• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩步沉積法制備Br或Cl摻雜的有機(jī)-無(wú)機(jī)雜化鈣鈦礦太陽(yáng)電池

    2016-12-29 05:42:49王艷青聶林輝李楠楠史成武
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:合肥工業(yè)大學(xué)宣城雜化

    王艷青 李 龍 聶林輝 李楠楠 史成武,

    (1合肥工業(yè)大學(xué)宣城校區(qū)化工與食品加工系,安徽宣城242000;2合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,合肥230009)

    兩步沉積法制備Br或Cl摻雜的有機(jī)-無(wú)機(jī)雜化鈣鈦礦太陽(yáng)電池

    王艷青1,*李 龍1聶林輝1李楠楠2史成武1,2

    (1合肥工業(yè)大學(xué)宣城校區(qū)化工與食品加工系,安徽宣城242000;2合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,合肥230009)

    采用控制前驅(qū)體濃度的兩步沉積法和插入PbI2層的DMSO分子(PbI2(DMSO)復(fù)合體)分別與MAX (MA=CH3NH3,X=I,Br)或MAX(X=I,Cl)進(jìn)行的分子內(nèi)交換法,實(shí)現(xiàn)了Br或Cl的摻雜并合成了厚度為300 nm左右的混合鹵化物鈣鈦礦MAPbI3-xBrx和MAPbI3-xClx膜。MAX前驅(qū)體溶液中含5%(摩爾分?jǐn)?shù),下同) MABr或15%MACl所生成的Br或Cl摻雜鈣鈦礦膜能提高鈣鈦礦太陽(yáng)電池的光伏性能,進(jìn)一步提高M(jìn)ABr或MACl的含量并不會(huì)明顯改變摻雜量,但會(huì)形成小的白色顆?;蛘哚樋祝@些將對(duì)電池的性能產(chǎn)生不利影響。前驅(qū)體溶液含5%MABr的MAPbI3-xBrx鈣鈦礦太陽(yáng)電池所獲得的能量轉(zhuǎn)換效率(PCE)為13.2%,含15% MACl的MAPbI3-xClx鈣鈦礦太陽(yáng)電池獲得了最高13.5%的PCE。

    鈣鈦礦太陽(yáng)電池;PbI2(DMSO)復(fù)合體;摻雜;兩步沉積

    1 Introduction

    In 2009,Kojima et al.1incorporated perovskite semiconductor nanocrystals into photovoltaic devices and reported a power conversion efficiency(PCE)of 3.8%.Since then,perovskite solarcells(PSCs)have been intensively studied in the last few years due to the tremendous improvements in devices architecture2,3,film formation methodologies4-6,and compositional engineering7-10of perovskite materials and led to dramatically improved in PCE,up to 20.8%with the perovskite films in a single step from a solution containing a mixture of FAI,PbI2,MABr,and PbBr2(where FAI stands for CH(NH2)2I and MABr stands for CH3NH3Br)11.The rapid increase in performance is due to the innate desirable properties of perovskite absorbers,including favourable direct band gap,large adsorption coefficient,high carrier mobilities,and long carrier diffusion lengths5,12-16.

    As we know,the earlier developed perovskite solar cells,both mesostructured and planar heterojunction ones,were mainly employed the triiodide(MAPbI3)perovskite absorbers with the thickness of~300 nm13,17-19,and thicker film is not practicable due to it limited electron and hole diffusion lengths20.In 2013,Snaith et al.21reported that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite(MAPbI3-xClx),a factor of~5 to 10 greater than the absorption length.While the bandgap of MAPbI3-xClxis almost identical to MAPbI3,the Cl doped perovskite compounds have been shown longer charge carrier diffusion lengths.Therefore,doping is necessary to outstanding performance perovskite solar cells,and many methods have been used.For example,Mosca et al.22using self-organization process to prepared MAPbI3-xClxmixed halide perovskite and found that the Cl doping dramatically improved the charge transport within the perovskite layer,but the Cl incorporation in the iodide-based structure was possible only below 3%-4%independent of the components ratio in the precursor solution.Mhaisalkar et al.23reported that both the addition of Cl and sequential deposition methods were employed to enhance the performance.In almost all studies,a mixture of PbCl2and excess MAI in a 1:3 molar ration in dimethylformamide(DMF)solution was used24,25.To the best of our knowledge,no study reported the Br or Cl doping via the two-step deposition method through the controlled concentration of the precursor solution.

    On the other hand,formation of highly pure perovskite film with uniform,dense and full surface coverage is critical issue in PSCs for improving the PCE,and various methods such as sequential deposition,additive-assisted deposition,two-step spincoating,and solvent engineering have been proposed and utilized to synthesize high quality perovskite films with full surface coverage by controlling the crystallization behavior26-29.As to solvent engineering,intramolecular exchange has been reported to deposit high-quality FAPbI3films and dramatically improve the PCE of PSCs recently,involving FAPbI3crystallization by the direct intramolecular exchange of dimethylsulfoxide(DMSO) intercalated in PbI2(PbI2(DMSO)complex)with FAI easily,because FAIs possess higher affinity toward PbI2relative to DMSO, and did not induce volume expansion due to the similar molecular sizes of DMSO and FAI30.Furthermore,N-methyl-2-pyrrolidone (NMP)molecule was also demonstrated that it can be intercalated into layered PbI2and the PbI2(NMP)complex successfully converted into high-performance perovskite through intramolecular exchange with(FAI)0.85(MABr)0.1527,the MABr content was introduced for stabilizing perovskite phase and highly crystallinity of perovskite films,as well as band-gap tuning5,7.Very recently, an intramolecular exchange of DMSO with MAI enabled the PbI2(DMSO)x(0≤x≤1.86)complexes to deform their shape and finally to be an ultraflat and dense film of MAPbI331.

    Herein,we report mixed halide perovskites of MAPbI3-xBrxand MAPbI3-xClxwith film thickness of about 300 nm were synthesized through the Br or Cl doping,by means of the two steps deposition of controlled concentration of the precursor solution and the intramolecular exchange of PbI2(DMSO)complex with MAX(X=I,Br)or MAX(X=I,Cl),respectively.The crosssectional and surface morphology,crystal phase and absorption spectra of the precursor and the mixed perovskite thin films were systematically investigated by scanning electron microscopy (SEM),X-ray diffraction(XRD)and ultraviolet-visible spectroscopy(UV-Vis),respectively,and the photovoltaic performance of the planar perovskite solar cells were evaluated.

