祝亞云曹龍熹吳智仁陳 沖梁 音?
(1 中國科學(xué)院土壤環(huán)境與污染修復(fù)重點(diǎn)實(shí)驗(yàn)室(南京土壤研究所),南京 210008)
(2 中國科學(xué)院大學(xué),北京 100049)
(3 江蘇大學(xué)環(huán)境與安全工程學(xué)院,江蘇鎮(zhèn)江 212013)
新型W-OH材料對(duì)崩積體土壤分離速率的影響*
祝亞云1,2曹龍熹1吳智仁3陳 沖1梁 音1?
(1 中國科學(xué)院土壤環(huán)境與污染修復(fù)重點(diǎn)實(shí)驗(yàn)室(南京土壤研究所),南京 210008)
(2 中國科學(xué)院大學(xué),北京 100049)
(3 江蘇大學(xué)環(huán)境與安全工程學(xué)院,江蘇鎮(zhèn)江 212013)
崩崗崩積體土壤顆粒容易脫離母體而發(fā)生侵蝕,而新型親水性聚氨酯材料(W-OH)能有效增加土壤顆粒之間的粘結(jié)力,從而抑制侵蝕的發(fā)生。為此,通過變坡式水槽實(shí)驗(yàn),研究不同濃度的W-OH材料(2.0%、3.0%、4.0%、5.0%)對(duì)崩崗崩積體土壤分離速率的影響。結(jié)果表明:W-OH材料能夠顯著降低崩積體土壤的分離速率,土壤分離速率的大小隨W-OH濃度的升高而降低;由于固結(jié)表層的存在,W-OH材料顯著改變了表層土壤的侵蝕過程,使得土壤分離速率與坡度、水流剪切力、水流功率等參數(shù)之間的函數(shù)關(guān)系相對(duì)于對(duì)照發(fā)生了改變,并且表層土壤發(fā)生分離的臨界水流剪切力也得到了提升。
崩崗;W-OH材料;土壤分離;水力參數(shù)
崩崗是指在水力和重力的綜合作用下,山坡土石體受破壞而崩塌和受沖刷的侵蝕現(xiàn)象[1]。崩崗侵蝕是我國南方丘陵山區(qū)生態(tài)安全、糧食安全、防洪安全和人居安全的主要威脅,嚴(yán)重制約了地方社會(huì)經(jīng)濟(jì)的可持續(xù)發(fā)展[2]。崩積體是崩崗侵蝕泥沙的主要來源,具有土質(zhì)疏松、結(jié)構(gòu)性差、抗侵蝕能力弱等特點(diǎn),容易發(fā)生再次侵蝕[3]。崩積體的治理一般采用整地、填平侵蝕溝與植竹種草的方式[4-6],但這些措施本身會(huì)擾動(dòng)崩積體土壤,且植被措施短期內(nèi)難以見效。固而亟待在常規(guī)治理模式的基礎(chǔ)上引入新材料與新方法以輔助實(shí)現(xiàn)崩積體坡面土壤的快速穩(wěn)固。
新型親水性聚氨酯(W-OH)材料是一種以水為固化劑、施工方便、環(huán)境負(fù)荷小的新型高分子材料[7]。常規(guī)的用法是將濃度為2.0%~5.0%的W-OH溶液直接或與其他植生方法相結(jié)合,噴涂于需要的坡面上。W-OH溶液短時(shí)間內(nèi)能與土壤結(jié)合發(fā)生凝膠、固化,形成彈性多孔的固結(jié)層,該固結(jié)層具有良好的保肥性、保水性和保溫性,且能夠降低坡面土壤的侵蝕模數(shù)[7]。近年來,W-OH材料已被應(yīng)用于蘇北沙土區(qū)邊坡復(fù)綠[8]、青海高寒干旱區(qū)水渠防滲[9]、青海湖沙區(qū)荒漠化防治[10-11]以及砒沙巖山體的治理等,均取得了良好效果。目前在沙漠地區(qū)也有大范圍的應(yīng)用工程案例,但在崩崗的治理上未見相關(guān)報(bào)道。因此,研究W-OH材料在崩積體土壤上的作用機(jī)理與固土效益具有實(shí)際意義。
土壤侵蝕包括土壤分離、輸移和沉積三大過程,其中以徑流沖刷為主要驅(qū)動(dòng)力的土壤分離過程是侵蝕發(fā)生的前提[12]。地表土粒脫離母體的過程稱為土壤分離[13],本研究采用變坡式水槽試驗(yàn),以土壤分離速率為指標(biāo),分析不同濃度W-OH溶液對(duì)崩崗崩積體土壤抵抗坡面水流沖刷能力的影響,明確施用W-OH材料后崩崗崩積體土壤在水流沖刷下的分離特征,以便為W-OH材料治理效益評(píng)價(jià)及崩崗崩積體的優(yōu)化治理提供理論依據(jù)。
1.1 研究區(qū)概況
