金 鑫Fredrick Orori Kengara王 芳谷成剛楊興倫Ulrike D?rflerReiner SchrollJean Charles Munch蔣 新,4?
(1 中國科學(xué)院土壤環(huán)境與污染修復(fù)重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),南京 210008)
(2 馬賽諾大學(xué)化學(xué)系,馬賽諾 40105,肯尼亞)
(3 亥姆霍茲慕尼黑研究中心微生物—植物交互作用研究組,慕尼黑 85764,德國)
(4 中國科學(xué)院大學(xué),北京 100049)
肯尼亞水稻土和甘蔗地土壤中14C-六氯苯和
14C-滴滴涕的自然消解*
金 鑫1,3,4Fredrick Orori Kengara2,3王 芳1谷成剛1楊興倫1Ulrike D?rfler3Reiner Schroll3Jean Charles Munch3蔣 新1,4?
(1 中國科學(xué)院土壤環(huán)境與污染修復(fù)重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),南京 210008)
(2 馬賽諾大學(xué)化學(xué)系,馬賽諾 40105,肯尼亞)
(3 亥姆霍茲慕尼黑研究中心微生物—植物交互作用研究組,慕尼黑 85764,德國)
(4 中國科學(xué)院大學(xué),北京 100049)
氯代持久性有機(jī)污染物的農(nóng)田土壤污染呈現(xiàn)污染濃度低、面積大、新源污染不斷輸入的特點(diǎn)。農(nóng)田土壤本身微生物種類豐富,對(duì)氯代有機(jī)污染物具有較大的降解潛力和未知性。本試驗(yàn)以典型高氯代和低氯代持久性有機(jī)污染物——六氯苯(HCB)和滴滴涕(DDT)為研究對(duì)象,結(jié)合14C同位素示蹤技術(shù),研究HCB和DDT在熱帶水稻土和甘蔗地土壤的礦化現(xiàn)象,同時(shí)監(jiān)測HCB和DDT在兩種土壤中的揮發(fā)、降解產(chǎn)物以及結(jié)合殘留。結(jié)果表明,經(jīng)84 d好氧培養(yǎng),HCB和DDT在兩種土壤中的礦化量分別僅為0.14%和3%,低氯代有機(jī)污染物DDT的礦化速率顯著高于高氯代有機(jī)污染物HCB。然而,兩種土壤對(duì)HCB或DDT的礦化沒有顯著性差異。HCB或DDT在水稻土中的揮發(fā)量略微高于甘蔗地土壤,兩種土壤中HCB和DDT的揮發(fā)量在0.1%~0.6%之間,表明揮發(fā)不是其主要的環(huán)境過程。在DDT污染水稻土和甘蔗地土壤中添加1.25%的堆肥增加了DDT在土壤中的礦化與結(jié)合殘留,減少了DDT的揮發(fā)。本研究結(jié)果表明土壤在好氧條件下對(duì)氯代持久性有機(jī)污染物的自然消解能力非常弱,而有機(jī)肥的使用有助于土壤中持久性氯代有機(jī)污染物的礦化消除。
持久性有機(jī)污染物;堆肥;礦化;揮發(fā);結(jié)合殘留
土壤中持久性有機(jī)污染物(POPs)的環(huán)境歸趨一直備受關(guān)注。盡管斯德哥爾摩公約已經(jīng)禁止(或限制)生產(chǎn)和使用包括六氯苯(HCB)和滴滴涕(DDT)在內(nèi)的大部分POPs[1],但該類物質(zhì)仍能通過農(nóng)藥化學(xué)品的使用、工業(yè)生產(chǎn)和廢棄物燃燒等過程進(jìn)入環(huán)境[2-3]。DDT具有廉價(jià)高效的抗虐疾特性,因此在熱帶地區(qū)的發(fā)展中國家仍被世界衛(wèi)生組織推薦使用[4]。由于POPs的難降解特性,其在土壤中殘留依然十分嚴(yán)重。珠江三角洲、太湖區(qū)域、陜西楊林等地農(nóng)田土壤HCB污染調(diào)查顯示,農(nóng)田HCB污染水平為0~6.2 ngg-1[5-7]。DDT的農(nóng)田土壤污染水平較HCB高出1~2個(gè)數(shù)量級(jí)[5,8-9]。環(huán)境殘留的POPs會(huì)經(jīng)土壤植物系統(tǒng)進(jìn)入食物鏈,對(duì)人體健康造成潛在危害[10]。
DDT和HCB在農(nóng)田土壤中的殘留呈現(xiàn)污染面積大、濃度低、新源污染不斷輸入的特點(diǎn),微生物降解較化學(xué)手段更適用于農(nóng)田土壤污染修復(fù)[11-14]。土壤微生物對(duì)POPs降解有極大潛力,然而,目前以HCB和DDT作為單一碳源生長的專一降解微生物仍鮮見報(bào)道。因此,有必要研究不同土壤類型對(duì)HCB和DDT自然消解潛力及特性。自然消解是自然條件下污染物的生物降解、擴(kuò)散、稀釋、吸附、揮發(fā)和生物/化學(xué)固定等過程,使污染物的毒性、遷移性及濃度降低至對(duì)人類健康和生態(tài)系統(tǒng)不構(gòu)成危害的水平[15]。氯代有機(jī)污染物在稻田土壤和旱地土壤中的降解行為或許有所不同,已有污染調(diào)查表明DDT(包括DDD和DDE)在菜地和果園中的殘留濃度高于其在水稻土中的殘留濃度[5,16]。因此,有必要比較微生物作用下不同耕作類型土壤對(duì)HCB 和DDT的礦化消除能力。
生物刺激(bio-stimulation)是微生物修復(fù)技術(shù)中的常用手段:即通過添加外源物質(zhì),如外加養(yǎng)分、電子受體或小分子苯系物,來誘導(dǎo)并激發(fā)土著微生物的降解能力[17]。共代謝土壤微生物可協(xié)同降解HCB和DDT,由此推測添加外源養(yǎng)分可促進(jìn)共代謝微生物活性,從而強(qiáng)化此類污染物的降解甚至礦化。然而,Wang等[8]研究不同施肥類型對(duì)DDT類物質(zhì)農(nóng)田殘留的影響得出,施用秸稈和養(yǎng)殖糞肥會(huì)阻礙有機(jī)氯農(nóng)藥在土壤中的降解。Liu等[18]報(bào)道了有機(jī)肥的施用減緩了HCB的脫氯降解,而施用尿素卻起到了促進(jìn)脫氯降解的作用。因此,外加碳源對(duì)HCB和DDT礦化消除的影響仍有待研究。