    2 Experimental

    2.1Preparation of PbI2(DMSO)complex

    All chemicals were of analytical grade and were used as received without further purification.In order to obtained the PbI2(DMSO)complex,rather than the PbI2(DMSO)2complex30,the equal molar ratio of PbI2to DMSO after mixing was needed and the synthesized process including two steps and controlled concentration:first by dissolved 2.0 mmol PbI2powder in 2 mL DMF at 70°C with magnetic stirring,then added 1.8 mmol DMSO in it dropwise,and stirred evenly;secondly,0.6 mmol PbI2powder and then 0.8 mmol DMSO were added,the solution was stirred at 70°C for 24 h,then the 1.3 mol·L-1PbI2(DMSO)complex was obtained.

    2.2Fabrication of solar cells

    Fluorine-doped tin oxide(FTO)glass was patterned by etching with Zn metal powder and 2 mol·L-1HCl aqueous solution,then the substrates were cleaned with a detergent diluted in deionized water,and rinsed with deionized water,acetone and ethanol.To make a dense blocking layer of TiO232,0.23 mol·L-1acidic solution of titanium isopropoxide in isopropanol was spin-coated onto the clean substrates at 2000 r·min-1for 30 s,then sintered at 500°Cfor 1 h.To make the MAPbI3-xBrxperovskite layers,the PbI2(DMSO)complex was spin-coated on the TiO2compact layer at 3000 r·min-1for 20 s,and dried at the glove box with controlled humidity at 10%for 1 h,emerald green film formed.Then,20 μL of 0.35 mol·L-1mixed MAI and MABr in isopropanol solution,in which the molar ratios of MABr were 0%,5%,and 10%,respectively,was dropped onto the PbI2(DMSO)complex film,spin up to 5000 r·min-1for 30 s and heated on a heat plate at 70°C for 30 min.The MAPbI3-xClxperovskite layers were prepared along the same procedures with the molar ratios of MACl were 5%,10%and 15%in the MAI and MACl mixed solution and obtained the 0.465 mol·L-1isopropanol solution.The hole-transporting layer wasdeposited by spin-coating a solution of 2,2′,7,7′-tetrakis-(N,N-dip-methoxyphenylamine)-9,9′-spirobifluorene(spiro-OMeTAD), 4-tert-butylpyridine(tBP),lithium bis(trifluoromethanesulphonyl) imide(Li-TFSI)and tris-(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III)bis(trifluoromethylsulphonyl)imide in chlorobenzene onto the perovskite layer film.Then a 60-nm-thick Au counter electrode was deposited by thermal evaporation.For all measurements,solar cells were equipped with a 3 mm×3 mm aperture to define the active area.

    2.3Characterization

    The XRD patterns of the PbI2(DMSO)complex and corresponding intramolecular exchange products were measured using Cu Kαradiation(λ=0.154056 nm,40 kV and 40 mA)(D/ MAX2500 V,Rigaku,Japan).Ascanning rate of 0.026(°)·s-1was applied to record the patterns in the 2θ range of 5°-80°.The surface and cross-sectional morphology were observed using field emission scanning electron microscope(FE-SEM,Sirion200,FEI, USA).The UV-Vis absorption spectra were recorded by the ultraviolet spectrophotometer(U-3900H,Hitachi,Japan).The photovoltaic performance of perovskite solar cells was measured with a solar simulator(Oriel,Newport,USA,AM 1.5,100 mW· cm?2)and a Keithley 2420 source meter controlled by Testpoint software.The irradiation intensity was calibrated with standard crystalline silicon solar cell(Oriel,Newport,USA).

    3 Results and discussion

    3.1Crystal structure,optical absorption andmorphology of PbI2and PbI2(DMSO)films

    Fig.1 showed the XRD spectra of films fabricated by employing the PbI2and PbI2(DMSO)complex in DMF.In case of the PbI2film,the diffraction peak at 12.7°indicated that the pure PbI2crystal was utilized to deposit the film.The PbI2(DMSO)complex yielded almost invisible peak at 12.7°but a strong diffraction peak at 9.8°,which indicative of an increased distance between PbI2layers due to DMSO molecules intercalating between these layers according to the Bragg equation27,33.

    Fig.2 demonstrated the absorbance of PbI2and the PbI2(DMSO) complex.In the case of PbI2,the absorption band-edge located at round 525 nm is attributed to the band-gap excitation of crystallized PbI2thin film31.With the intercalated of DMSO in PbI2layers,the absorption band-edge exhibited an obvious blue shift to 475 nm,means that the formation of the complex can change the grain size and the thickness of the PbI2(DMSO)film.

    Fig.1 XRD patterns of PbI2and PbI2(DMSO)films

    Fig.2 UV-Vis spectra of PbI2and PbI2(DMSO)films

    The morphology difference of the PbI2and the PbI2(DMSO) film was shown in Fig.S1(see the Supporting Information),the PbI2(DMSO)film from the PbI2(DMSO)complex precursor solution shows almost a fully coverage surface without pin-holes and a dense layer with thickness of~235 nm above the TiO2compact layer.In contrast,the PbI2film shows a non-continuous PbI2island of~200 nm with rough surface coverage,and a loose layer with thickness of~152 nm.Therefore,the PbI2(DMSO)film has been utilized for the purpose of highly quality perovskite films.