研究區(qū)位于福建省長汀縣,地處福建西部,屬亞熱帶季風(fēng)氣候,年均氣溫在17~21℃,年均降雨量為1 600~2 000 mm,土壤類型以花崗巖母質(zhì)發(fā)育的紅壤(濕潤富鐵土和濕潤雛形土)為主,土壤質(zhì)地主要是砂壤。據(jù)2008年崩崗分布調(diào)查數(shù)據(jù)[14]表明,全縣崩崗侵蝕面積為7.28 km2,崩崗數(shù)量為3 583個(gè),分別占全省的11.36%和13.76%,崩崗侵蝕嚴(yán)重,治理難度大。
1.2 供試材料
供試材料W-OH由江蘇杰成凱新材料科技有限公司提供,W-OH材料化學(xué)式為(OCN-R-NCO)n,呈淡黃色,常溫密度1.18 g cm-3,黏度650~700 m Pa s,硬化時(shí)間30~1 800 s,具有以下應(yīng)用特性[10]:(1)極易溶解于水,與水反應(yīng)可迅速聚合形成彈性凝膠體,且不再溶解于水;(2)能以任何濃度與海水在內(nèi)的各種水質(zhì)的水發(fā)生反應(yīng);(3)耐久性良好,通過添加防紫外線添加劑可實(shí)現(xiàn)對(duì)凝膠體降解周期的調(diào)控[9];(4)對(duì)多種材質(zhì)(土、沙、混凝土等)具有很強(qiáng)的附著力;(5)通過選擇調(diào)整W-OH材料濃度,可設(shè)計(jì)凝膠體的性能,并滿足固土、固沙、防塵、防滲等需要;(6)具有高度的安全性,對(duì)植物不產(chǎn)生藥害,對(duì)生態(tài)環(huán)境不造成二次污染。
1.3 樣品采集與分析
樣品采自長汀縣黃坑村的一處大型崩崗(116°26′23″~116°26′27″E,25°42′2″~25°41′7″N),面積約9 800 m2,是一處典型的活動(dòng)型大型花崗巖崩崗。采集崩崗崩積體土壤,風(fēng)干過篩后測(cè)定土壤有機(jī)質(zhì)和機(jī)械組成。土壤有機(jī)質(zhì)采用重鉻酸鉀容量法測(cè)定,土壤機(jī)械組成采用吸管法測(cè)定,土壤容重采用環(huán)刀法測(cè)定,具體測(cè)定方法詳見文獻(xiàn)[15]。供試土壤的基本理化性質(zhì)見表1。
表1 供試土壤的基本物理性質(zhì)Table 1 Basic physical properties of the test soils
1.4 試驗(yàn)設(shè)計(jì)
將野外取回的土樣過10 mm篩,根據(jù)土壤含水率和崩積體原狀土的容重,將土壤均勻填入環(huán)刀(鋁環(huán),直徑10 cm,高5 cm)。試驗(yàn)設(shè)計(jì)W-OH溶液4個(gè)濃度處理(2.0%、3.0%、4.0%、5.0%)及一個(gè)空白對(duì)照(W-OH濃度0.0%),按照廠家推薦用量3.0 L m-2的標(biāo)準(zhǔn)將W-OH溶液均勻噴涂于土樣表面。參照前人研究方法[16],試驗(yàn)裝置采用長4.21 m、寬0.3 m的水槽(圖1),水槽坡度分別設(shè)定為8.8%、17.6%、26.8%、36.4%和46.6%(%表示坡度的正切值)。試驗(yàn)流量設(shè)定為1.0 L s-1、2.0 L s-1和3.0 L s-1,由一系列閥門調(diào)整,用標(biāo)有刻度的標(biāo)準(zhǔn)徑流桶標(biāo)定供水流量。同一種濃度處理在5個(gè)坡度及3個(gè)流量下進(jìn)行水槽沖刷試驗(yàn),計(jì)三次重復(fù)。
圖1 試驗(yàn)裝置結(jié)構(gòu)示意圖Fig. 1 Sketch of the experimental device
試驗(yàn)開始前土樣預(yù)先浸潤12 h至飽和,浸泡時(shí)水面略低于環(huán)刀上表面,且注意水位變化以便隨時(shí)加水。將水槽坡度和供水流量調(diào)整為預(yù)設(shè)值,然后將土樣放進(jìn)水槽下端的土樣室,調(diào)整使其上表面與水槽底面平齊,開始實(shí)驗(yàn)并立即計(jì)時(shí)。沖刷結(jié)束條件采用Nearing等[17]的方法:每個(gè)土樣的沖刷時(shí)間基本穩(wěn)定在使沖刷深度大致相同(約2 cm),以避免因深度不同而導(dǎo)致環(huán)刀內(nèi)土樣侵蝕不均,對(duì)于較難沖開的土樣,沖刷時(shí)間以10 min為限。流速(V)測(cè)定采用染色法[18],每次測(cè)定12個(gè)重復(fù),剔除最大值和最小值,取剩余10個(gè)的平均值乘以0.8得到平均流速[19]。
