• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    丁酸甲酯單分子解離的非諧振效應(yīng)

    2016-12-29 05:42:36宋立國余憶玄林圣賢
    物理化學(xué)學(xué)報 2016年11期
    關(guān)鍵詞:丁酸甲酯常數(shù)

    丁 楊 宋立國 余憶玄 姚 麗,* 林圣賢

    (1大連海事大學(xué)輪機(jī)工程學(xué)院,遼寧大連116026;2臺灣交通大學(xué)應(yīng)用化學(xué)系,臺灣新竹10764)

    丁酸甲酯單分子解離的非諧振效應(yīng)

    丁 楊1宋立國1余憶玄1姚 麗1,*林圣賢2

    (1大連海事大學(xué)輪機(jī)工程學(xué)院,遼寧大連116026;2臺灣交通大學(xué)應(yīng)用化學(xué)系,臺灣新竹10764)

    使用MP2/6-311++G(2d,2p)方法和基組,計算了丁酸甲酯單分子解離反應(yīng)體系詳細(xì)的勢能面。應(yīng)用RRKM理論,計算了在1000-5000 K的溫度范圍內(nèi)的正則系綜的速率常數(shù)。與此同時,在微正則系綜下,我們計算了溫度為1000-5000 K對應(yīng)的能量從451.92到1519.52 kJ·mol-1的速率常數(shù)。計算結(jié)果表明反應(yīng)通道2、4和5的非諧振效應(yīng)比較明顯。因此對于丁酸甲酯單分子解離反應(yīng)體系來說其非諧振效應(yīng)是不能忽視的。

    非諧振效應(yīng);單分子解離反應(yīng);RRKM理論;速率常數(shù)

    1 Introduction

    The utilization of petroleum-based fuels has been associated in recent years with various social and environmental issues including energy and national securities and air pollution by net CO2emissions which has been linked to climate change1.The extensive consumption of these fuels has motivated researchers to evaluate alternative solutions.In this sense,biofuels are alternative fuels suitable for being used in the current transport sector infrastructure,since they have similar physical properties than conventional petroleum-derived fossil fuels2.Biodiesel,consisting of long chain alkyl(e.g.,methyl,ethyl,propyl)esters,has emerged as a viable alternative to petroleum-based fuels.

    Direct studies of typical biodiesel fuels(i.e.,methyl esters of fatty acids)are currently beyond our capabilities since the laboratory experiments would have to be carried out with complex and largely involatile mixtures.Methyl butanoate(MB),whose formula is CH3CH2CH2C(=O)OCH3,has been widely used as a biodiesel surrogate since it essentially possesses the chemical structure of long-chain alkyl esters including the methyl ester termination and a shorter,but similar,alkyl chain.Thus it is convenient to develop detailed reaction mechanisms for MB at a manageable size3-14.

    In this follow-up paper,the rate constants for the decomposition reaction of MB as well as the transition state were calculated according to Rice-Ramsperger-Kassel-Marcus(RRKM)theory. Additionally the anharmonic effect was discussed herein.The Morse oscillators(MOs)were employed in the calculation for convenience.The RRKM theory15was previously applied to calculate the rate constants and the microcanonical and canonical cases showing similar results than those reported herein.

    2 Calculation methodology and computational details

    2.1 Ab initio calculations

    The MP2 functional in conjunction with the 6-311++G(2d,2p) basis set were used to explore the geometry optimization of the reactants and transition states(TS)for the most important MB breakdown pathways.The vibrational frequency calculations were used to identify all of the stationary points as either minima(i.e., zero imaginary frequency)or transition states(i.e.,one imaginary frequency).Intrinsic reaction coordinate16(IRC)calculations at the same level were traced to confirm that the TS corresponded with the minima along the reaction pathways.Vibrational harmonic and anharmonic frequencies were also calculated at the same level. With the aim to obtain more accurate and reliable data,the singlepoint energies(SPEs)were recalculated by employing the CCSD (T)method with the 6-311++G(2d,2p)basis set.All the electronic structure calculations were carried out using the Gaussian 09 suite of programs17.

    2.2 Microcanonical case

    According to the famous equation of RRKM theory18,the microcanonical unimolecular reaction rate k(E)for a reaction at a given energy E and with an activation energy E≠can be expressed as follow:

    where σ is the reaction degeneracy(herein σ=1),h is Plank′s constant,ρ(E)represents the total density of the states of the reactant at energy E,and W≠(E-E≠)stands for the total number of states for the transition state with an excess energy lower or equal to E-E≠,E is the total energy and E≠represents the activation energy.