已有關(guān)于土壤中HCB和DDT降解的報(bào)道,往往只局限于測定母體化合物的消除速率或者代謝產(chǎn)物的生成速率[18-19]。但是,母體化合物的上游代謝轉(zhuǎn)化過程并不代表污染物的徹底消除。而且,土壤基體對(duì)污染物的吸附固定也可能導(dǎo)致高估污染物的降解[20]。因此,本研究利用14C同位素示蹤技術(shù)來研究污染物的揮發(fā)、降解與礦化(生成CO2)以及結(jié)合殘留的形成,從而全面準(zhǔn)確評(píng)估土壤對(duì)污染物的降解能力。
1.1 試劑與供試土壤
14C標(biāo)記的六氯苯(14C-HCB,純度>98%,放射性比活度5.0 mCimmol-1)和14C標(biāo)記的p,p’-滴滴涕(14C-p,p’-DDT,純度>98%,放射性比活度12.8mCimmol-1)來自International Isotopes公司(慕尼黑,德國),苯環(huán)上全部C原子均被標(biāo)記。液體閃爍液Ultima Gold XR,Ultima Flo AF 和Permafluor E來自Perkin Elmer公司(羅德高,德國)。CO2吸收液Carbosorb E 來自Packard公司(德萊艾希,德國)。非放射標(biāo)記的標(biāo)準(zhǔn)品:六氯苯,五氯苯,一氯苯,二、三、四氯苯的同分異構(gòu)體,p,p’-DDT,p,p’-DDD,p,p’-DDE,p,p’-DDMU和p,p’-DDM均購自Dr.EhrenstorferLaboratories公司(奧古斯堡,德國)。
試驗(yàn)選擇兩種不同利用類型的土壤,分別為長期經(jīng)歷厭氧-好氧循環(huán)的水稻土和長期旱作條件下的甘蔗地土壤,目的在于研究氯代有機(jī)污染物在典型利用方式土壤中的礦化效率。供試水稻土采自肯尼亞瑪維爾(Mwea)灌溉區(qū)域(37°22′00″E,00°42′00″N)水稻田,該地區(qū)自1956年開始種植水稻,土壤系統(tǒng)名稱為水耕人為土。供試甘蔗地土壤采自肯尼亞維多利亞流域(Lake Victoria Catchment)尼安多(Nyando)地區(qū)的甘蔗地(35°07′57.51″E,00°05′04.77″S),土壤系統(tǒng)分類名稱為干潤變性土。該水稻土和甘蔗地土壤經(jīng)風(fēng)干研磨過2mm篩,在室溫下儲(chǔ)存。試驗(yàn)中使用的堆肥肥料來自花園垃圾,從德國弗萊星附近的一個(gè)堆肥場獲得。該堆肥過2mm篩后儲(chǔ)存于4℃的冷庫,儲(chǔ)存過程中堆肥肥料含水量為33%。供試土壤及堆肥肥料的物理化學(xué)性質(zhì)見表1。
1.2 土壤培養(yǎng)試驗(yàn)
在20℃條件下,將供試水稻土和甘蔗地土壤以40%的最優(yōu)含水量(-15 KPa負(fù)壓下土壤含水量)平衡兩周以復(fù)蘇土壤微生物。稱取45g (干重)土壤于250mL的玻璃瓶中。將14C-HCB和非放射性標(biāo)記的HCB溶解于環(huán)己烷溶液中,得到濃度為10μgμL-1的儲(chǔ)備液。用漢密爾頓注射器取150μL該儲(chǔ)備液逐滴加入5g烘干(105℃,24 h)土壤中。待環(huán)己烷揮發(fā)后,輕輕地?cái)嚢杈鶆?,并轉(zhuǎn)移至上述250 mL玻璃瓶中,慢慢攪拌使污染物在土壤中均勻分布。土壤中HCB的最終添加濃度為30 μg g-1,總放射性含量為25.13 kBq。14C-DDT的接種處理與14C-HCB的接種過程相同,最終土壤中DDT濃度為30 μg g-1,總放射性含量為33.95 kBq。接種過14C-HCB和14C-DDT的土壤,壓實(shí)至容重為1.3 g cm-3,加水調(diào)節(jié)土壤含水量,關(guān)閉瓶口,在30℃避光條件下培養(yǎng)84d。水稻土培養(yǎng)組含水量調(diào)節(jié)至63%,甘蔗地土壤含水量調(diào)節(jié)至35%,均為-15kPa負(fù)壓下土壤水分平衡態(tài)。在該含水量條件下土壤有機(jī)污染物的礦化降解效率最高[21]。每種土壤對(duì)每個(gè)污染物設(shè)置4個(gè)平行處理。
表1 供試土壤和堆肥肥料的基本理化性質(zhì)Table 1 Physical-chemical properties of the soils and compost tested
1.3 堆肥對(duì)老化DDT礦化影響試驗(yàn)
由于HCB的礦化率非常低,所以HCB的好氧培養(yǎng)試驗(yàn)在第84d停止。對(duì)于DDT,在實(shí)驗(yàn)第84d,將DDT降解的水稻土和甘蔗地土壤各平行樣按25 g等分成兩份,一份作為對(duì)照,另外一份加入1.25%的堆肥。在相同土壤含水量條件下將土壤混合均勻后壓實(shí)至1.3 g cm-3,在30℃下繼續(xù)培養(yǎng)試驗(yàn)。
1.414CO2和揮發(fā)性物質(zhì)的采集和分析
試驗(yàn)1.2和1.3節(jié)中土壤培養(yǎng)的玻璃瓶通過一個(gè)密閉的樣品采集系統(tǒng)(圖1)每周通氣2次,每次通氣一小時(shí)以采集產(chǎn)生的14CO2和14C-揮發(fā)性物質(zhì)。該樣品采集系統(tǒng)的第一個(gè)蛇形管中含有10mL二乙二醇單甲醚(Ethylenemonomethylether,EMME)用于捕獲14C-揮發(fā)性有機(jī)物。第二個(gè)和第三個(gè)蛇形管中分別添加10mLNaOH(0.1 mol L-1),用于捕獲14C-CO2。通氣結(jié)束后,10 mL EMME吸收液加入10 mLUltimaGlod液閃液,經(jīng)液體閃爍計(jì)數(shù)器(Tri-Carb 1900 TR,Canberra-Packard GmbH,德國)