1.5 數(shù)據(jù)處理
土壤分離速率定義為單位時(shí)間內(nèi)單位面積上的土壤流失量,計(jì)算方法[19]如下:
式中,Dr為土壤分離速率,g m-2s-1;Wb為實(shí)驗(yàn)前土樣干質(zhì)量,g;Wa為實(shí)驗(yàn)后土樣干質(zhì)量,g;t為沖刷時(shí)間,s;A為土樣上表面積,m2。
水流剪切力(τ)、水流功率(ω)和單位水流功率(P)是描述土壤分離過程常用的水力參數(shù),各參數(shù)的計(jì)算如下:
式中,τ為水流剪切力,P a;ρ為水的密度,kg m-3;g為重力加速度,m s-2;h為徑流深,m;S為坡度的正切值。
式中,ω為水流功率,kg s-3;V為平均流速,m s-1。
式中,P為單位水流功率,m s-1。
2.1 W-OH濃度對(duì)崩積體土壤分離速率的影響
表2為不同處理?xiàng)l件下的土壤分離速率??梢钥闯觯篧-OH能夠顯著降低土壤分離速率,且土壤分離速率總體上隨W-OH濃度的升高而降低。這是因?yàn)楸婪e體土壤表面在經(jīng)W-OH處理后,W-OH會(huì)與土壤凝結(jié)形成多孔結(jié)構(gòu)的固結(jié)層,該固結(jié)層能有效地抑制表層土壤顆粒的分離。W-OH濃度越高,固結(jié)層降低土壤分離速率的作用越強(qiáng)。在坡度為8.8%且流量為1.0 L s-1與2.0 L s-1時(shí),土壤分離速率隨W-OH濃度升高而降低的趨勢(shì)并不明顯,主要體現(xiàn)在施用W-OH溶液的各處理間土壤分離速率差異較小。但與對(duì)照相比,施用W-OH溶液的各處理土壤分離速率下降了2至3個(gè)數(shù)量級(jí)。坡度大于8.8%,各處理間土壤分離速率呈現(xiàn)出明顯的梯度。其中,W-OH溶液濃度為2.0%的處理,土壤分離速率基本與對(duì)照在同一數(shù)量級(jí)上;W-OH溶液濃度為3.0%的處理,在1.0 L s-1時(shí)土壤分離速率較對(duì)照下降了1至2個(gè)數(shù)量級(jí),在2.0 L s-1與3.0 L s-1時(shí)土壤分離速率與對(duì)照處于同一數(shù)量級(jí);W-OH溶液濃度為4.0%的處理,在1.0 L s-1與2.0 L s-1時(shí)土壤分離速率較對(duì)照下降了2至3個(gè)數(shù)量級(jí),在3.0 L s-1時(shí)土壤分離速率較對(duì)照下降了1至3個(gè)數(shù)量級(jí);W-OH濃度為5.0%的處理,各流量下土壤分離速率均較對(duì)照下降了3個(gè)數(shù)量級(jí)。
雖然W-OH溶液濃度的升高意味著土壤分離速率的減小,但應(yīng)用該材料的成本也會(huì)增加。此外,過高濃度的W-OH會(huì)增加土壤硬度,影響種子的萌發(fā)以及植物根系對(duì)水分和養(yǎng)分的吸收。因此,在不同的坡度及流量條件下,選擇適用的W-OH溶液濃度是十分重要的。以土壤分離速率下降2個(gè)數(shù)量級(jí)作為標(biāo)準(zhǔn),并結(jié)合成本考慮,可以對(duì)W-OH溶液的適用濃度進(jìn)行篩選。如在坡度為8.8%且流量為1.0 L s-1或2.0 L s-1時(shí),2.0%濃度的W-OH溶液即可以作為適用濃度;而在坡度為36.4%或46.6%且流量為3.0 L s-1時(shí),5.0%濃度的W-OH溶液才能被選作適用濃度。
2.2 不同坡度、流量下土壤分離速率的變化趨勢(shì)