    3.2Crystal structure,optical absorption andmorphology of MAPbI3-xBrxand MAPbI3-xClxfilms

    Fig.3 XRD patterns of MAPbI3-xBrxfilms withdifferent MABr molar ratios

    Fig.3 and Fig.4 presented the XRD patterns of the MAPbI3-xBrxfilms with different MABr molar ratios and the MAPbI3-xClxfilms with different MACl molar ratios,respectively.Due to the chloride-iodide mixed halide perovskites exhibit low miscibility22,34and poor solubility of PbCl2in DMF23,higher contents of precursor were expected,therefore the concentration of MAI and MABr mixed in isopropanol solution was 0.35 mol·L-1,and that of MAI and MACl mixed in isopropanol solution was 0.465 mol·L-1.In Fig.3,the diffraction peak around 14.28°,which was assigned to the(110)diffraction plane of MAPbI323,shifting with the changemolar ratio of MABr in precursor solution(see Fig.3 inset),and means that the successful doping of Br into the MAPbI3-xBrxperovskite,similar results were shown in Fig.4 with those MAPbI3-xClxfilms.The energy-dispersive X-ray spectroscopy (EDX)results from Table S1(Supporting Information)also indicated that Br and Cl were incorporated in an iodide-based structure.The substitution of Br and I are reversible in perovskite material,and the ability of Br subtituting I is lower than the I substituting Br,then the doping amount of Br in the MAPbI3-xBrxfilms with MABr molar ratio of 10%was not improved significantly than the molar ratio of 5%ones,similar results were obtained in those MAPbI3-xClxfilms(Table S1).

    Fig.4 XRD patterns of MAPbI3-xClxfilms with different MACl molar ratios

    The UV-Vis absorption spectra of the MAPbI3-xBrxfilms with different MABr molar ratios and the MAPbI3-xClxfilms with different MACl molar ratios were presented also,the increasing absorption band-edge shift blue along with the increasing of MABr(see Fig.5),which means the successful doping of Br in the MAPbI3-xBrx,this was in agreement with the XRD results,and similar result was obtained in those MAPbI3-xClxproducts(see Fig.6).

    To compare the crystalline morphologies of the perovskite films,top-view surface images and cross-sectional images were shown in Figs.7-10.The MAPbI3-xBrxperovskite films deposited from 0%MABr showed both small and large grain size up to~400 nm(see Fig.7(a,d)),the film with small grain size decreased significantly for the perovskite film formed from the 5%MABr (see Fig.7(b,e)),but film from the 10%MABr showed obvious small white particles(see Fig.7(c,f)),maybe due to the formation of perovskite materials with cubic structures35,36.Fig.8 showed the thickness of these perovskite films with 0,5%,and 10%MABr were 240,290,and 288 nm,respectively,the doping of Br results in thickness increase of the perovskite films.In addition,it is easy to find that some white particles formed at the interface between the TiO2layer and the perovskite thin films when with 5%MABr from the cross-sectional SEM images(see Fig.8(b)),which was not clear in the surface images(see Fig.7(b,e)),and more white particles in the perovskite films with the 10%MABr(see Fig.8 (c)),then may result in increased electron recombination.Fig.9 clearly shown the MAPbI3-xClxperovskite films deposited from 10%MACl with nonuniform grain size and with pin-holes(see Fig.9(a,d)),a relative uniform and full-coverage perovskite film formed from the 15%MACl(see Fig.9(b,e)),but when the content of MACl increases to 20%,significant pin-holes were generated though the perovskite film was unifrom(see Fig.9(c,f)). The thickness of MAPbI3-xClxperovskite films with 10,15,and 20%MACl were 267,317 and 314 nm,respectively(see Fig.10). In brief,the 5%MABr and 15%MACl products showed superior crystal structure and morphology in the MAPbI3-xBrxand MAPbI3-xClxperovskite films,respectively.

    Fig.5 UV-Vis spectra of MAPbI3-xBrxfilms with different MABr molar ratios

    Fig.6 UV-Vis spectra of MAPbI3-xClxfilms with different MACl molar ratios

    3.3Photovoltaic performance of planar perovskitesolar cells

    Fig.7 Surface SEM images of MAPbI3-xBrxfilm with different molar ratios of MABr

    Fig.8 Cross-sectional SEM images of MAPbI3-xBrxfilm with different molar ratios of MABr

    Fig.9 Surface SEM images of MAPbI3-xClxfilm with different molar ratios of MACl

    The values of photovoltaic parameters of the perovskite solar cells derived from PbI2(DMSO)complex with MAI via intramolecular exchange with different molar ratios of MABr or MACl were given in Table 1.As to the planar MAPbI3-xBrxperovskite film deposited by intramolecular exchange between PbI2(DMSO) complex and 0.35 mol·L-1MAX(X=I,Br),MAX with 5% MABr exhibited better photovoltaic performance than those with 0 and 10%ones,giving an open-circuit voltage(Voc)of 1.00 V,a short-circuit current density(Jsc)of 18.0 mA·cm-2,a fill factor (FF)of 71.2%and an average PCE of 12.9%(4 cells)along with the maximum PCE of 13.2%.Meanwhile,the planar MAPbI3-xClxperovskites film deposited by intramolecular exchange between PbI2(DMSO)complex and 0.465 mol·L-1MAX(X=I,Cl),MAX with 15%MACl exhibited better photovoltaic performance than those with 10%and 20%ones,gives Voc=1.03 V,Jsc=17.6 mA· cm-2,FF=74.2%,and an average PCE of 13.4%(4 cells)along with the maximum PCE of 13.5%.The doping of Br or Cl in the perovskite film can improve the photovoltaic performance of PSCs with the precursor of MAX containing 5%MABr or 15% MACl,respectively,while further increase in the content of MABr or MACl in the precursor did no lead to significant changes in doping amounts,but small white particles or pin-holes were formed in mixed perovskite materials obviously,therefore resulted in adverse effects on the performance of perovskite solar cells.

    Fig.10 Cross-sectional SEM images of MAPbI3-xClxfilm with different molar ratios of MACl

    Table 1 Values of photovoltaic parameters of the perovskite solar cells derived from PbI2(DMSO)complex with MAI via intramolecular exchange with different molar ratios of MABr or MACl

    4 Conclusions

    In summary,uniform,dense and full coverage of mixed halide perovskites of MAPbI3-xBrxand MAPbI3-xClxwith film thickness of about 300 nm were synthesized through the Br or Cl doping, thanks to the two-step deposition of controlled concentration of the precursor solution and the intramolecular exchange of PbI2(DMSO)complex with MAX(X=I,Br)or MAX(X=I,Cl), respectively.The doping of Br or Cl in the perovskite film can improve the photovoltaic performance of PSCs with suitable amount of MABr or MACl in the MAX precursor solutions.The MAPbI3-xBrxperovskite solar cells with 5%MABr exhibited superior photovoltaic performance than the 0%and 10%MABr ones,the maximum PCE was 13.2%,as to the MAPbI3-xClxperovskite solar cells,mixed perovskite from 15%MACl exhibited superior photovoltaic performance than the 10%and 20%MACl ones,and the highest PCE recorded was 13.5%.Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Kojima,A.;Teshima,K.;Shirai,Y.;Miyasaka,T.J.Am.Chem. Soc.2009,131(17),6050.doi:10.1021/ja809598r