圖1 通氣及樣品采集系統(tǒng)Fig. 1 Sketch of the aerating and sampling system
測定揮發(fā)性有機(jī)物放射性含量。取2 mLNaOH吸收液加入3 mLUltima Flo液閃液,經(jīng)該液體閃爍計(jì)數(shù)器測定14CO2的放射性含量。
1.5 土壤樣品分析
試驗(yàn)結(jié)束后,進(jìn)一步分析土壤中HCB和DDT的降解產(chǎn)物和結(jié)合殘留。稱取20g(干重)土壤混合2g 硅藻土(Sigma-Aldrich,德國),攪拌均勻后加入到加速溶劑提取柱中,用正己烷和丙酮3∶1混合溶劑作為提取液在加速溶劑提取儀(ASE)200(Dionex,德國)上提?。?2]。ASE提取程序?yàn)椋?00℃,100bar壓力,1min預(yù)熱,5min靜態(tài)提取,60%體積沖刷,100s吹掃,2次循環(huán)。每個(gè)樣品提取兩次,第二次提取的量小于第一次提取量的5%。取1 mL ASE提取溶液混合4mLUltima Gold液閃液測定其放射性含量。ASE提取溶液過30g無水硫酸鈉以去除其中水分,再經(jīng)旋轉(zhuǎn)蒸發(fā)儀(Butch,瑞士)濃縮至約5mL,然后過6mL弗洛里硅土SPE柱(安捷倫,美國)去除雜質(zhì)[23],用50 mL正己烷/二氯甲烷(9∶1,v/v)淋洗[14],再濃縮至10 mL,從而得到純化的HCB和DDT及其代謝產(chǎn)物,氣相色譜待測。
經(jīng)A S E提取后的土壤用研缽磨粉,稱取200~300mg放入焚燒紙杯,每個(gè)樣品稱取3個(gè)平行樣,并滴入幾滴飽和蔗糖溶液。該土壤在氧化焚燒爐(Oxidizer 306,PerkinElmer,德萊艾希,德國)中焚燒,生成的14CO2經(jīng)8mLCarbsorbe E和12mLPermafluor E吸收并在液閃儀上測定其放射性含量[24]。
1.6 氣相色譜(GC)測定條件
經(jīng)純化的H C B和D D T樣品用氣相色譜(ThermoQuestTrace 2000,Egelsbach,德國),聯(lián)合PTV進(jìn)樣器,DB-5毛細(xì)管柱(長30m,內(nèi)徑0.32mm,涂層厚度0.25μm,J&W Scientific,美國)和ECD檢測器進(jìn)行測定,并通過外標(biāo)法定量。GC 測定氯苯條件:PTV進(jìn)樣器升溫程序?yàn)?min內(nèi)從50℃至300℃;爐溫程序?yàn)?0℃持續(xù)2min,10℃min-1升溫至220℃。GC測定DDT條件:PTV進(jìn)樣器升溫程序?yàn)?min內(nèi)從50℃到300℃;爐溫程序?yàn)?0℃持續(xù)1min,30℃min-1升溫至220℃并持續(xù)2 min,2℃min-1升溫至250℃,10℃min-1升溫至270℃。
2.1 水稻土和甘蔗地土壤中HCB和DDT的礦化和揮發(fā)
圖2所示為14C-HCB和14C-DDT分別在水稻土和甘蔗地土壤中的14CO2累積生成量。經(jīng)過84d的好氧培養(yǎng),水稻土和甘蔗地土壤中14C-HCB和14CDDT的累積礦化量分別達(dá)到0.14%和3%。14C-DDT培養(yǎng)組的累積礦化量超過14C-DDT標(biāo)準(zhǔn)品的雜質(zhì)含量(2%),并且其礦化速率在2%之后沒有明顯衰減,說明14CO2主要產(chǎn)生于14C-DDT而非放射性雜質(zhì)。然而對(duì)于14C-HCB,0.14%的礦化量不能說明14CO2產(chǎn)生于14C-HCB母體化合物。Boul等[25]的研究結(jié)果顯示,非淹水土壤中培養(yǎng)42d14C-DDT礦化量<0.7%,在淹水土壤中沒有觀察到礦化現(xiàn)象。Andréa等[20]采用砂壤土培養(yǎng)6周也未觀測到14CDDT礦化生成14CO2。Kengara等[24]采用水稻土壤和甘蔗地土壤厭氧—好氧循環(huán)培養(yǎng)461d,結(jié)果非堆肥處理組14C-HCB的累積礦化量僅分別為0.3%和0.4%。由此可見,盡管HCB和DDT在土壤中的濃度明顯下降(圖6),但并不代表被完全消除。
水稻土和甘蔗地土壤中14C-DDT的累積礦化量顯著高于14C-HCB。本試驗(yàn)選取的DDT和HCB分別代表了POPs中的低氯代和高氯代污染物。已有研究表明土壤微生物對(duì)高氯代POPs的降解能力要明顯弱于低氯代POPs[26]。POPs的降解主要依靠好氧微生物產(chǎn)生的雙加氧酶或木質(zhì)素降解酶等進(jìn)行苯環(huán)氧化[27],氯取代基團(tuán)因存在空間位阻效應(yīng),阻礙酶反應(yīng)進(jìn)行。