從圖2中可以看出,流量不變時(shí),各處理土壤分離速率隨坡度的升高而增大。W-OH濃度不同,土壤分離速率隨坡度的增大趨勢(shì)存在明顯差別。例如,對(duì)照處理(圖2a)土壤分離速率均與坡度呈線性關(guān)系(R2> 0.80),W-OH溶液濃度為4.0%的處理(圖2d)土壤分離速率均與坡度呈指數(shù)關(guān)系(R2> 0.95),W-OH濃度為5.0%的處理(圖2e)土壤分離速率均與坡度呈線性關(guān)系(R2>0.95)。對(duì)應(yīng)試驗(yàn)過程中土樣的變化可以發(fā)現(xiàn),固結(jié)表層的存在使得土壤侵蝕過程發(fā)生了改變,當(dāng)坡度超過36.4%時(shí),對(duì)于W-OH濃度為4.0%的處理,土樣固結(jié)表層破壞程度隨坡度升高而加大,使得土壤分離速率在坡度達(dá)到36.4%后大幅提升。而對(duì)于W-OH濃度為5.0%的處理,土樣的固結(jié)表層始終保持完整,侵蝕僅限于表面未參與固結(jié)的浮土。蔣芳市等[20]對(duì)崩崗崩積體原狀土的研究表明,土壤分離速率與坡度間呈線性相關(guān)關(guān)系,這與本文對(duì)照土壤的研究結(jié)果一致,而施用W-OH使得土壤分離速率與坡度的關(guān)系變得復(fù)雜。受到不同濃度W-OH所形成固結(jié)表層的影響,土壤分離速率隨坡度變化的趨勢(shì)不再一致。
表2 不同處理下的土壤分離速率Table 2 Detachment rate relative to treatment(g m-2s-1)
對(duì)不同坡度下的土壤分離速率求取均值,得到各流量條件下不同處理的土壤分離速率(圖3),可以看出,各處理土壤分離速率隨流量的升高而增大。其中W-OH濃度為4.0%及5.0%的處理在各流量間變化幅度較小,其余處理在各流量間變化幅度較大。結(jié)合圖1的分析結(jié)果表明,W-OH材料雖然能降低土壤分離速率,但其效用的發(fā)揮在不同程度上受到坡度與流量條件的制約,其中5.0%濃度的W-OH材料所受制約最小,這也再次佐證了根據(jù)實(shí)際條件選擇適宜濃度W-OH材料的必要性。
2.3 不同水流剪切力、水流功率及單位水流功率下土壤分離速率的變化趨勢(shì)
為便于采用土壤侵蝕模型來估算W-OH材料的減蝕效益,試驗(yàn)研究了土壤分離速率與水流剪切力、水流功率和單位水流功率之間的關(guān)系(圖4)。土壤分離速率與水流剪切力(圖4a)的關(guān)系除W-OH濃度在4.0%時(shí)呈指數(shù)關(guān)系外(Dr=0.0002τ0.1613x,R2= 0.90),在其余四個(gè)處理下(對(duì)照、W-OH 2.0%、W-OH 3.0%和W-OH 5.0%)均呈線性關(guān)系,表達(dá)式如下:式中,Dr(g m-2s-1)為土壤分離速率,τ(Pa)為水流剪切力。在式(4)~式(7)中,斜率為與土壤可蝕性等因素相關(guān)的參數(shù),直線與橫坐標(biāo)的截距為水流剪切力的臨界值,即臨界水流剪切力,徑流超過一定的水流剪切力才能將土粒脫離土壤表面[21]。可以看出隨著W-OH溶液濃度的升高,與土壤可蝕性相關(guān)的參數(shù)基本呈遞減趨勢(shì),且在W-OH濃度為5.0%時(shí)降低為對(duì)照的千分之一,表明了土壤抗蝕能力的顯著提升。除式(7)外,臨界水流剪切力呈遞增趨勢(shì),說明隨著W-OH溶液濃度的升高,土粒越不容易被水流分離。對(duì)于式(7)中臨界水流剪切力的反常現(xiàn)象,可能是因?yàn)閃-OH濃度為5.0%時(shí),固結(jié)表層在水流沖刷下始終保持完好,侵蝕僅限于土樣表面未參與固結(jié)的土粒且侵蝕量較小。各處理下,土壤分離速率與水流剪切力(圖4a)、水流功率(圖4b)及單位水流功率(圖4c)這三種水力參數(shù)的函數(shù)關(guān)系較為一致。但水流剪切力的模型決定系數(shù)(R2)要高于其余兩種參數(shù)的模型決定系數(shù)(R2),這說明在施用W-OH材料后,水流剪切力對(duì)土壤分離速率的描述要好于其余兩種參數(shù)。
圖2 各流量條件下土壤分離速率與坡度之間的函數(shù)關(guān)系Fig. 2 Soil detachment rate as a function of slope gradient under different flow condition
