王龍飛,穆婉露,李肖微,陳永,李惠靜
銥催化ω-芐基苯乙酮類化合物的合成研究
王龍飛,穆婉露,李肖微,陳永,李惠靜*
(哈爾濱工業(yè)大學(xué) (威海)海洋科學(xué)與技術(shù)學(xué)院, 山東 威海 264209)
以碳雙三苯基膦氯化銥(Ir(Pph3)(CO)Cl)為催化劑,3,3-二苯丙基-2-丙烯-醇類化合物(1a~1g)為原料合成ω-芐基苯乙酮類化合物(2a~g),其結(jié)構(gòu)經(jīng)過核磁共振氫譜、碳譜和元素分析表征確認(rèn)。以3,3-二苯丙基-2-丙烯-醇(1a)為模板,研究了催化劑、物料比[(3,3-二苯丙基-2-丙烯-醇):(Ir(Pph3)(CO)Cl)]、溶劑以及溫度對2a產(chǎn)率的影響。確定了最終的反應(yīng)條件為:溫度為100 ℃,催化劑為3 mmol%的Ir(pph3)(CO)Cl,溶劑為甲苯,堿性添加劑為K2CO3,并通過最優(yōu)條件合成了7種羰基化合物2a~2g,產(chǎn)率介于85%~98%之間,此方法具有操作簡單、原子經(jīng)濟(jì)性好、產(chǎn)率高、底物普適性良好等諸多優(yōu)點(diǎn)。
碳雙三苯基膦氯化銥;烯丙醇;ω-芐基苯乙酮類化合物;原子經(jīng)濟(jì)性
在綠色、可持續(xù)發(fā)展的背景下,化學(xué)反應(yīng)的反應(yīng)效率不能僅僅只靠產(chǎn)率指標(biāo)來衡量,更重要的是看原子經(jīng)濟(jì)性、步驟經(jīng)濟(jì)性,氧化還原經(jīng)濟(jì)等重要原則[1-4]。在過渡金屬配合物催化作用下,烯丙醇類化合物能夠生成羰基化合物,該反應(yīng)具有高效、綠色、便于操作等優(yōu)勢[5]。
同時(shí),該反應(yīng)不僅具有原子經(jīng)濟(jì)性高,減少對取代基的保護(hù)和脫保護(hù)的步驟[6],而且反應(yīng)產(chǎn)物是重要的醫(yī)藥中間體,吸引了人們對烯醇氧化進(jìn)行深入研究[7]。傳統(tǒng)上的烯醇氧化大都采用釕(Ru),銠(Rh),鉬(Mo),鐵(Fe)等金屬配合物,然而,由于苛刻的反應(yīng)條件限制了這些催化劑的應(yīng)用[8-10]。
為此我們采用了碳雙三苯基膦氯化銥為催化劑將3,3-二苯丙基-2-丙烯-醇類化合物氧化成ω-芐基苯乙酮類化合物。生成的ω-芐基苯乙酮類化合物可以作為重要的有機(jī)合成的中間體。
予華 X-5 顯微熔點(diǎn)儀;Bruker Advance III 400 (400 MHz和100 MHz)傅里葉轉(zhuǎn)換核磁共振儀(CDCl3為溶劑,TMS為內(nèi)標(biāo));VARIO ELIII元素分析儀。
烯丙醇類化合物,1,1'-雙(二苯基膦)二茂鐵(dppf),雙(三苯基膦)二氯化鈀(Pd(bdppf)Cl2), 三苯基膦氯化釕(Ru(pph3)3Cl2), 碳雙(三苯基膦)氯化銥(Ir(pph3)(CO)Cl),三苯基膦氯化銠(Rh(pph3)Cl),1,4-雙(二苯基膦丁烷)二氯化鈀(Pd(dppb)Cl2);國藥集團(tuán)化學(xué)試劑有限公司;其余所用試劑均為分析純。
化合物1a~1h的結(jié)構(gòu)見表1。
表1 化合物1a~1h的結(jié)構(gòu)
反應(yīng)管中加入1a (210 mg, 1 mmol), 碳雙三苯基膦氯化銥 (3.0 mg, 3 mmol%), 20 mL甲苯,溫度為100 °C,在氬氣氛圍下攪拌條件下反應(yīng)11 h。TLC檢測確定反應(yīng)完全后,加入稀鹽酸淬滅反應(yīng),并將反應(yīng)體系酸堿度調(diào)整為pH=6, 用乙酸乙酯萃取(3×10 mL), 合并有機(jī)相,用20 mL飽和食鹽水洗滌,有機(jī)相用無水硫酸鈉干燥后,過濾,濃縮,硅膠柱層析(石油醚與乙酸乙酯的體積比為10:1)純化后得到產(chǎn)物2a(196 mg, 93%)。
用相同的方法合成2b-2g。
2a: 黃色固體,產(chǎn)率90%,m.p. = 64~65 °C;1H NMR (400 MHz, CDCl3) : δ/ppm = 8.00 (d,= 7.1 Hz, 2H), 7.59~7.57 (m, 1H), 7.50–7.47 (m, 2H), 7.34~7.24 (m, 5H), 3.34 (t,= 7.2 Hz, 2H), 3.11 (t,= 7.1 Hz, 2H);13C NMR (100 MHz, CDCl3) : δ/ppm = 198.9, 141.1, 136.6, 132.8, 128.3, 128.3, 128.2, 127.8, 125.9, 40.1, 29.9. Anal. Calcd. for C15H14O: C, 85.68; H, 6.71. Found: C, 85.65; H, 6.72.