    The W(E)and ρ(E)function of can be generally defined by their respective definitions19-21:

    H(E-Ei)denotes Heaviside function while Eirepresents the energy levels.

    The Laplace transformation was used in the calculation of W(E) and ρ(E):

    where β=1/kT,k is Boltzmann′s constant,T is the system temperature in K,and Q(β)is the partition function of the system. Therefore,in case Q(β)is acquired,with the use of above equations,W(E)and ρ(E)can be determined by employing the inverse Laplace transformation.

    2.3 Canonical case

    For a canonical system,the rate constant k(T)for the decomposition reaction can be calculated by the well-known equation of the transition state theory(TST)19,21-23.

    where Q(T)and Q≠(T)represent the partition functions of the reactant and the activated complex,respectively.Thus:

    where N stands for the number of the vibrational modes of the reactant.For each mode,qi≠(T)and qi(T)represent the vibrational partition functions of the activated complex and the reactant molecule for the ith single mode,respectively.

    The aforementioned discussion demonstrates that the partition function has a significant weight in the calculation of k(E)and k(T). To calculate the partition function,the MO was taken as a simple form.And the energy of the ith vibrational mode can be calculated as follows:

    where niand ωiare the vibrational quantum number and the frequency of the ith vibrational mode,respectively.χistands for the MO parameter and can be expressed as:

    where Direpresents the well depth of the MO.In this study,χifor various molecules were obtained from the anharmonic frequencies which were calculated by the Gaussian 09 program.According to the RRKM theory,all the vibrational modes were treated as anharmonic MO.In the calculation of the density of states ρ(E),the harmonic and anharmonic degrees of freedom(DOF)of the reactant were calculated as 45(3N-6,N=17).For calculating the total number of states W(E),44 DOF were obtained excluding the harmonic and anharmonic imaginary frequencies for the transition states.The harmonic frequencies and χiwere chosen as effective dissociation energy parameters for the Morse potential in the calculations for each vibrational mode.

    3 Results and discussion

    The anharmonic and harmonic rate constants for six reaction channels were calculated for MB:

    Fig.1 depicts with an illustration of the potential energy surfaces for the decomposition reaction(labeled as pathways 1-6)computed at the MP2/6-311++G(2d,2p)level of theory.The barrier heights were also reported with the CCSDT/6-311++G(2d,2p) method.The geometric and energetic parameters of the reactant and transition states for the unimolecular dissociation of the MB are summarized in Table 1.The optimized geometries of the reactants,transition states and products were optimized with a different method and levels as compared to Ref.24.The energy barrier of the decomposition reaction was higher as compared to previous work24.

    As clearly seen from Fig.1,that CH3CH2CH2OOCH3reacts along six pathways which could be divided into three species:(i) C(8)―H(9)scission:H(9)from C(8)transfers to O(2);(ii)C(1)―O(3)scission,H(10)from C(1)transfers to O(3)or H(5)from C(4)transfers to C(1);(iii)C(8)―C(11)scission while H(15)from C(14)transfers to C(8)or O(2)or C(8)―C(1)scission and H(12) from C(11)transfers to C(1).

    3.1C―H scission

    To calculate the above mentioned energy as a function of the temperature,we applied the method by means of the relation between the total energy of a microcanonical system and the temperature of a canonical system18.

    The energy in the microcanonical system can be calculated by equation(18),and it is listed in Table 2.

    The MB reaction passes though TS2 and produces C2H5CH=C(OH)OCH3.The anharmonic and harmonic rate constants for the canonical system are summarized in Table 2 at the temperatures ranging from 1000 to 5000 K,with the energies being lower than the calculated activation energy,(i.e.317.67 kJ·mol-1).Thus,the rate constant in a microcanonical system at higher energy have to be calculated.Table 3 summarizes the harmonic and anharmonic rate constants of the microcanonical system as a function of the corresponding energy.

    Fig.1 Potential energy surface(PES)schematic of the CH3CH2CH2C(O)OCH3dissociation reactions

    Table 1 Parameters used in the rate constant calculations obtained from the MP2/6-311++G(2d,2p)calculations