水稻土和甘蔗地土壤中來自14C-HCB和14CDDT礦化的累積14CO2生成量沒有顯著性差異(α = 0.05)(圖2)。而研究顯示DDT及其主要代謝產(chǎn)物在水稻土中的殘留量往往較甘蔗地土壤低[3,5,16,19]。一方面原因是因?yàn)楹档兀藁ǖ氐龋┰诔掷m(xù)施用含有DDT的農(nóng)藥化學(xué)品,如三氯殺螨醇[8];另一方面是因?yàn)樗就两?jīng)歷厭氧—好氧交替循環(huán)。厭氧預(yù)培養(yǎng)往往能夠強(qiáng)化氯代有機(jī)物的降解,對(duì)于HCB,厭氧階段的還原脫氯能夠輔助好氧階段的微生物酶對(duì)HCB的礦化降解,苯環(huán)氯原子脫去后有利于雙加氧酶或木質(zhì)素降解酶等功能酶進(jìn)行苯環(huán)羥基化反應(yīng)[28-30]。因此,多重厭氧—好氧循環(huán)顯著增加了14C-HCB的礦化量[24]。對(duì)于DDT,厭氧還原脫氯反應(yīng)主要生成DDD,而DDD很難發(fā)生進(jìn)一步還原脫氯反應(yīng)。DDT或DDD共代謝降解菌在厭氧環(huán)境中的繁殖擴(kuò)增可能是其強(qiáng)化降解的主要原因,異化鐵還原菌和地桿菌等能夠直接以氯代有機(jī)物作為電子受體發(fā)生還原脫氯反應(yīng)[31],苯環(huán)和苯酚礦化代謝菌在厭氧條件下能夠直接礦化降解五氯酚、2,4,6-三溴酚等物質(zhì)[32-33],這類降解菌在厭氧條件下也可能作用于DDT。水稻土和甘蔗地土壤除了理化性質(zhì)的差異外,土壤微生物的群落及功能也存在差異。由于水稻土長期經(jīng)歷厭氧—好氧循環(huán),水稻土中厭氧微生物多樣性明顯較甘蔗地土壤豐富,在厭氧環(huán)境下更有利于DDT的共代謝礦化降解,甘蔗地土壤中的好氧微生物多樣性高于水稻土,有利于降解氯取代基相對(duì)較少的氯苯類物質(zhì)。本研究采用的是好氧條件,該條件下,水稻土和甘蔗地土壤中的微生物對(duì)HCB和DDT的礦化優(yōu)勢可能均未得到發(fā)揮。因此,HCB和DDT在這兩類土壤中的礦化沒有顯著性差異(圖2)。
圖3表示水稻土和甘蔗地土壤中來自14C-DDT 和14C-HCB的累積揮發(fā)性物質(zhì)的量。經(jīng)84d好氧培養(yǎng),14C-DDT的總揮發(fā)量(<0.6%)高于14C-HCB的總揮發(fā)量(<0.2%)。盡管水稻土的HCB和DDT的累積揮發(fā)量均值高于甘蔗地土壤,但統(tǒng)計(jì)分析顯示HCB和DDT在水稻土和甘蔗地土壤中的累積揮發(fā)量沒有顯著性差異(α = 0.05)。水稻土中累積揮發(fā)性物質(zhì)的量相對(duì)較高可能是由于其有機(jī)質(zhì)和黏粒含量均較甘蔗地土壤低,并且水稻土中含水量較甘蔗地土壤高,也有利于污染物的揮發(fā)。
圖2 水稻土和甘蔗地土壤中來自14C-DDT和14C-HCB好氧礦化的14CO2累積生成量Fig. 2 Cumulative14CO2generated from aerobic mineralization of14C-DDT and14C-HCB in the paddy soil and sugarcane field soil
圖3 水稻土和甘蔗地土壤中14C-DDT和14C-HCB的累積揮發(fā)性物質(zhì)的量Fig. 3 Cumulative volatile compounds escaped from14C-DDT and14C-HCB in the paddy soil and sugarcane field soil
2.2 堆肥對(duì)老化DDT礦化和揮發(fā)的影響
DDT在水稻土和甘蔗地土壤中培養(yǎng)84d后,礦化率僅為3%,其余DDT在土壤中老化固定,與土壤腐殖質(zhì)結(jié)合或進(jìn)入黏土層間結(jié)構(gòu)[20]。添加堆肥的目的在于研究外加碳源對(duì)老化DDT礦化的影響。1.25%質(zhì)量比的堆肥添加量相當(dāng)于加入了土壤10%全碳量和13%全氮量。對(duì)應(yīng)實(shí)際應(yīng)用,相當(dāng)于每公頃16.25t施用量(以表層10 cm土層計(jì))。如圖4所示,堆肥處理并未顯著影響14C-DDT在兩類土壤中的礦化速率(α=0.05),但堆肥處理土壤中14CO2累積生成量高于非堆肥處理土壤。堆肥處理對(duì)污染物降解的影響具有兩面性:一方面POPs的降解往往通過共代謝途徑完成,在土壤養(yǎng)分貧瘠的情況下,外加有機(jī)碳源能夠促進(jìn)土壤微生物的活性從而強(qiáng)化共代謝降解[24]。另一方面,外加有機(jī)物料中含有的氮素和腐殖酸類物質(zhì)能夠作為電子受體發(fā)生電子競爭作用[18];大分子腐殖質(zhì)等可能會(huì)吸附固定小分子污染物并降低其生物可利用性[8],從而阻礙POPs降解。添加堆肥能抑制污染物的揮發(fā),但其影響在統(tǒng)計(jì)上并不顯著(α=0.05)。造成揮發(fā)量下降的原因可能是堆肥中含有的有機(jī)碳如腐殖質(zhì)等加強(qiáng)了HCB和DDT的吸附固定,從而降低了其揮發(fā)性。
2.3 HCB和DDT在水稻土和甘蔗地土壤中的降解產(chǎn)物和質(zhì)量平衡
經(jīng)84d好氧培養(yǎng),水稻土和甘蔗地土壤中可萃取態(tài)HCB分別為27.3 ±4.6 μgg-1和28.3±3.2 μgg-1。氯苯產(chǎn)物中只有五氯苯(PeCB)被檢測出,分別為0.016±0.003 μgg-1(水稻土)和0.020±0.006 μgg-1(甘蔗地土壤)。圖5所示為14C-HCB歸趨分布以及質(zhì)量平衡,可以發(fā)現(xiàn)HCB在水稻土中的結(jié)合殘留量(11.0%)顯著高于甘蔗地土壤。
圖6所示為DDT經(jīng)過84d好氧培養(yǎng)與116d堆肥處理好氧培養(yǎng)以后的產(chǎn)物組成,在水稻土中可提取態(tài)p,p’-DDT的含量(16.5± 2.5 μgg-1)高于甘蔗地土壤中的含量(13.4± 0.8 μgg-1),主要降解產(chǎn)物為p,p’-DDD、p,p’-DDE 和p,p’-DDMU。水稻土較甘蔗地土壤生成了更多的p,p’-DDD,甘蔗地土壤較水稻土生成了更多的p,p’-DDE和p,p’-DDMU。堆肥處理降低了p,p’-DDT在水稻土和甘蔗地土壤中的可提取態(tài)殘留濃度。由14C-DDT的質(zhì)量平衡(圖7)可知,“水稻土+堆肥”處理的表觀DDT均值濃度低于“水稻土”,可能是因?yàn)榍罢?4C-DDT的回收率僅為83%。而對(duì)于甘蔗地土壤,堆肥處理和非堆肥處理回收率分別達(dá)到92%和96%。甘蔗地土壤經(jīng)堆肥處理DDT濃度降低可能是由于DDT更多地轉(zhuǎn)化為DDE和DDMU(圖6)。堆肥處理對(duì)DDT在水稻土中結(jié)合殘留(Nonextractable residues,NER)沒有影響,卻導(dǎo)致甘蔗地土壤中DDT結(jié)合殘留量增加。堆肥含有的有機(jī)碳如腐殖質(zhì)等對(duì)DDT產(chǎn)生強(qiáng)吸附固定,從而增加了其結(jié)合殘留,同時(shí)DDT的揮發(fā)量減少(圖4)。
