優(yōu)。以生物量為表征的相對(duì)多度分布擬合結(jié)果表明,捕食者(圖4c2)由RAM轉(zhuǎn)變?yōu)锽SM擬合最優(yōu);腐食者群落(圖4d2)由NPM轉(zhuǎn)變?yōu)锽SM擬合最優(yōu)。
圖4 沿海拔不同功能群土壤動(dòng)物生態(tài)位模型適合性檢驗(yàn)Fig. 4 Chi-square(χ2)fitting test on niche models of soil fauna in different feeding groups along elevation
無(wú)論以何種指標(biāo)表征多度,DPM均未通過(guò)χ2適合性檢驗(yàn),適合擬合各功能群相對(duì)多度分布的生態(tài)位分配模型有差異。以個(gè)體數(shù)量衡量,海拔并未改變各功能群自身χ2適合度檢驗(yàn)結(jié)果。以生物量衡量,雜食者和捕食者χ2適合性檢驗(yàn)結(jié)果未受海拔影響,但植食者和腐食者通過(guò)χ2適合性檢驗(yàn)結(jié)果受海拔影響。
研究發(fā)現(xiàn),海拔對(duì)于表居土壤動(dòng)物群落整體相對(duì)多度分布無(wú)影響,但對(duì)不同功能類群相對(duì)多度分布有影響。擬合表居土壤動(dòng)物群落整體的最優(yōu)生態(tài)位模型均為BSM模型。一種可能原因是本研究選擇的研究系統(tǒng)是同一林型,表居土壤動(dòng)物群落的最終食物來(lái)源相同,導(dǎo)致其群落構(gòu)建過(guò)程趨同。也可能由于土壤動(dòng)物群落的營(yíng)養(yǎng)級(jí)結(jié)構(gòu)復(fù)雜[22],雖然各功能類群在海拔梯度上的構(gòu)建過(guò)程不同,但將其作為總體分析,會(huì)偏向于反映某些優(yōu)勢(shì)功能群的構(gòu)建過(guò)程。BSM適合描述競(jìng)爭(zhēng)能力相近,相對(duì)均勻程度相近的群落[23],各海拔的土壤動(dòng)物群落整體的均勻程度相差不大,是導(dǎo)致BSM模型擬合最優(yōu)的原因。ONM模型盡管不是擬合的最優(yōu)模型,但無(wú)論按何種多度指標(biāo)擬合以及其后的分功能群分析中,均可通過(guò)模型的適合性檢驗(yàn),說(shuō)明土壤動(dòng)物群落的生態(tài)位重疊現(xiàn)象普遍,這與之前的研究結(jié)果土壤動(dòng)物的高度雜食性,以及冗余種的存在等一致[24]。DPM均未通過(guò)模型適合度檢驗(yàn),這與同區(qū)域之前對(duì)于喬木層植物(優(yōu)勢(shì)植物均為遼東櫟)的研究結(jié)果不同[19]。可能原因是優(yōu)先占領(lǐng)模型適合描述高度不均勻、多樣性低的群落[25],而絕對(duì)優(yōu)勢(shì)的物種占據(jù)絕大部分資源的群落構(gòu)建模式與土壤動(dòng)物群落不符。另外一個(gè)可能原因是相較于植物群落,土壤動(dòng)物群落存在多種營(yíng)養(yǎng)級(jí),其高度的雜食性[22]以及同級(jí)捕食行為使得土壤動(dòng)物種群互作更為復(fù)雜,因此在土壤動(dòng)物群落構(gòu)建過(guò)程中很難形成對(duì)于群落資源絕對(duì)主導(dǎo)的種群??紤]到同一功能群的物種在生態(tài)學(xué)上更為相似,更易產(chǎn)生生態(tài)位分化[21],因此分功能群檢驗(yàn)土壤動(dòng)物群落的生態(tài)位分配模型十分重要。與對(duì)整個(gè)群落的擬合結(jié)果不同,土壤動(dòng)物群落不同功能群的構(gòu)建策略隨著海拔上升呈現(xiàn)出不同的變化。擬合雜食者群落的最優(yōu)模型隨海拔升高由BSM轉(zhuǎn)變?yōu)镹PM,說(shuō)明在植物向頂級(jí)群落演替的過(guò)程中[19],雜食者群落內(nèi)部逐步確立了相對(duì)優(yōu)勢(shì)的物種,群落向不均勻化發(fā)展。而植食者隨海拔升高表現(xiàn)出相反的趨勢(shì),最優(yōu)模型由NPM轉(zhuǎn)變?yōu)锽SM模型,可能是因?yàn)槭苤参锶郝溲萏娴挠绊?,食物資源變得豐富,因此直接取食植物的優(yōu)勢(shì)類群逐步減少,植食者功能群向均勻化發(fā)展。未來(lái)的研究中,有必要在更多典型的森林生態(tài)系統(tǒng)類型中驗(yàn)證海拔對(duì)于土壤動(dòng)物群落構(gòu)建過(guò)程的影響。
不同多度表征指標(biāo)對(duì)于表居土壤動(dòng)物群落總體多度分布的最優(yōu)生態(tài)位分配模型擬合結(jié)果無(wú)影響,但對(duì)于不同功能類群相對(duì)多度分布有影響。無(wú)論以個(gè)體數(shù)量還是生物量表征多度,表居土壤動(dòng)物總體生態(tài)位分配模型擬合結(jié)果均以BSM模型最優(yōu),但對(duì)于不同功能群而言,多度表征指標(biāo)不同時(shí)篩選出的最優(yōu)生態(tài)位分配模型不同。本研究中,捕食者群落的個(gè)體數(shù)量分布隨著海拔升高由NPM轉(zhuǎn)變?yōu)榕cBSM共優(yōu),而生物量分布則由RAM轉(zhuǎn)變?yōu)锽SM最優(yōu),可推知捕食者群落在低海拔地區(qū)的某些類群盡管占據(jù)個(gè)體數(shù)目的優(yōu)勢(shì),但并未形成生物量上的優(yōu)勢(shì)。