2b: 黃色固體,產(chǎn)率85%; m.p. = 64~65 °C;1H NMR (400 MHz, CDCl3) : δ/ppm = 7.87 (d,= 8.6 Hz, 2H), 7.39 (d,= 8.6 Hz, 2H), 7.16 (d,= 8.6 Hz, 2H), 6.84 (d,= 8.6 Hz, 2H), 3.77 (s, 3H), 3.22 (t,= 7.6 Hz, 2H), 3.00 (t,= 7.6 Hz, 2H);13C NMR (100 MHz, CDCl3) : δ/ppm = 197.7, 157.8, 139.1, 135.0, 132.8, 129.2, 129.1, 128.6, 113.7, 54.9, 40.3, 28.9. Anal. Calcd. for C16H15ClO2: C, 69.95; H, 5.50. Found: C, 69.90; H, 5.51.
2c: 黃色固體,產(chǎn)率91%; m.p. = 82~83 °C;1H NMR (400 MHz, CDCl3) : δ/ppm = 7.89 (d,= 8.1 Hz, 2H), 7.43 (d,= 8.1 Hz, 2H), 7.28~7.26 (m, 4H), 3.26 (t,= 7.2 Hz, 2H), 3.05 (t,= 6.9 Hz, 2H);13C NMR (100 MHz, CDCl3) : δ/ppm = 197.3, 139.4, 139.4, 134.9, 131.8, 129.6, 129.2, 128.8, 128.4, 39.9, 29.1. Anal. Calcd. for C15H15Cl2O: C, 64.54; H, 4.33. Found: C, 64.58; H, 4.31.
2d: 黃色固體,產(chǎn)率92%; m.p. = 78~9 °C;1H NMR (400 MHz, CDCl3) : δ/ppm = 7.95 (m, 2H), 7.58~7.40 (m, 5H), 7.13 (d,= 8.3 Hz, 2H), 3.28 (t,= 7.5 Hz, 2H), 3.03 (t,= 7.5 Hz, 2H);13C NMR (100 MHz, CDCl3) : δ/ppm = 198.6, 140.1, 136.6, 133.0, 131.4, 130.1, 128.5, 127.8, 119.7, 39.9, 29.3. Anal. Calcd. for C15H13BrO: C, 62.30; H, 4.53. Found: C, 62.35; H, 4.51.
2e: 黃色固體,產(chǎn)率93%; m.p. = 64~65 °C; 1H NMR (400 MHz, CDCl3) : δ/ppm = 7.87 (d,= 8.6 Hz, 2H), 7.39 (d,= 8.6 Hz, 2H), 7.16 (d,= 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.77 (s, 3H), 3.22 (t,= 7.6 Hz, 2H), 3.00 (t,= 7.6 Hz, 2H);13C NMR (100 MHz, CDCl3) : δ/ppm = 197.7, 157.8, 139.1, 135.0, 132.8, 129.2, 129.1, 128.6, 113.7, 54.9, 40.3, 28.9. Anal. Calcd. for C16H15ClO2: C, 69.95; H, 5.50. Found: C, 69.97; H, 5.48.