圖4 堆肥處理對(duì)14C-DDT累積礦化量和累積揮發(fā)量的影響Fig. 4 The effect of compost application on the cumulative mineralization and cumulative volatilization of14C-DDT
圖5 水稻土和甘蔗地土壤中14C物質(zhì)的質(zhì)量分布以及14C-HCB質(zhì)量平衡Fig. 5 Fraction of14C-substance and mass balance of14C-HCB in the paddy soil and sugarcane field soil
圖6 堆肥處理對(duì)水稻土和甘蔗地土壤中可提取態(tài)DDT及其代謝產(chǎn)物的影響Fig. 6 Effects of compost on ASE extractable DDT and its metabolites in the paddy soil and sugarcane field soil
圖7 水稻土和甘蔗地土壤中14C物質(zhì)的質(zhì)量分布及14C-DDT質(zhì)量平衡Fig. 7 Fraction of14C-substance and mass balance of14C-DDT in the paddy soil and the sugarcane field soil
由于好氧條件不利于發(fā)揮水稻土和甘蔗地土壤中微生物對(duì)氯代污染物的優(yōu)勢降解作用,好氧條件下水稻土和甘蔗地土壤中HCB和DDT的礦化均非常慢,土壤類型對(duì)HCB和DDT的礦化沒有顯著影響。厭氧培養(yǎng)是強(qiáng)化HCB和DDT礦化降解的關(guān)鍵步驟,HCB經(jīng)厭氧培養(yǎng)發(fā)生還原脫氯生成次級(jí)少氯代產(chǎn)物,可以在好氧條件下被進(jìn)一步羥基化,厭氧培養(yǎng)也有利于DDT共代謝厭氧微生物的繁殖擴(kuò)增。因此,對(duì)不同污染物需要做針對(duì)性的厭氧—好氧交替管理,單純的好氧降解往往不能有效地去除此類污染物。HCB和DDT在水稻土和甘蔗地土壤中的揮發(fā)均比較弱,說明土壤環(huán)境中揮發(fā)不是HCB和DDT的主要?dú)w趨途徑。盡管HCB本身在高含水量土壤中的揮發(fā)性較弱,但是其次級(jí)代謝產(chǎn)物,特別是少于四個(gè)氯取代基的產(chǎn)物,揮發(fā)是其不可忽略的環(huán)境過程之一。盡管堆肥處理在統(tǒng)計(jì)學(xué)上對(duì)DDT的礦化和揮發(fā)的影響并不顯著,但在總體趨勢上堆肥處理略微增強(qiáng)了DDT在水稻土和甘蔗地土壤中的礦化量,減少了其在兩類土壤中的揮發(fā)量,同時(shí)增加了DDT在甘蔗地土壤中的結(jié)合殘留。從自然消解的角度,動(dòng)植物殘?bào)w腐化補(bǔ)充了土壤碳源,有利于DDT的共代謝消除;從工程修復(fù)應(yīng)用的角度,好氧條件下外源碳對(duì)強(qiáng)化消除農(nóng)田土壤中HCB和DDT類物質(zhì)的貢獻(xiàn)非常有限。
[1]Stockholm convention on persistent organic pollutants. Accessed in August 2009 at http://chm.pops.int/
[2]Wang G,Lu Y,Han J,etal.Hexachlorobenzene sources,levels and human exposure in the environment of China. Environment International,2010,36(1):122—130
[3]Guo Y,Yu H Y,Zeng E Y. Occurrence,source diagnosis,and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta,South China:A review. Environmental Pollution,2009,157(6):1753—1763
[4]WHO-World Health Organization. The use of DDT in malaria vector control:WHO position statement,Global Malaria Programme.2011.http://apps.who.int/ malaria/ddtandmalariavectorcontrol.html
[5]Gao H J,Jiang X,Wang F,et al.Residual levels and new inputs of chlorinated POPs in agricultural soils from Taihu Lake Region. Pedosphere,2005,15(3):301—309
[6]Wang F,Jiang X,BianY R,et al. Organochlorine pesticides in soils under different land usage in the Taihu Lake region,China. Journal of Environmental Sciences,2007,19(5):584—590