圖3 各處理不同流量條件下各坡度土壤分離速率均值Fig. 3 Soil detachment rate relative to different flow conditions at mean slope
W-OH材料能夠顯著降低土壤分離速率,且土壤分離速率總體上隨W-OH溶液濃度的增加而降低。以土壤分離速率下降2個(gè)數(shù)量級(jí)作為標(biāo)準(zhǔn),并結(jié)合成本考慮,不同坡度及流量條件下適宜的W-OH溶液濃度不同。施用W-OH材料后,在W-OH溶液與崩積體土壤所形成的固結(jié)表層的影響下,土壤的侵蝕過程發(fā)生了變化,使得土壤分離速率與坡度、水流剪切力及水流功率等參數(shù)之間的函數(shù)與對(duì)照相比不再一致。施用W-OH材料明顯提高了崩積體土壤的抗蝕能力與產(chǎn)生土壤分離的臨界水流剪切力。
圖4 土壤分離速率與水流剪切力、水流功率及單位水流功率之間的函數(shù)關(guān)系Fig. 4 Soil detachment rate as a function of flow shear stress,stream power and unit stream power
[1]王禮先,孫保平,余新曉. 中國水利百科全書:水土保持分冊(cè). 北京:中國水利水電出版社,2004:48—49
Wang L X,Sun B P,Yu X X. Water conservancy encyclopedia of China:Volume of soil and water conservation(In Chinese). Beijing:China Water and Power Press,2004:48—49
[2]梁音,寧堆虎,潘賢章,等. 南方紅壤區(qū)崩崗侵蝕的特點(diǎn)與治理. 中國水土保持,2009(1):31—34
L i a n g Y,N i n g D H,P a n X Z,e t a l. T h e characteristics and governance of collapsed hills in red soil area of south China(In Chinese). Soil and Water Conservation in China,2009(1):31—34
[3]張兆福,黃炎和,林金石,等. PAM特性對(duì)花崗巖崩崗崩積體徑流及產(chǎn)沙的影響. 水土保持研究,2014,21 (3):1—5
Zhang Z F,Huang Y H,Lin J S,et al. Effects of PAM characteristics on runoff and erosion of colluvial deposits in collapsed hills(In Chinese). Research of Soil and Water Conservation,2014,21(3):1—5
[4]施悅忠. 安溪縣長坑鄉(xiāng)崩崗侵蝕成因與治理措施探析.亞熱帶水土保持,2008,20(2):35—37
Shi Y Z. Analysis on the causes and control measures of collapsed hills erosion in Changkeng,Anxi County(In Chinese). Subtropical Soil and Water Conservation,2008,20(2):35—37
[5]丁光敏. 福建省崩崗侵蝕成因及治理模式研究. 水土保持通報(bào),2001,21(5):10—15
Ding G M. Causes of erosion and governance models of collapsing hills in Fujian Province(In Chinese). Bulletin of Soil and Water Conservation,2001,21 (5):10—15