捕食者群落隨植物演替由不均勻或是隨機(jī)分布轉(zhuǎn)變?yōu)橄鄬?duì)均勻分布。以個(gè)體數(shù)量為衡量指標(biāo),腐食者群落只在中海拔地區(qū)產(chǎn)生了生態(tài)位分化(BSM模型最優(yōu)),而在兩極均為隨機(jī)構(gòu)建,其可能原因是捕食者群落在低海拔和高海拔并未發(fā)展到競(jìng)爭(zhēng)互作的階段;但以生物量為衡量指標(biāo),腐食者群落在各海拔梯度上均產(chǎn)生了生態(tài)位分化,隨著地上群落的演替[19],腐食者群落由最初不均勻的群落向均勻化發(fā)展。綜合考慮個(gè)體數(shù)量和生物量作為多度表征指標(biāo),有利于從不同側(cè)面反映群落的構(gòu)建過(guò)程。
基于生態(tài)位分化的群落構(gòu)建理論在近年來(lái)受到現(xiàn)代物種共存理論以及中性理論的挑戰(zhàn)[26]。現(xiàn)代物種共存理論認(rèn)為物種在穩(wěn)定或非穩(wěn)定狀態(tài)下共存,主要通過(guò)2種機(jī)制實(shí)現(xiàn):(1)均等化,將物種間的平均適合度差異減至最??;(2)穩(wěn)定化,通過(guò)增加種內(nèi)負(fù)關(guān)系超過(guò)種間負(fù)關(guān)系實(shí)現(xiàn)物種共存[27]。基于穩(wěn)定化機(jī)制,研究者們發(fā)展了多種假說(shuō),如資源比率假說(shuō)、微生物介導(dǎo)假說(shuō)、競(jìng)爭(zhēng)—拓殖權(quán)衡等。除生境中的可利用資源外,環(huán)境因子等其他因素也影響群落構(gòu)建,如:(1)時(shí)間變化,即時(shí)間生態(tài)位的分化;(2)空間變化,當(dāng)空間本身被看作一種資源時(shí),物種對(duì)空間的利用存在權(quán)衡;(3)干擾和環(huán)境波動(dòng),通過(guò)阻礙競(jìng)爭(zhēng)促進(jìn)物種共存;(4)環(huán)境及以上各因素之間的交互作用使得多物種共存[26]。均等化機(jī)制通過(guò)降低穩(wěn)定化導(dǎo)致的較大種間適合度差異有利于群落物種實(shí)現(xiàn)穩(wěn)定共存,但只考慮均等化機(jī)制的模型嘗試會(huì)導(dǎo)致群落的不穩(wěn)定共存,如中性理論。中性理論假設(shè)“物種在生態(tài)功能上完全等價(jià)”,認(rèn)為隨機(jī)過(guò)程和擴(kuò)散機(jī)制對(duì)于群落構(gòu)建起決定性作用[28]。雖然土壤動(dòng)物群落總體檢驗(yàn)時(shí),RAM未通過(guò)適合度檢驗(yàn),但分功能群(尤其是以生物量為衡量指標(biāo))進(jìn)行檢驗(yàn)時(shí),RAM可以通過(guò)多數(shù)功能類群的模型適合度檢驗(yàn),說(shuō)明了中性過(guò)程(隨機(jī)分配)在土壤動(dòng)物功能群內(nèi)部構(gòu)建過(guò)程中可能發(fā)揮重要作用。未來(lái),在土壤動(dòng)物群落構(gòu)建理論的驗(yàn)證中,應(yīng)整合現(xiàn)代物種共存理論以及中性理論,整體檢驗(yàn)穩(wěn)定化機(jī)制和均等化機(jī)制在群落構(gòu)建過(guò)程中的相對(duì)重要性。
本研究發(fā)現(xiàn),海拔和多度指標(biāo)選擇并未影響表居土壤動(dòng)物整體的群落構(gòu)建過(guò)程,但影響表居土壤動(dòng)物的不同取食功能群的多度分布。表居土壤動(dòng)物群落整體的最優(yōu)生態(tài)位分配模型均為斷棍模型(BSM)。土壤動(dòng)物各功能群受海拔的影響不同,雜食者隨海拔升高,最優(yōu)模型由斷棍模型(BSM)轉(zhuǎn)變?yōu)樯鷳B(tài)位優(yōu)先占領(lǐng)模型(NPM),而植食者與之相反。需要特別指出的是,擬合物種相對(duì)多度分布的生態(tài)位分配模型,本質(zhì)上是從格局推導(dǎo)過(guò)程,是由后向前推繹的。理論分布的適合度檢驗(yàn)作為檢驗(yàn)?zāi)P陀行缘牡谝徊绞怯袔椭?,但是通常不是群落?gòu)建過(guò)程充分必要條件。未來(lái)的研究需要結(jié)合譜系距離、生活史特性與功能特征,整合更多的土壤動(dòng)物類群(如濕生以及土居土壤動(dòng)物群落),更深層次地理解物種的共存機(jī)制以及群落構(gòu)建的功能過(guò)程。
[1]MacArthur R H. On the relative abundance of bird species. Proceedings of the National Academy of Sciences of the United States of America,1957,43 (3):293—295
[2]Sugihara G. Minimal community structure:An explanation of species abundance patterns. The American Naturalist,1980,116(6):770—787
[3]Tokeshi M. Power fraction:A new explanation of relative abundance patterns in species-rich assemblages. Oikos,1996,75(3):543—550