[7]萬大娟,賈曉珊. 耕作土壤中多氯代有機(jī)污染物的含量與分布特征——以珠江三角洲部分地區(qū)為例. 環(huán)境科學(xué)學(xué)報(bào),2005,25(8):1078—1084
Wan D J,Jia X S. Characterization and distribution of polychlorinated organic pollutants in soils with some areas of Pearl River Delat as an example(In Chinese). Acta Scientiae Circumstaniae,2005,25(8):1078—1084
[8]Wang F,Bian Y R,Jiang X,et al. Residual characteristics of organochlorine pesticides inLou soils with different fertilization modes. Pedosphere,2006,16(2):161—168
[9]Yang X L,Wang S S,Bian Y R,et al. Dicofol application resulted in high DDTs residue in cotton fields from northern Jiangsu Province,China. Journal of Hazardous Materials,2008,150(1):92—98
[10]Gao J H,Jiang X,Wang F,et al.Residual levels and bioaccumulation of chlorinated persistent organicpollutants(POPs)in vegetables from suburb of Nanjing,People’s Republic of China. Bulletin of Environmental Contamination and Toxicology,2005,74(4):673—680
[11]Singh S P,Bose P,Guha S,et al. Impact of addition of amendments on the degradation of DDT and its residues partitioned on soil. Chemosphere,2013,92 (7):811—820
[12]Matheus D R,Bononi V L R,Machado K M G. Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World Journal of Microbiology and Biotechnology,2000,16 (5):415—421
[13]Sudharshan S,Naidu R,Mallavarapu M,et al. DDT remediation in contaminated soils:A review of recent studies. Biodegradation,2012,23(6):851—863
[14]魏海江,楊興倫,葉茂,等. 活化過硫酸鈉氧化法修復(fù)DDTs污染場地土壤研究. 土壤,2014,46(3):504—511 Wei H J,Yang X L,Ye M,et al. Application of activated persulfate oxidation method in degradating DDT in field contaminated soil(In Chinese). Soils,2014,46(3):504—511
[15]Nyer EK,Duffin ME.The state of the art of bioremediation. Groundwater Monitoring & Remediation,1997,17(2):64—69
[16]Hao H T,Sun B,Zhao Z H. Effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides in soils. Environmental Pollution,2008,156(3):1046—1052
[17]Bento F M,Camargo F A O,Okeke B C,et al. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation,biostimulation and bioaugmentation. Bioresource Technology,2005,96 (9):1049—1055
[18]Liu C Y,Jiang X,Yang X L,et al. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment. Science of the Total Environment,2010,408(4):958—964
[19]趙月春,付蓉,莫測輝,等. 土壤類型與污染濃度對(duì)漆酶修復(fù)DDT污染土壤的影響. 生態(tài)環(huán)境,2008,17 (2):611—614
Zhao Y C,F(xiàn)u R,Mo C H,et al. Effect of soil types and pollution levels on remediation of DDT soil pollution by laccase(In Chinese). Ecology and Environment,2008,17(2):611—614