    (2) Heo,J.H.;Im,S.H.;Noh,J.H.;Mandal,T.N.;Lim,C.S.; Chang,J.A.;Lee,Y.H.;Kim,H.J.;Sarkar,A.;Nazeeruddind, M.K.;Gratzel,M.;Seok,S.I.Nat.Photonics 2013,7(6),486. doi:10.1038/nphoton.2013.80

    (3) Lee,M.M.;Teuscher,J.;Miyasaka,T.;Murakami,T.N.; Snaith,H.J.Science 2012,338(6107),643.doi:10.1126/ science.1228604

    (4) Burschka,J.;Pellet,N.;Moon,S.J.;Humphry-Baker,R.;Gao, P.;Nazeeruddin,M.K.;Gratzel,M.Nature 2013,499(7458), 316.doi:10.1038/nature12340

    (5)Jeon,N.J.;Noh,J.H.;Kim,Y.C.;Yang,W.S.;Ryu,S.;Seok, S.I.Nat.Mater.2014,13(9),897.doi:10.1038/nmat4014

    (6) Liu,M.;Johnston,M.B.;Snaith,H.J.Nature 2013,501(7467), 395.doi:10.1038/nature12509

    (7) Noh,J.H.;Im,S.H.;Heo,J.H.;Mandal,T.N.;Seok,S.I. Nano Lett.2013,13(4),1764.doi:10.1021/nl400349b

    (8) Lee,J.W.;Seol,D.J.;Cho,A.N.;Park,N.G.Adv.Mater.2014, 26(29),4991.doi:10.1002/adma.201401137

    (9) Pellet,N.;Gao,P.;Gregori,G.;Yang,T.Y.;Nazeeruddin,M. K.;Maier,J.;Gr?tzel,M.Angew.Chem.Int.Ed.2014,53(12), 3151.doi:10.1002/anie.201309361

    (10) Liu,X.P.;Kong,F.T.;Chen,W.C.;Yu,T.;Guo,F.L.;Chen,J.; Dai,S.Y.Acta Phys.-Chim.Sin.2016,32(6),1347.[劉雪朋,孔凡太,陳汪超,于 婷,郭福領(lǐng),陳 健,戴松元.物理化學(xué)學(xué)報(bào),2016,32(6),1347.]doi:10.3866/PKU.WHXB201603143

    (11) Bi,D.;Tress,W.;Dar,M.I.;Gao,P.;Luo,J.;Renevier,C.; Schenk,K.;Abate,A.;Giordano,F.;Correa Baena,J.P.; Decoppet,J.D.;Zakeeruddin,S.M.;Nazeeruddin,M.K.; Gr?tzel,M.;Hagfeldt,A.Sci.Adv.2016,2(1),e1501170. doi:10.1126/sciadv.1501170

    (12) Snaith,H.J.J.Phys.Chem.Lett.2013,4(21),3623. doi:10.1021/jz4020162

    (13) Chen,Q.;Zhou,H.;Hong,Z.;Luo,S.;Duan,H.S.;Wang,H. H.;Liu,Y.;Li,G.;Yang,Y.J.Am.Chem.Soc.2014,136(2), 622.doi:10.1021/ja411509g

    (14) Kim,H.S.;Im,S.H.;Park,N.G.J.Phys.Chem.C 2014,118 (11),5615.doi:10.1021/jp409025w

    (15) Zhou,H.;Chen,Q.;Li,G.;Luo,S.;Song,T.B.;Duan,H.S.; Hong,Z.;You,J.;Liu,Y.;Yang,Y.Science 2014,345(6196), 542.doi:10.1126/science.1254050

    (16) Wu,N.;Shi,C.;Li,N.;Wang,Y.;Li,M.Mater.Res. Innovations 2016,20(5),338.doi:10.1080/ 14328917.2016.1144247

    (17) Malinkiewicz,O.;Yella,A.;Lee,Y.H.;Espallargas,G.M.; Graetzel,M.;Nazeeruddin,M.K.;Bolink,H.J.Nat.Photonics 2014,8(2),128.doi:10.1038/nphoton.2013.341

    (18) Zhang,J.;Shi,C.;Chen,J.;Ying,C.;Wu,N.;Wang,M.Journal of Semiconductors 2016,37(3),033002.doi:10.1088/1674-4926/37/3/033002

    (19) Liu,D.;Gangishetty,M.K.;Kelly,T.L.J.Mater.Chem.A 2014,2(46),19873.doi:10.1039/C4TA02637C

    (20) Xing,G.;Mathews,N.;Sun,S.;Lim,S.S.;Lam,Y.M.;Gr?tzel, M.;Mhaisalkar,S.;Sum,T.C.Science 2013,342(6156),344. doi:10.1126/science.1243167

    (21) Stranks,S.D.;Eperon,G.E.;Grancini,G.;Menelaou,C.; Alcocer,M.J.P.;Leijtens,T.;Herz,L.M.;Petrozza,A.;Snaith, H.J.Science 2013,342(6156),341.doi:10.1126/ science.1243982

    (22) Colella,S.;Mosconi,E.;Fedeli,P.;Listorti,A.;Gazza,F.; Orlandi,F.;Ferro,P.;Besagni,T.;Rizzo,A.;Calestani,G.; Gigli,G.;DeAngelis,F.;Mosca,R.Chem.Mater.2013,25 (22),4613.doi:10.1021/cm402919x

    (23) Dharani,S.;Dewi,H.A.;Prabhakar,R.R.;Baikie,T.;Shi,C.; Yonghua,D.;Mathews,N.;Boix,P.P.;Mhaisalkar,S.G. Nanoscale 2014,6(22),13854.doi:10.1039/C4NR04007D

    (24) Tidhar,Y.;Edri,E.;Weissman,H.;Zohar,D.;Hodes,G.;Cahen, D.;Rybtchinski,B.;Kirmayer,S.J.Am.Chem.Soc.2014,136 (38),13249.doi:10.1021/ja505556s