[4]Handa I T,Aerts R,Berendse F,et al. Consequences of biodiversity loss for litter decomposition acrossbiomes. Nature,2014,509(7499):218—221
[5]Bender S F,Wagg C,van der Heijden M G. An underground revolution:Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution,2016,31(6):DOI:10.1016/ j.tree.2016.02.016
[6]Eldridge D J,Bowker M A,Maestre F T,et al. Interactive effects of three ecosystem engineers on infiltration in a semi-arid mediterranean grassland. Ecosystems,2010,13(4):499—510
[7]董煒華,李曉強(qiáng),宋揚(yáng). 土壤動(dòng)物在土壤有機(jī)質(zhì)形成中的作用. 土壤,2016,48(2):211—218
Dong W H,Li X Q,Song Y. Role of soil fauna on soil organic matter formation(In Chinese). Soils,2016,48(2):211—218
[8]Bardgett R D,van der Putten W H. Belowground biodiversity and ecosystem functioning. Nature,2014,515(7528):505—511
[9]任圓圓,張學(xué)雷. 土壤多樣性研究趨勢(shì)與未來(lái)挑戰(zhàn). 土壤學(xué)報(bào),2015,52(1):9—18
Ren Y Y,Zhang X L. Study on pedodiversity:Status quo and future challenges(In Chinese). Acta Pedologica Sinica,2015,52(1):9—18
[10]Garcia-Palacios P,Maestre F T,Kattge J,et al. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters,2013,16(8):1045—1053
[11]Higgins C L,Strauss R E. Modeling stream fish assemblages with niche apportionment models:Patterns,processes,and scale dependence. Transactions of the American Fisheries Society,2008,137(3):696—706
[12]朱新玉,王玉玲,高寶嘉,等. 森林-草原交錯(cuò)帶土壤節(jié)肢動(dòng)物物種相對(duì)多度模型擬合研究. 干旱區(qū)資源與環(huán)境,2012,26(6):79—84
Zhu X Y,Wang Y L,Gao B J,et al. Application of various models to the study on relative abundance of soil arthro- pod animal species in the ecotone of foreststeppe region(In Chinese). Journal of Arid Land Resources and Environment,2012,26(6):79—84
[13]邱麗麗,殷秀琴. 左家自然保護(hù)區(qū)坡地土壤動(dòng)物物種-多度分布格局研究. 土壤學(xué)報(bào),2006,43(4):629—634
Qiu L L,Yin X Q. Soil fauna abundance pattern in a sloping field of Zuojia Nature Reserve,Jilin Province,China.(In Chinese)Acta Pedologica Sinica,2006,43(4):629—634
[14]Sundqvist M K,Sanders N J,Wardle D A. Community and ecosystem responses to elevational gradients: Processes,mechanisms,and insights for global change. Annual Review of Ecology,Evolution,and Systematics,2013,44(1):261—280
[15]Taper M L,Marquet P A. How do species really divide resources? The American Naturalist,1996,147 (6):1072—1086
[16]張育新,馬克明,祁建,等. 北京東靈山海拔梯度上遼東櫟種群結(jié)構(gòu)和空間分布. 生態(tài)學(xué)報(bào),2009,29 (6):2789—2796