[6]范雪蓉,周生路,黃勁松. 閩西南花崗巖丘陵地區(qū)水土流失及治理對(duì)策——以長汀縣河田鎮(zhèn)為例. 土壤,1999,31(4):175—178
Fan X R,Zhou S L,Huang J S. Soil and water loss and its control strategies in the hilly area of southwestern Fujian Province:A case of Changting County(In Chinese). Soils,1999,31(4):175—178
[7]高衛(wèi)民,吳智仁,吳智深,等. 荒漠化防治新材料W-OH的力學(xué)性能研究. 水土保持學(xué)報(bào),2010,24 (5):1—5
Gao W M,Wu Z R,Wu Z S,et al. Study on the mechanical properties of a novel desertification prevention material of W-OH(In Chinese). Journal of Soil and Water Conservation,2010,24(5):1—5
[8]余瑩瑩,汪永進(jìn),范敬蘭,等. W-OH生態(tài)護(hù)坡技術(shù)在沙土區(qū)河道坡面上的應(yīng)用. 科技推廣與應(yīng)用,2014 (8):31—32
Yu Y Y,Wang Y J,F(xiàn)an J L,et al. Ecological slope protection technology of W-OH applied on the surface of the river channel slope in sandy area(In Chinese).Science and Technology Popularization and Application,2014(8):31—32
[9]郭凱先. W-OH新材料特性及在青海湖周邊地區(qū)沙化地植生固沙中的應(yīng)用. 中國農(nóng)村水利水電,2012(4):30—32
Guo K X. Characteristics of the new chemical material W-OH and the application of W-OH in the desertified areas around Qinghai Lake(In Chinese). China Rural Water and Hydropower,2012(4):30—32
[10]王黎軍. W-OH新型防滲材料在高寒干旱區(qū)渠道中的應(yīng)用研究.節(jié)水灌溉,2011(4):28—30
Wang L J. Research of application of new anti-seepage materials W-OH in the channels of alpine arid zone(In Chinese). Water Saving Irrigation,2011(4):28—30
[11]Gao W M. Wu Z R,Wu Z S,Study of mechanism of the W-OH sand fixation. Journal of Environmental Protection,2012,3(9):1025—1033
[12]Owoputi L O,Stolte W J. Soil detachment in the physically based soil erosion process:A Review. Transactions of the Asae,1995,38(4):1099—1110
[13]張光輝,劉寶元,張科利. 坡面徑流分離土壤的水動(dòng)力學(xué)實(shí)驗(yàn)研究. 土壤學(xué)報(bào),2002,39(6):882—886
Zhang G H,Liu B Y,Zhang K L. Study on hydrodynamic characters of runoff detachment processes (In Chinese). Acta Pedologica Sinica,2002,39 (6):882—886