    (25) Zhao,Y.;Zhu,K.J.Phys.Chem.C 2014,118(18),9412. doi:10.1021/jp502696w

    (26) Yi,C.;Li,X.;Luo,J.;Zakeeruddin,S.M.;Gr?tzel,M.Adv. Mater.2016,28(15),2964.doi:10.1002/adma.201506049

    (27) Jo,Y.;Oh,K.S.;Kim,M.;Kim,K.H.;Lee,H.;Lee,C.W.; Kim,D.S.Adv.Mater.Interfaces 2016,3(10),1500768. doi:10.1002/admi.201500768

    (28) Heo,J.H.;Song,D.H.;Im,S.H.Adv.Mater.2014,26(48), 8179.doi:10.1002/adma.201403140

    (29) Li,Y.;He,X.L.;Ding,B.;Gao,L.L.;Yang,G.J.;Li,C.X.;Li, C.J.J.Power Sources 2016,320,204.doi:10.1016/j. jpowsour.2016.04.098

    (30) Yang,W.S.;Noh,J.H.;Jeon,N.J.;Kim,Y.C.;Ryu,S.;Seo,J.; Seok,S.I.Science 2015,348(6240),1234.doi:10.1126/science. aaa9272

    (31) Li,W.;Fan,J.;Li,J.;Mai,Y.;Wang,L.J.Am.Chem.Soc.2015, 137(32),10399.doi:10.1021/jacs.5b06444

    (32) Docampo,P.;Ball,J.M.;Darwich,M.;Eperon,G.E.;Snaith, H.J.Nat.Commun.2013,4,2761.doi:10.1038/ncomms3761

    (33) Wang,Z.K.;Li,M.;Yang,Y.G.;Hu,Y.;Ma,H.;Gao,X.Y.; Liao,L.S.Adv.Mater.2016,doi:10.1002/adma.201600626

    (34) Unger,E.L.;Bowring,A.R.;Tassone,C.J.;Pool,V.L.;Gold-Parker,A.;Cheacharoen,R.;Stone,K.H.;Hoke,E.T.;Toney, M.F.;McGehee,M.D.Chem.Mater.2014,26(24),7158. doi:10.1021/cm503828b

    (35) Jeon,N.J.;Noh,J.H.;Yang,W.S.;Kim,Y.C.;Ryu,S.;Seo,J.; Seok,S.I.Nature 2015,517(7535),476.doi:10.1038/ nature14133

    (36) Stoumpos,C.C.;Malliakas,C.D.;Kanatzidis,M.G.Inorg. Chem.2013,52(15),9019.doi:10.1021/ic401215x

    Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping via a Two-Step Deposition

    WANG Yan-Qing1,*LILong1NIE Lin-Hui1LINan-Nan2SHICheng-Wu1,2
    (1Department of Chemical Engineering and Food Processing,Xuancheng Campus,Hefei University of Technology,Xuancheng 242000,Anhui Province,P.R.China;2School of Chemistry and Chemical Engineering,Hefei University of Technology, Hefei 230009,P.R.China)

    Mixed halide perovskites of MAPbI3-xBrxand MAPbI3-xClx(MA=CH3NH3)with film thickness of about 300 nm were synthesized through the Br or Cl doping,thanks to the two steps deposition of controlled concentration of the precursor solution and the intramolecular exchange of DMSO molecules intercalated in PbI2(PbI2(DMSO)complex)with MAX(X=I,Br)or MAX(X=I,Cl),respectively.The doping of Br or Cl in the perovskite film can improve the photovoltaic performance of PSCs with the precursor of MAX contains 5%(in mole fraction,same below)MABr or 15%MACl,respectively,while further increase in the content of MABr or MACl in the precursor did not lead to significant changes in doping amounts,but small white particles or pin-holes were formed in mixed perovskite materials,therefore resulted in adverse effects on the performance of solar cells.The MAPbI3-xBrxperovskite solar cells with 5%MABr in precursor solution showed a power conversion efficiency(PCE)of 13.2%,and the MAPbI3-xClxperovskite solar cells with 15%MACl in precursor solution showed the highest PCE of 13.5%.

    Perovskite solar cell;PbI2(DMSO)complex;Doping;Two-step deposition

    O644

    10.3866/PKU.WHXB201607272

    Received:May 25,2016;Revised:July 27,2016;Published online:July 27,2016.

    *Corresponding author.Email:yqwang@hfut.edu.cn;Tel:+86-563-3831302.

    The project was supported by the National Natural Science Foundation of China(51472071,51272016,51072043)and Startup Foundation of Hefei University of Technology,China(JZ2014HGBZ0371,JZ2014HGBZ0358).

    國(guó)家自然科學(xué)基金(51472071,51272016,51072043)和校博士啟動(dòng)基金(JZ2014HGBZ0371,JZ2014HGBZ0358)資助項(xiàng)目