2f: 黃色固體,產(chǎn)率92%; m.p. = 46~47 °C;1H NMR (400 MHz, CDCl3) : δ/ppm = 8.77 (s, 1H), 8.42 (d,= 8.1 Hz, 1H), 8.29 (d,= 7.7 Hz, 1H), 7.68 (t,= 8.0 Hz, 1H), 7.5~7.22 (m, 5H),3.39 (t,= 7.5 Hz, 2H), 3.13 (t,= 7.5 Hz, 2H);13C NMR (100 MHz, CDCl3) : δ/ppm = 196.8, 148.4, 140.5, 138.0, 133.4, 129.8, 128.5, 128.3, 127.2, 126.3, 122.8, 40.5, 29.8. Anal. Calcd. for C15H15NO3: C, 70.58; H, 5.13; N, 5.49. Found: C, 70.56; H, 5.16; N, 5.50.
2g: 黃色固體,產(chǎn)率98%; m.p. = 79~80 °C;1H NMR (400 MHz, CDCl3):δ/ppm = 7.58 (s, 1H), 7.50 (d,= 7.7 Hz, 1H), 7.34~7.20 (m, 6H), 7.12–7.10 (m, 1H), 6.84 (s, br, 1H), 3.29 (t,= 7.7 Hz, 2H), 3.11~3.07 (m, 2H);13C NMR (100 MHz, CDCl3) : δ/ppm = 200.3, 156.4, 140.9, 138.0, 129.8, 128.5, 128.3, 126.1, 120.7, 120.5, 114.5, 40.5, 30.1. Anal. Calcd. for C15H14O2: C, 79.62; H, 6.24. Found: C, 79.63; H, 6.21.
以原料烯丙醇1a為例,表2是催化劑、溶劑、溫度、堿性添加劑對羰基化合物2a產(chǎn)率的影響。
表2 反應(yīng)條件的優(yōu)化
由表結(jié)果可見,Ru(pph3)3Cl2, Ir(pph3)(CO)Cl, Rh(pph3)Cl能催化羰基化合物2a的生成,且用Ir(pph3)(CO)Cl做催化劑時(shí),2a的收率最高(No.4,73%);dppf, Pd(bdppf)Cl2, CuH(pph3)作催化劑時(shí),并沒有羰基化合物2a生成(No.1,No.2, No.6)。確定Ir(pph3)(CO)Cl為最優(yōu)催化劑時(shí),對反應(yīng)的溶劑進(jìn)行了優(yōu)化,優(yōu)化結(jié)果顯示甲苯為最優(yōu)溶劑(No.8,76%)。在100 °C以下羰基化合物2a的產(chǎn)率隨著溫度的升高而升高,在100 °C以上羰基化合物2a的產(chǎn)率反而隨著溫度升高而降低,從而確定100 °C為最優(yōu)溫度(No.14,80%)。隨后,探究了催化劑的加入量對反應(yīng)產(chǎn)率的影響,確定了當(dāng)催化劑的加入量是反應(yīng)底物百分之三個(gè)當(dāng)量時(shí)效果最優(yōu)(No.17,84%)。最后探究了堿性添加劑對反應(yīng)的影響,通過優(yōu)化發(fā)現(xiàn)K2CO3的效果最好(No.24,90%)。因此,當(dāng)溫度為100 °C,催化劑為為Ir(pph3)(CO)Cl(添加量為原料的百分之三個(gè)當(dāng)量),溶劑為甲苯,堿性添加劑為K2CO3反應(yīng)效果最好(No.24,90%)。
在最佳實(shí)驗(yàn)條件下,本文進(jìn)一步探索了這一反應(yīng)條件對不同的反應(yīng)底物的普適性。通過使用多種帶不同取代基團(tuán)苯乙酮(1a~g)為原料,制備出了帶有不同取代基團(tuán)的羰基化合物2a~g。產(chǎn)率85%~98%,普適性良好。
本文以碳雙三苯基膦氯化銥為催化劑,將烯丙醇類化合物自身氧化生成羰基類化合物,以3,3-二苯丙基-2-丙烯-醇的自身氧化為例,對反應(yīng)的催化劑、溶劑、溫度、堿性添加劑進(jìn)行了優(yōu)化,最終篩選出最有條件為:溫度為100 ℃,催化劑為為Ir(pph3)(CO)Cl(添加量為原料的百分之三個(gè)當(dāng)量),溶劑為甲苯,堿性添加劑為K2CO3。并在此條件下生成了7種羰基化合物,產(chǎn)率為85%~98%。所有的產(chǎn)物結(jié)構(gòu)均經(jīng)過1H-NMR,13C-NMR和元素分析確證。
[1]Larionov E, Lin L, Guénée L, et al. Scope and Mechanism in Palladium-Catalyzed Isomerizations of Highly Substituted Allylic, Homoallylic, and Alkenyl Alcohols[J]. Journal of the American Chemical Society, 2014, 136(48):16882-16894.