[20]Andréa M M,Tomita R Y,Luchini L C,et al. Laboratory studies on volatilization and mineralization of14C-p,p’-DDT in soil,release of bound residues and dissipation from solid surfaces. Journal of Environmental Science and Health:Part B,1994,29(1):133—139
[21]Schroll R,Becher H H,D?rfler U,et al.Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environmental Science & Technology,2006,40 (10):3305—3312
[22]Lang YH,Jiang X,Martens D,et al. Comparison of extraction techniques with different solvents for DDT analogues in sediments. Pedosphere,2005,15(5):628—633
[23]EPA method 3620C:Florisil cleanup,part of test methods for evaulating solid waste,physical/chemical methods. https://www.epa.gov/sites/production/ files/2015-12/documents/3620c.pdf
[24]Kengara F O,Doerfler U,Welzl G,et al.Enhanced degradation of14C-HCB in two tropical clay soils using multiple anaerobic-aerobic cycles. Environmental Pollution,2013,173:168—175
[25]Boul HL. Effect of soil moisture on the fate of radiolabelled DDT and DDE in vitro. Chemosphere,1996,32(5):855—866
[26]趙曉祥,任昱宗,莊惠生. 多氯聯(lián)苯的生物降解研究.環(huán)境科學(xué)與技術(shù),2007,30(10):94—97 Zhao X X,Ren Y Z,Zhuang H S. Study of biodegradation of polychlorinated biphenyls(In Chinese). Environmental Science and Technology,2007,30(10):94—97
[27]Pieper D H. Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology,2004,67(2):170—191
[28]Hay A G,F(xiàn)ocht D D. Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane(DDD)by ralstonia eutropha strain A5. FEMS Microbiology Ecology,2000,31(3):249—253
[29]Kamanavalli C M,Ninnekar H Z.Biodegradation of DDT by a pseudomonas species. Current Microbiology,2004,48(1):10—13
[30]Purnomo A S,Mori T,Kondo R.Involvement of fenton reaction in DDT degradation by brown-rot fungi. International Biodeterioration & Biodegradation,2010,64(7):560—565
[31]Jin X,Wang F,Gu C G,et al.The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions. Chemosphere,2015,138:18—24
[32]Tong H,Liu CS,Li FB,et al. The key microorganisms for anaerobic degradation ofpentachlorophenol in paddy soil as revealed by stable isotope probing. Journal of Hazardous Materials,2015,298:252—260
[33]Li Z L,Inoue Y,Suzuki D,et al. Long-term anaerobic mineralization of pentachlorophenol in a continuousflow system using only lactate as an external nutrient. Environmental Science & Technology,2013,47 (3):1534—1541
Natural Attenuation of14C-HCB and14C-DDT in Kenya Paddy Soil and Sugarcane Field Soil
JIN Xin1,3,4Fredrick Orori Kengara2,3WANG Fang1GU Chenggang1YANG Xinglun1Ulrike D?rfler3Reiner Schroll3Jean Charles Munch3JIANG Xin1,4?