    猜你喜歡
    合肥工業(yè)大學(xué)宣城雜化
    安徽宣城:村里有群姑娘叫『小花』
    司爾特宣城公司舉行消防演練
    合肥工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)投稿須知
    《宣城小鎮(zhèn)》
    流行色(2020年1期)2020-04-28 11:16:38
    《合肥工業(yè)大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    α-細(xì)辛腦脂質(zhì)聚合物雜化納米粒的制備及表征
    宣城以外看宣城
    元素雜化阻燃丙烯酸樹(shù)脂的研究進(jìn)展
    化學(xué)教學(xué)中的分子雜化軌道學(xué)習(xí)
    元素雜化阻燃聚苯乙烯的研究進(jìn)展
    亚洲,欧美,日韩| 在线天堂最新版资源| 黄色视频在线播放观看不卡| 天堂中文最新版在线下载 | 赤兔流量卡办理| 国精品久久久久久国模美| 久久久欧美国产精品| 蜜桃亚洲精品一区二区三区| 欧美成人a在线观看| 日韩大片免费观看网站| 久久精品国产亚洲av涩爱| 亚洲不卡免费看| 国产美女午夜福利| 18禁在线播放成人免费| 久久久久久国产a免费观看| 国产欧美另类精品又又久久亚洲欧美| 免费看a级黄色片| 插阴视频在线观看视频| 国产精品人妻久久久久久| 久久午夜福利片| 菩萨蛮人人尽说江南好唐韦庄| www.av在线官网国产| 免费看日本二区| 日本爱情动作片www.在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品aⅴ在线观看| a级一级毛片免费在线观看| 国产精品国产三级国产专区5o| av在线天堂中文字幕| 91aial.com中文字幕在线观看| 身体一侧抽搐| 九九在线视频观看精品| 乱系列少妇在线播放| 大码成人一级视频| 你懂的网址亚洲精品在线观看| 国产淫片久久久久久久久| 成人毛片a级毛片在线播放| 欧美+日韩+精品| 青春草视频在线免费观看| 在现免费观看毛片| 大话2 男鬼变身卡| 午夜精品一区二区三区免费看| 国产v大片淫在线免费观看| 色播亚洲综合网| 九九在线视频观看精品| 中文在线观看免费www的网站| 久久久久精品性色| 大片电影免费在线观看免费| 男女边摸边吃奶| 在线观看av片永久免费下载| 久久影院123| 久久久亚洲精品成人影院| 大陆偷拍与自拍| 内射极品少妇av片p| 秋霞在线观看毛片| 免费观看无遮挡的男女| 哪个播放器可以免费观看大片| 日韩国内少妇激情av| 亚洲精品国产av成人精品| 日韩av在线免费看完整版不卡| 久久久欧美国产精品| 国产免费又黄又爽又色| 欧美高清性xxxxhd video| 日韩视频在线欧美| 中文字幕亚洲精品专区| 国产美女午夜福利| 欧美性猛交╳xxx乱大交人| 永久免费av网站大全| 精品人妻熟女av久视频| 亚洲美女视频黄频| 人妻制服诱惑在线中文字幕| 99热这里只有是精品50| av在线老鸭窝| 日韩成人伦理影院| 国产欧美日韩精品一区二区| 内射极品少妇av片p| 22中文网久久字幕| 美女国产视频在线观看| 97超视频在线观看视频| 国产高清国产精品国产三级 | 99久久中文字幕三级久久日本| 色哟哟·www| 18禁在线无遮挡免费观看视频| 麻豆乱淫一区二区| 国产大屁股一区二区在线视频| 亚洲精品一二三| 欧美变态另类bdsm刘玥| 精品久久久久久久人妻蜜臀av| 又黄又爽又刺激的免费视频.| 下体分泌物呈黄色| 久久精品夜色国产| 久久精品国产亚洲网站| 亚洲精品第二区| 最近的中文字幕免费完整| 亚洲成人久久爱视频| 狂野欧美激情性bbbbbb| 午夜福利视频精品| 亚洲婷婷狠狠爱综合网| 成人无遮挡网站| 久久韩国三级中文字幕| 免费观看的影片在线观看| 高清日韩中文字幕在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内少妇人妻偷人精品xxx网站| 你懂的网址亚洲精品在线观看| 91狼人影院| 又黄又爽又刺激的免费视频.| 国产精品麻豆人妻色哟哟久久| 亚洲自偷自拍三级| 日产精品乱码卡一卡2卡三| 国内少妇人妻偷人精品xxx网站| 国产精品人妻久久久影院| 国产亚洲5aaaaa淫片| 汤姆久久久久久久影院中文字幕| 亚洲,欧美,日韩| 亚洲无线观看免费| 免费人成在线观看视频色| 赤兔流量卡办理| 日韩国内少妇激情av| 久久精品国产亚洲av涩爱| 亚洲成人av在线免费| 永久免费av网站大全| 只有这里有精品99| 精品国产乱码久久久久久小说| 我的女老师完整版在线观看| 又粗又硬又长又爽又黄的视频| a级毛片免费高清观看在线播放| 我要看日韩黄色一级片| av在线播放精品| 六月丁香七月| 亚洲国产色片| 少妇人妻精品综合一区二区| 免费看日本二区| 涩涩av久久男人的天堂| 欧美97在线视频| 免费av观看视频| 看免费成人av毛片| 国产熟女欧美一区二区| 男人添女人高潮全过程视频| 一级av片app| 久久久精品94久久精品| 中国三级夫妇交换| 边亲边吃奶的免费视频| 成年版毛片免费区| 另类亚洲欧美激情| 国产亚洲一区二区精品| 人妻系列 视频| 干丝袜人妻中文字幕| 午夜福利视频1000在线观看| 狂野欧美白嫩少妇大欣赏| 麻豆成人午夜福利视频| 麻豆乱淫一区二区| 国产精品蜜桃在线观看| 男人爽女人下面视频在线观看| 欧美日韩国产mv在线观看视频 | 特级一级黄色大片| 小蜜桃在线观看免费完整版高清| 又爽又黄a免费视频| 国产精品国产三级国产专区5o| av国产久精品久网站免费入址| 成人漫画全彩无遮挡| 久久精品综合一区二区三区| 国产一区二区亚洲精品在线观看| 国产精品一区www在线观看| 国产精品爽爽va在线观看网站| 色视频在线一区二区三区| 国模一区二区三区四区视频| 大香蕉97超碰在线| 国产精品熟女久久久久浪| 日韩一区二区三区影片| 国产综合懂色| av在线播放精品| 亚洲精品日本国产第一区| 国产 一区 欧美 日韩| 欧美日韩综合久久久久久| 精品一区二区免费观看| 性插视频无遮挡在线免费观看| 内地一区二区视频在线| 亚洲天堂国产精品一区在线| 男人添女人高潮全过程视频| 国产毛片a区久久久久| 永久免费av网站大全| 搡女人真爽免费视频火全软件| 中国国产av一级| 嫩草影院入口| 午夜爱爱视频在线播放| 日日啪夜夜爽| 久久女婷五月综合色啪小说 | 一区二区三区精品91| 欧美zozozo另类| 久久久色成人| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 