Zhang Y X,Ma K M,Qi J,et al. Size structure and spatial pattern of Quercus liaotungensis population along elevation gradient in Dongling Mountain,Beijing (In Chinese). Acta Ecologica Sinica,2009,29 (6):2789—2796
[17]Xu G,Zhang S,Lin Y,et al. Context dependency of the density-body mass relationship in litter invertebrates along an elevational gradient. Soil Biology & Biochemistry,2015,88:323—332
[18]R Development Core Team. R:A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna,Austria,2014:URL http://www.R-project.org/
[19]馮云,馬克明,張育新,等. 北京東靈山遼東櫟(Quercus liaotungensis)林沿海拔梯度的物種多度分布. 生態(tài)學(xué)報(bào),2007,27(11):4743—4750
Feng Y,Ma K M,Zhang Y X,et al. Species abundance distribution of Quercus liaotungensis forest along altitudinal gradient in Dongling Mountain,Beijing(In Chinese). Acta Ecologica Sinica,2007,27(11):4743—4750
[20]馮云,馬克明,張育新,等. 坡位對(duì)北京東靈山遼東櫟林物種多度分布的影響. 生態(tài)學(xué)雜志,2011,30 (10):2137—2144
Feng Y,Ma K M,Zhang Y X,et al. Effects of slope position on species abundance distribution of Quercus wutaishanica community in Dongling Mountain of Beijing(In Chinese). Chinese Journal of Ecology,2011,30(10):2137—2144
[21]Ferreira F. Comments about some species abundance patterns:Classic,neutral,and niche partitioning models. Brazilian Journal of Biology,2008,68(4):1003—1012
[22]Brose U,Scheu S. Into darkness:Unravelling the structure of soil food webs. Oikos,2014,123(10):1153—1156
[23]King C E. Relative abundance of species and macarthur’s model. Ecology,1964,45(4):716—727
[24]Digel C,Curtsdotter A,Riede J,et al. Unravellingthe complex structure of forest soil food webs:Higher omnivory and more trophic levels. Oikos,2014,123 (10):1157—1172
[25]He F,Tang D. Estimating the niche preemption parameter of the geometric series. Acta Oecologica,2008,33(1):105—107
[26]牛克昌,劉懌寧,沈澤昊,等. 群落構(gòu)建的中性理論和生態(tài)位理論. 生物多樣性,2009,17(6):579—593
Niu K C,Liu Y N,Shen Z H,et al. Community assembly:The relative importance of neutral theory and niche theory(In Chinese). Biodiversity Science,2009,17(6):579—593
[27]Chesson P. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics,2000,31:343—366
[28]Hubbell S P. The unified neutral theory of biodiversity and biogeography. Princeton:Princeton University Press,2001
Effect of Elevation on Abundance Distribution of Different Feeding Groups in Litter-dwelling Soil Fauna
XU Guorui1,2ZHANG Yuxin1ZHANG Shuang1MA Keming1?