(1 Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 Department of Chemistry,Maseno University,Maseno 40105,Kenya)
(3 Research Unit Microbe-Plant Interactions,Helmholtz ZentrumMünchen,Munich 85764,Germany)
(4 University of Chinese Academy of Sciences,Beijing 100049,China)
【Objective】Contamination of farmland soils with persistent organic pollutants(POPs)is still a problem of environmental concerns. Take hexachlorobenzene(HCB)and 1,1,1-trichloro-2,2-bis-4-chlorophenyl ethane(DDT)for example,pollution of farmland soils is generally characterized by being low in concentration and vast in area,and new pollutants flow in unceasingly from non-point sources. Farmland soils are rich in microorganisms,which potentially play a significant role in degrading such POPs. 【Method】In this study,HCB and DDT were selected as representative of highly chlorinated and low chlorinated POPs,respectively,and soils were collected from a years-long paddy field and a years-long sugarcane field for use to study potentials of the soils naturally attenuating HCB and DDT.14C-labeled HCB and14C-labeled DDT were used for tracing mineralization,volatilization,metabolites,and bound residues to overcome the shortage of the traditional methods for studying the degradation of compounds. Traditional methods merely monitor the concentrations of the mother compound and/or the metabolites which may be sheltered in soil matrix via adsorption,and result in overestimating of the degradation extent. 【Result】Results showed that14C-HCB and14C-DDT were spiked respectively into the paddy soil and the sugarcane field soil,and then incubated aerobically under the optimal water content(63% for paddy soil,35% for sugarcane field soil)in an attempt to get the highest mineralization rate. Both the14CO2and the14C-volatiles were trapped by specific liquid in a closed system and measured with a scintillation counter.14CO2production corresponds to mineralization degree of the compounds. After 84 days of incubation,only 0.14% of14C-HCB and 3% of14C-DDT were mineralized. ASE extraction showed that penta-chlorobenzene was the only detected metabolites of HCB. DDD,DDE and DDMU were found to be the main metabolites of DDT. In the paddy soil samples,DDD was relatively higher in concentration,whereas in the sugarcane field soil samples DDE was. The extremely low mineralization extents indicate that soils are very low in potential of attenuating HCB and DDT naturally. Mere aerobic treatment is not adequate to remove HCB and DDT from soil. It is thereby inferred that it is necessary to treat the polluted soil anaerobically to remove such compounds,because in anaerobic incubation HCB would undergo reductive dechlorination which favors aerobic hydroxylation of benzene rings by dioxygenase or lignoltic enzymes,and anaerobic incubation may probably promote the growth of potential DDT degraders,like the benzene-and phenol-mineralization microorganisms that can trigger ring-cleavage reaction.Comparison between HCB and DDT in the total mineralization indicates that under aerobic conditions,high chlorinated compounds are much more persistent than the lower chlorinated compounds. HCB and DDT were quite low in volatilization,being in the range 0.1%~0.6%,which indicates volatilization is not an important process of HCB and DDT in environment. Besides,compost from garden waste was introduced into the DDT incubation experiment to simulate effects of exogenous carbon on mineralization and volatilization of DDT. Results show that the compost increased the mineralization and the non-extractable bound residues of DDT,but reduced the volatilization of the substance;however,the effects were not statistically significant. From an engineering application view,the use of compost to enhancing DDT mineralization was not cost effective. 【Conclusion】All the findings in this study may serve as reference of good reasons forunderstanding the natural attenuation of the chlorinated organic compounds in natural soils,and for remediation of soils polluted with such compounds. Since paddy soil and sugarcane field soil have their own specific dominant degradation mechanisms,it is more advisable to design case-specific strategies,anaerobic,aerobic or anaerobic-aerobic alternation,to have the pollutants degraded the most efficiently.
Persistent organic pollutants;Compost;Mineralization;Volatilization;Bound residues
X53
A
10.11766/trxb201603300126
(責(zé)任編輯:檀滿枝)
* 國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2014CB441105)、江蘇省杰出青年基金項(xiàng)目(BK20150050)和國家自然科學(xué)基金項(xiàng)目(21277148,21377138和41271327)資助 Supported by the National Key Basic Research Program of China(No. 2014CB441105),the Outstanding Youth Foundation of National Science of Jiangsu Province(No. BK20150050),National Natural Science Foundation of China(Nos. 21277148,21377138,41271327)
? 通訊作者 Corresponding author,E-mail:jiangxin@issas.ac.cn
金 鑫(1986—),男,江蘇南通人,博士研究生,主要從事土壤有機(jī)污染修復(fù)與阻控研究。E-mail:xjin@ issas.ac.cn
2016-03-30;
2016-06-21;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-08-26