久久99热这里只有精品18| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 日韩,欧美,国产一区二区三区| 少妇人妻一区二区三区视频| 综合色丁香网| 中文字幕亚洲精品专区| h日本视频在线播放| 国产精品av视频在线免费观看| 久久久久久久精品精品| 久久久久久久国产电影| 黄色配什么色好看| 久久国产乱子免费精品| 最近中文字幕高清免费大全6| 在线免费十八禁| 国产精品久久久久久精品古装| 黄色欧美视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美一区二区三区黑人 | 国内精品美女久久久久久| 亚洲欧美精品自产自拍| 91久久精品电影网| 日韩人妻高清精品专区| 99热国产这里只有精品6| 有码 亚洲区| 能在线免费看毛片的网站| 在线亚洲精品国产二区图片欧美 | 亚洲在久久综合| 最近中文字幕2019免费版| 亚洲精品成人久久久久久| 亚洲精品久久午夜乱码| 中文字幕亚洲精品专区| 三级经典国产精品| 免费不卡的大黄色大毛片视频在线观看| 美女内射精品一级片tv| 成年av动漫网址| 人人妻人人澡人人爽人人夜夜| 久久精品久久久久久噜噜老黄| 欧美性猛交╳xxx乱大交人| 热re99久久精品国产66热6| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 噜噜噜噜噜久久久久久91| 黑人高潮一二区| 国产av不卡久久| 校园人妻丝袜中文字幕| 成年人午夜在线观看视频| 亚洲精品乱码久久久v下载方式| 中文资源天堂在线| 国产女主播在线喷水免费视频网站| 亚洲欧美日韩无卡精品| 国产视频首页在线观看| 毛片女人毛片| 一级黄片播放器| 色5月婷婷丁香| 视频区图区小说| 亚洲四区av| 亚洲三级黄色毛片| 黄片无遮挡物在线观看| 久久久久久久久大av| 好男人在线观看高清免费视频| a级一级毛片免费在线观看| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| av线在线观看网站| av在线蜜桃| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| 国产午夜福利久久久久久| 男女边吃奶边做爰视频| 日本黄色片子视频| 白带黄色成豆腐渣| 久久久久久伊人网av| 久久久久网色| 色5月婷婷丁香| 99久久精品热视频| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 2021天堂中文幕一二区在线观| 日本爱情动作片www.在线观看| 极品少妇高潮喷水抽搐| 国内少妇人妻偷人精品xxx网站| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满| 亚洲欧美一区二区三区黑人 | 内地一区二区视频在线| 人妻夜夜爽99麻豆av| 欧美性感艳星| 亚洲图色成人| 成人毛片60女人毛片免费| 听说在线观看完整版免费高清| 亚洲精品乱码久久久v下载方式| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 97在线人人人人妻| 亚洲一区二区三区欧美精品 | 99久久九九国产精品国产免费| 国产精品人妻久久久影院| 99热6这里只有精品| 精品酒店卫生间| 国产成人精品婷婷| 美女视频免费永久观看网站| 国产老妇女一区| 久久久久久国产a免费观看| 成人鲁丝片一二三区免费| 岛国毛片在线播放| 日韩制服骚丝袜av| 久久97久久精品| 欧美日韩亚洲高清精品| 国产精品.久久久| 街头女战士在线观看网站| 一边亲一边摸免费视频| 欧美xxxx性猛交bbbb| 一级爰片在线观看| 搞女人的毛片| freevideosex欧美| 一级毛片久久久久久久久女| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区三区| 国产日韩欧美在线精品| 国产一区二区亚洲精品在线观看| 下体分泌物呈黄色| 十八禁网站网址无遮挡 | 国产爽快片一区二区三区| 在线a可以看的网站| 色哟哟·www| 熟妇人妻不卡中文字幕| 纵有疾风起免费观看全集完整版| 校园人妻丝袜中文字幕| 精品久久久噜噜| av免费观看日本| 久久久久网色| 久久久久久久久久成人| 一级毛片 在线播放| 免费在线观看成人毛片| 成人免费观看视频高清| 日韩av免费高清视频| 香蕉精品网在线| av在线蜜桃| 亚洲aⅴ乱码一区二区在线播放| 国产一区有黄有色的免费视频| 中文字幕av成人在线电影| 国产免费视频播放在线视频| 成人一区二区视频在线观看| 日韩精品有码人妻一区| 久久久久国产精品人妻一区二区| 看十八女毛片水多多多| 欧美国产精品一级二级三级 | 国产一区二区亚洲精品在线观看| 亚洲av不卡在线观看| 交换朋友夫妻互换小说| 亚洲欧美日韩卡通动漫| 一级毛片aaaaaa免费看小| 亚洲天堂av无毛| 亚洲国产精品成人久久小说| 伊人久久精品亚洲午夜| 欧美精品国产亚洲| 亚洲精品456在线播放app| 你懂的网址亚洲精品在线观看| 天美传媒精品一区二区| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| xxx大片免费视频| 晚上一个人看的免费电影| av在线蜜桃| 91久久精品国产一区二区成人| 午夜免费观看性视频| 少妇人妻 视频| 在线免费观看不下载黄p国产| 亚洲成色77777| 国产高清国产精品国产三级 | 18+在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一二三区在线看| 黄色一级大片看看| 亚洲欧洲国产日韩| 免费观看的影片在线观看| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 亚洲精品久久午夜乱码| 高清毛片免费看| 午夜福利在线观看免费完整高清在| 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 精品久久久噜噜| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 亚洲av电影在线观看一区二区三区 | 免费黄网站久久成人精品| 欧美精品一区二区大全| 欧美成人a在线观看| 国产精品不卡视频一区二区| 亚洲精品乱久久久久久| 久热久热在线精品观看| 亚洲欧美精品自产自拍| 久久6这里有精品| 尾随美女入室| 国产欧美另类精品又又久久亚洲欧美| 国产v大片淫在线免费观看| 午夜日本视频在线| 