[2]Anastas P, Eghbali N. Green chemistry: principles and practice[J]. Chemical Society Reviews, 2010, 39(1):301-312.
[3]Wender P A, Verma V A, Paxton T J, et al. Function-oriented synthesis, step economy, and drug design[J]. Accounts of Chemical Research, 2008, 41(1):40-49.
[4]Wender P A, Miller B L. Synthesis at the molecular frontier[J]. Nature, 2009, 460(7252):197-201.
[5]Manzini S, Poater A, Nelson D J, et al. How phenyl makes a difference: mechanistic insights into the ruthenium(II)-catalysed isomerisation of allylic alcohols[J]. Cheminform, 2014, 5(1):180-188.
[6]Cherkaoui H, Soufiaoui M, Grée R. From allylic alcohols to saturated carbonyls using Fe(CO)5, as catalyst: scope and limitation studies and preparation of two perfume components[J]. Tetrahedron, 2001, 32(29):2379-2383.
[7]Titova E M, Rahaman S M W, Shubina E S, et al. Catalytic redox isomerization of allylic alcohols with rhodium and iridium complexes with ferrocene phosphine-thioether ligands[J]. Journal of Molecular Catalysis A Chemical, 2017, 426: 376-380.
[8]Drift R C V D, Bouwman E, Drent E. Homogeneously catalysed isomerisation of allylic alcohols to carbonyl compounds[J]. Journal of Organometallic Chemistry, 2002, 650(1–2):1-24.
[9]Bellemin-Laponnaz S, Ny J P L. Metal Oxo Complexes as Catalysts for the Isomerization of Allylic Alcohols[J]. Comptes Rendus Chimie, 2003, 34(14):217-224.
[10]Mantilli L, Gérard D, Besnard C, et al. Structure-Activity Relationship in the Iridium-Catalyzed Isomerization of Primary Allylic Alcohols[J]. Berichte Der Deutschen Chemischen Gesellschaft, 2012, 2012(20):3320-3330.
Iridium-catalyzed Synthesis of Beta-phenylpropiophenone Compounds
,,,,LI Hui-jing
(School of Marine Science and Technology,Harbin Institute of Technology at Weihai, Shandong Weihai 264209, China)
Beta-phenylpropiophenone compounds were synthesized from trans-1,3-diphenyl-2-propen-1-ol compounds by using Ir(Pph3)(CO)Cl as catalyst. The structures were characterized by1H-NMR,13C-NMR and Elemental analysis. The effect of catalyst, solvent, temperature, additive and materials ration[(Allyl alcohol):(Ir(Pph3)(CO)Cl)3)] on the yield was researched. Ultimately the optimized reaction conditions were obtained as follows: the temperature 100 °C, the catalyst Ir (pph3) (CO) Cl (3 mmol% of the raw material), solvent toluene, alkaline additive K2CO3. Then seven kinds of carbonyl compounds were synthesized under the optimized conditions and the yields were between 85% and 98%. The method shows the advantages as simple operation, atom economy, high yield and good tolerance of the substrate.
Ir(Pph3)(CO)Cl; Allyl alcohol; Beta-phenylpropiophenone; Atom economy
TQ 201
A
1671-0460(2017)12-2397-03
國家自然科學(xué)基金面上項(xiàng)目,項(xiàng)目號:21372054。
2017-05-19
王龍飛(1988-),男,山東省濱州市人,碩士在讀,2017年畢業(yè)于哈爾濱工業(yè)大學(xué)(威海)海洋科學(xué)專業(yè),研究方向:有機(jī)合成方法學(xué)研究。E-mail:hitwanglongfei@163.com。
李惠靜(1975-),女,教授,博士,研究方向:天然產(chǎn)物的全合成。E-mail:lihuijing@iccas.ac.cn。