[14]劉明新. 福建主要崩崗侵蝕區(qū)植被恢復(fù)與演替研究. 福州:福建農(nóng)林大學(xué),2009
Liu M X. Study on vegetation restoration and succession in the main erosion area in Fujian(In Chinese). Fuzhou:Fujian Agriculture and Forestry University,2009
[15]張甘霖. 土壤調(diào)查實(shí)驗(yàn)室分析方法. 北京:科學(xué)出版社,2012
Zhang G L. Analysis method of soil survey laboratory(In Chinese). Beijing:Science Press,2012
[16]何小武,張光輝,劉寶元. 坡面薄層水流的土壤分離實(shí)驗(yàn)研究. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(6):52—55
He X W,Zhang G H,Liu B Y. Soil detachment by shallow flow on slopes(In Chinese). Transaction of the Chinese Society of Agricultural Engineering,2003,19 (6):52—55
[17]Nearing M A,Bradford J M,Parker S C. Soil detachment by shallow flow at low slopes. Soil Science Society of American Journal,1991,55(2):339—344
[18]張科利,唐克麗. 黃土坡面細(xì)溝侵蝕能力的水動(dòng)力學(xué)試驗(yàn)研究. 土壤學(xué)報(bào),2000,37(1):9—15
Zhang K L,Tang K L. Study on hydrodynamic characters of rill erosion on the loess slope(In Chinese). Acta Pedologica Sinica,2000,37(1):9—15
[19]Cao L X,Zhang K L,Zhang W. Detachment of road surface soil by flowing water. Catena,2009,76 (2):155—162
[20]蔣芳市,黃炎和,林金石,等. 坡面水流分離崩崗崩積體土壤的動(dòng)力學(xué)特征. 水土保持學(xué)報(bào),2013,27 (1):86—89
Jiang F S,Huang Y H,Lin J S,et al. The dynamic characteristics of soil detachment of slumping deposit by surface runoff in collapsed hills(In Chinese). Journal of Soil and Water Conservation,2013,27(1):86—89
[21]張永東,吳淑芳,馮浩,等. 土壤侵蝕過程中坡面流水力學(xué)特性及侵蝕動(dòng)力研究評(píng)述. 土壤,2013,45 (1):26—33
Zhang Y D,Wu S F,F(xiàn)eng H,et al. Review on hydraulic characteristics and erosion dynamics of overland flow in soil erosion process(In Chinese). Soils,2013,45(1):26—33
Impact of W-OH on Soil Detachment Rate of Colluvial Deposits in Collapsing Hill
ZHU Yayun1,2CAO Longxi1WU Zhiren3CHEN Chong1LIANG Yin1?