一级毛片我不卡| 天天一区二区日本电影三级| 激情五月婷婷亚洲| 一级av片app| 亚洲国产高清在线一区二区三| 国产男人的电影天堂91| 男人爽女人下面视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产免费福利视频在线观看| 我要看日韩黄色一级片| 性色av一级| 国产在线男女| 欧美bdsm另类| 日韩欧美精品免费久久| 国产高清三级在线| 日本-黄色视频高清免费观看| 高清av免费在线| 亚洲欧美日韩另类电影网站 | 黄色视频在线播放观看不卡| 天天一区二区日本电影三级| 一边亲一边摸免费视频| 伊人久久国产一区二区| 国产真实伦视频高清在线观看| 亚洲国产精品成人久久小说| 成人免费观看视频高清| 国产精品人妻久久久影院| 亚洲久久久久久中文字幕| 午夜日本视频在线| 男人和女人高潮做爰伦理| 老司机影院毛片| 久久6这里有精品| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 97在线人人人人妻| 亚洲熟女精品中文字幕| 国产精品一二三区在线看| 91久久精品电影网| 免费观看的影片在线观看| 人人妻人人澡人人爽人人夜夜| 国产高清有码在线观看视频| 中文资源天堂在线| 久久久久久国产a免费观看| 一级爰片在线观看| 日韩大片免费观看网站| 日本三级黄在线观看| 成人黄色视频免费在线看| 免费在线观看成人毛片| 91久久精品电影网| 国产老妇伦熟女老妇高清| 国产男女超爽视频在线观看| 最近中文字幕高清免费大全6| 成人综合一区亚洲| 日韩中字成人| 韩国高清视频一区二区三区| 欧美xxⅹ黑人| 国产免费视频播放在线视频| 免费av观看视频| 国产 一区精品| 亚洲色图综合在线观看| 精品一区二区三卡| 久久久成人免费电影| 亚洲人与动物交配视频| 欧美激情久久久久久爽电影| 有码 亚洲区| 高清在线视频一区二区三区| 亚洲一区二区三区欧美精品 | 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 亚洲国产最新在线播放| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 成人鲁丝片一二三区免费| 国产爱豆传媒在线观看| 久久久色成人| 精品国产露脸久久av麻豆| 嫩草影院新地址| 亚洲成人av在线免费| 国产精品三级大全| 黄色欧美视频在线观看| 亚州av有码| 久久精品国产a三级三级三级| 日本午夜av视频| 国产精品伦人一区二区| 亚洲天堂av无毛| 人妻系列 视频| 亚洲激情五月婷婷啪啪| 国产中年淑女户外野战色| 久久精品人妻少妇| 国产美女午夜福利| 日韩av在线免费看完整版不卡| 午夜爱爱视频在线播放| 男女啪啪激烈高潮av片| 在线免费十八禁| 亚洲精品aⅴ在线观看| 精品人妻熟女av久视频| 午夜福利高清视频| 在线免费观看不下载黄p国产| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 神马国产精品三级电影在线观看| 最近的中文字幕免费完整| 午夜福利在线在线| 少妇熟女欧美另类| 国产精品福利在线免费观看| 国产69精品久久久久777片| 自拍偷自拍亚洲精品老妇| 亚洲成人一二三区av| 国产一区二区三区av在线| 免费看av在线观看网站| 国产一区二区三区av在线| 亚洲成人一二三区av| 久久精品国产自在天天线| 国产欧美日韩一区二区三区在线 | 国产精品爽爽va在线观看网站| 成人欧美大片| 啦啦啦在线观看免费高清www| 中文在线观看免费www的网站| 99热网站在线观看| 中文字幕亚洲精品专区| 国产午夜精品久久久久久一区二区三区| 韩国av在线不卡| 日韩av在线免费看完整版不卡| 毛片女人毛片| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 久久ye,这里只有精品| 久久久欧美国产精品| 国产亚洲最大av| 高清视频免费观看一区二区| 久久综合国产亚洲精品| 尾随美女入室| 久久久精品欧美日韩精品| 日韩视频在线欧美| av国产久精品久网站免费入址| av福利片在线观看| 成人无遮挡网站| 一个人看的www免费观看视频| 一本久久精品| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 亚洲精品视频女| 性色av一级| 免费播放大片免费观看视频在线观看| 久久久久久久久久久丰满| 菩萨蛮人人尽说江南好唐韦庄| 国产乱人偷精品视频| 久久精品国产自在天天线| 午夜精品国产一区二区电影 | 欧美精品国产亚洲| 成人美女网站在线观看视频| av免费在线看不卡| 高清在线视频一区二区三区| 日本色播在线视频| 国产精品蜜桃在线观看| 久久精品国产自在天天线| 成人二区视频| 一区二区三区精品91| 美女高潮的动态| 在线观看一区二区三区| 丝瓜视频免费看黄片| 国产精品人妻久久久影院| 国产伦精品一区二区三区四那| 99九九线精品视频在线观看视频| 国产成人午夜福利电影在线观看| 少妇人妻久久综合中文| 成人综合一区亚洲| xxx大片免费视频| 男女无遮挡免费网站观看| 欧美国产精品一级二级三级 | 男人和女人高潮做爰伦理| 亚洲精品乱码久久久久久按摩| 久久精品夜色国产| 免费观看a级毛片全部| 亚洲av在线观看美女高潮| 又粗又硬又长又爽又黄的视频| 午夜免费男女啪啪视频观看| 久久综合国产亚洲精品| 天天一区二区日本电影三级| 一区二区三区乱码不卡18| 纵有疾风起免费观看全集完整版| 国产精品一二三区在线看| 九九久久精品国产亚洲av麻豆| 国产成人a区在线观看| 一级a做视频免费观看| 十八禁网站网址无遮挡 | 91aial.com中文字幕在线观看| 直男gayav资源| 国产成人精品婷婷| 欧美人与善性xxx| 亚洲高清免费不卡视频| 成人毛片a级毛片在线播放| 麻豆乱淫一区二区| 亚洲国产av新网站| 99热这里只有是精品50| 亚洲av电影在线观看一区二区三区 | 日韩中字成人| av线在线观看网站| 色哟哟·www| 国产探花极品一区二区| 最近手机中文字幕大全| 男女啪啪激烈高潮av片| 亚洲精品中文字幕在线视频 | 中文字幕人妻熟人妻熟丝袜美| 中文精品一卡2卡3卡4更新| 高清视频免费观看一区二区| 亚洲婷婷狠狠爱综合网| 精品人妻偷拍中文字幕| 国产美女午夜福利| 亚洲精品成人久久久久久| 亚洲在线观看片| 狂野欧美激情性xxxx在线观看| 国产白丝娇喘喷水9色精品| 久久国内精品自在自线图片| 自拍偷自拍亚洲精品老妇| 亚洲精品乱码久久久v下载方式| 欧美精品国产亚洲| 伦精品一区二区三区|