(1 State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China)
(2 University of Chinese Academy of Sciences,Beijing 100049,China)
【Objective】Species abundance distribution is a classic cutting-edge research field in the study on community ecology. Niche apportionment models are commonly used to simulate relative abundance distribution of species,but quite rarely applied to the study of soil fauna. Moreover,little has been reported in the past on how soil fauna responds to environmental changes in community construction relative to feeding guild. A field investigation was carried out of relative species abundance(individuals and biomass)distribution of the litter-dwelling fauna as a whole as well as each feeding guild(including omnivores,phytophage,predators,and saprovores)in a Quercus wutaishansea forest with an elevational gradient in the Dongling Mountain,Beijing. 【Method】Five commonly used niche apportionment models,that is the broken stick model(BSM),niche preemption model(NPM),niche overlapping model(ONM),random assortment model(RAM),and dominance preemption model(DPM),were used separately to simulate abundance distribution of the fauna. Adequacy of sampling is the prerequisite for the models to simulate species relative abundance distribution and judged by species accumulation curves. Rank-abundance plots were used to show richness and evenness of the species contained in the litter-dwelling soil fauna and each feeding guild. 【Result】 Results show that sampling in this study was adequate for fitting of the soil fauna community and feeding guilds. The distribution of the soil fauna in individual number disagreed with that in biomass. The dominance preemption model was not fit for either the whole litter-dwelling fauna community or each feeding guild based on chi-square test. The broken stick model was the optimal one for fitting the whole litter-dwelling fauna community,free of any impact of changes in elevation. The overlapping model and the niche preemption model were also good enough in fitting. When individual number was used as the index for abundance,elevation did not affect much fitting of the models for each feeding guild of the litter-dwelling soil fauna according to the chi-square test,but the chi-square test did vary from guild to guild. For omnivores,only the dominance preemption model failed the chi-square test,but for phytophage and predators,the random assortment model and for saprovores,the niche preemption model did,too. When biomass was used as the index for abundance,elevation did not have any impact on the chi-square test of the models fitting omnivores and predators,but did on that of the dominance preemption model fitting omnivores,and of thedominance preemption model and the niche preemption model fitting predators. The chi-square test of the models fitting saprovores and phytophage varied with the elevation. For saprovores,the dominance preemption model was good in the section low or moderate in elevation,while in the seciton high in elevation,the dominance preemption model and the random assortment model were. For phytophage,the dominance preemption model was good in the section low in elevation,the dominance preemption model and the random assortment model were in the section moderate in elevation,but the dominance preemption model,the niche preemption model and the random assortment model all failed the chi-square test in the section high in elevation. Abundance distribution of the various feeding guilds of the fauna was very sensitive to changes in elevation. For omnivores,the optimal model changed from the niche preemption model to the broken stick model with rising elevation,while for phytophage,it did reversely. Fitting with individual number as the index of abundance indicates that the optimal model for predators changed from the niche preemption model to the broken stick model and the niche preemption with rising elevation. For saprovores,the optimal model was the random assortment model in the sections low and high in elevation,while it was the broken stick model in the section moderate in elevation. When biomass was used as the index of abundance,the broken stick model replaced the random assortment model as the optimal one for predators,and the niche preemption model for saprovores. The use of biomass was better than that of individual number as index for the models to fit abundances of various feeding guilds of soil fauna. 【Conclusion】To sum up,elevation and selection of index does not affect much the models in fitting abundance distribution of the soil fauna as a whole,but does in fitting abundance distribution of the various feeding groups of the soil fauna. Future studies should consider modern theory of species coexistence and the neutral theory to examine the relative importance of stabilizing mechanism and equalizing mechanism in community assembly.
Soil fauna community;Feeding habits;Niche apportionment models;Community assembly;Elevation
Q958.1
A
10.11766/trxb201603270047
(責(zé)任編輯:檀滿枝)
* 國(guó)家自然科學(xué)基金項(xiàng)目(31470481)資助 Supported by the National Natural Science Foundation of China(No. 31470481)
? 通訊作者 Corresponding author,E-mail:mkm@rcees.ac.cn
徐國(guó)瑞(1986—),男,河北邢臺(tái)人,博士研究生,主要從事土壤動(dòng)物群落生態(tài)學(xué)研究。E-mail:grxu_st@ rcees.ac.cn & xuguorui@xtbg.ac.cn
2016-03-27;
2016-07-12;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-08-23