(1 Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 University of Chinese Academy of Sciences,Beijing 100049,China)
(3 School of the Environment and Safety Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China)
【Objective】Collapse of hills is a form of soil erosion widely distributed in South China. It occurs mainly in denudated granite hilly areas where vegetation has been destroyed. The collapses threaten the security of farmlands and residents,and cause huge economic losses. A typical collapsing hill contains five parts,that is,catchment slope,collapsed wall,colluvial deposits,gullies and alluvial fan. Colluvial deposits are poor in soil structure,posing the main source of erosion sediment in collapsing hills,weak in erosion resistance and very susceptible to runoff scouring. The traditional method of managing collapsinghills combines land leveling and planting of trees and grass. However,the method per disturbs the soil and besides,the benefits of revegetation come into being slowly. Soil particles in colluvial deposits are readily detachable with surface runoff. Now a new type of hydrophilic polyurethane,called W-OH,is available and good to intensify the cohesive force of soil particles between each other,and hence can be used to make up the weakness of the traditional method. 【Method】In this study a slope flume experiment was carried out to analyze effect of W-OH on soil detachment rate of colluvial deposits. The experiment was designed to have four W-OH concentrations,i.e. 2%,3%,4%,5%,five slope gradients,i.e. 8.8%,17.6%,26.8%,36.4% and 46.6% and three flow rates,i.e. 1.0 L s-1,2.0 L s-1and 3.0 L s-1. The slope flume had a chamber to hold soil samples. Before the experiment,the soil samples were soaked in water for 12 hours to make the samples saturated and in the process of soaking,the water surface was kept slightly lower than the upper surface of the ring-knife. Slope gradient of the flume was regulated with a pulley system and water flow with a group of valves. Before the scouring process started,soil moisture content of the samples was measured,and soil detachment rate was calculated out of the difference between the soil samples before and after the experiment in dry weight. In order to facilitate the use of soil erosion models to estimate the effect of W-OH mitigating erosion,relationships of soil detachment rate with flow shear stress,stream power and unit stream power were analyzed. 【Result】Results show that as affected by a specific combination of slope gradient and flow rate,soil detachment rate decreased with the increasing concentration of W-OH. Such a trend was not obvious when the slope gradient was 8.8% and the flow rate 1.0 L s-1or 2.0 L s-1。When the flume was over 8.8% in slope gradient,soil detachment rate displayed a clear gradient between the treatments and dropped by 1~3 orders of magnitude,as compared to CK,and the higher the W-OH application rate,the greater the descend gradient of the soil detachment rate. The analysis of relationships of soil detachment rate with hydraulic parameters shows that compared with CK,critical flow shear stress of the soil applied with W-OH increased. 【Conclusion】All the findings listed above indicate that the effect of W-OH reducing soil detachment rate is remarkable,and such an effect increases with increasing W-OH application rate. Under different circumstances,to reduce soil detachment rate decreases by two orders of magnitude,it is necessary to apply W-OH at a corresponding rate. Once W-OH is applied,a consolidated surface layer is formed with the surface soil of colluvial deposits,thus altering the process of soil erosion. When the consolidated surface layer is intact,soil erosion is very weak,and once the consolidated surface layer is ripped by surface runoff,soil erosion aggravates dramatically.
Collapsing hill;W-OH;Soil detachment;Hydraulic parameters
S157.2
A
10.11766/trxb201604200200
(責(zé)任編輯:檀滿枝)
* 國家科技支撐計(jì)劃項(xiàng)目(2014BAD15B0302)資助 Supported by the National Science and Technology Support Program of China (No.2014BAD15B0302)
? 通訊作者 Corresponding author,E-mail:yliang@issas.ac.cn
祝亞云(1990—),男,江蘇丹陽人,碩士研究生,主要從事水土保持研究。E-mail:yyzhu@issas.ac.cn
2016-04-20;
2016-05-04;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-06-13