    From Table 2 and Fig.2,it is clear that both the harmonic and anharmonic rate constants increased with the temperature increasing.The rate constants for the reaction(Table 2)were plotted in Fig.2.The harmonic(from 2.35×10-4to 1.06×1010s-1)and the anharmonic rate constants(from 5.46×10-4to 1.34×1011s-1) were found to change with the temperature(from 1000 to 5000 K, respectively).The gap between anharnonic and harmonic rate constants changed with the increasing temperatures.When the temperature is 1000 K,the anharmonic rate constant(5.46×10-4s-1)is 2.20 times more than the harmonic one(2.35×10-4s-1),and the anharmonic rate constant(1.34×1011s-1)is 12.64 times thanharmonic one(1.06×1010s-1)at 5000 K.The harmonic and the anharmonic rate constants increased with the total energy for the microcanonical system(Table 3 and Fig.2).The harmonics rate constants(from 0.51×102to 0.56×1010s-1)and the anharmonic rate constants(from 1.46×102to 6.36×1010s-1)changed with the increasing energy(from 452.05 to 1519.56 kJ·mol-1).The gap between the anharnonic and harmonic rate constants changed with the total energy(anharmonic/harmonic rate constant ratios are 2.86 and 11.36 at 452.05 and 1519.56 kJ·mol-1,respectively).The ratio difference of canonical rate constant was compared with that of the microcanonical case.An increment of temperature or total energy resulted in significant anharmonic effects in both canonical and microcanonical systems.And there was a similar conclusion in Ref.25.

    Table 2 Rate constants of the TS2 pathway at different temperatures for the canonical system

    Table 3 Rate constants of the TS2 pathway at different energies for the microcanonical system

    3.2C―O scission and C―H scission

    The C―O scission can react with H from methyl group to O or C to form methanol and ketene or form formaldehyde and butyraldehyde.Two pathway reactions were denoted as TS3 and TS4.Similar to the TS2,the energy in the microcanonical system can be calculated through equation(18).The anharmonic and harmonic rate constants for the canonical system are summarized in Table 4 at temperatures ranging from 1000 to 5000 K.The energies are lower than the calculated activation energy(305.64 and 318.51 kJ·mol-1).Thus,the rate constants in a microcanonical system at higher energy values have to be calculated.Table 5 illustrates the harmonic and anharmonic rate constants of the microcanonical system with the corresponding energy.

    Fig.2 Microcanonical and canonical rate constants for TS2

    Similar to the TS2,it is clear that both the harmonic and anharmonic rate constants increase with the temperature for the reaction of TS3 and TS4(Table 4 and Figs.3-4).Both of the harmonic and anharmonic rate constants of TS3 and TS4 increasedsharply while increasing temperature from 1000 to 5000 K.The gap between anharnonic and harmonic rate constants were found to change with the temperatures(anharmonic/harmonic rate constant ratio=2.38,2.05 at 1000 K;5.86,30.67 at 5000 K,for TS3 and TS4,respectively).The harmonic and the anharmonic rate constants increased with the total energy(from 452.05 to 1519.56 kJ·mol-1)for the microcanonical system(Table 5 and Figs.3 and 4).The gap between the anharnonic and harmonic rate constants changed with the total energy(anharmonic/harmonic rate constant ratio=3.12,2.53 at 452.05 kJ·mol-1;6.46,26.63 at 1519.56 kJ·mol-1,for TS3 and TS4,respectively).The ratio differences of in the anharmonic and the harmonic rate constants in the canonical and microcanonical showed nearly similar results, Thus,with an increasing temperature or total energy,the anharmonic effect were not very pronounced in both canonical and microcanonical systems for TS3,more intense in both canonical and microcanonical systems for TS4.

    Table 4 Rate constants of TS3 and TS4 pathways at different temperatures for the canonical system

    Table 5 Rate constants of TS3 and TS4 pathways at different energies for the microcanonical system

    Fig.3 Microcanonical and canonical rate constants for TS3

    3.3C―C scission and C―H scission

    The C―C scission can react with H from the methyl group to O or C to form ethene and methyl acetate,or propene and methyl, or ethene and 1-methoxy-ethenol.The three pathway reactions can be denoted as TS1,TS5 and TS6.The anharmonic and harmonic rate constants for the canonical system were summarized in Table 6 at the temperatures ranging from 1000 to 5000 K.The energies obtained were lower than the calculated activation energy(287.63, 415.50 and 441.08 kJ·mol-1).Thus,the rate constants at higher energy have to be calculated for the microcanonical system.

    Fig.4 Microcanonical and canonical rate constants for TS4

    Similar to theTS2,the reactions ofTS1,TS5 andTS6 proceeded such that both the harmonic and anharmonic rate constants increased with the temperature(Table 6 and Figs.5-7).The harmonics and anharmonic rate constants of TS1,TS5 and TS6 increased sharply while increasing temperature from 1000 to 5000 K.The gap between the anharnonic and harmonic rate constants changed with the temperature(anharmonic/harmonic rate constantratio=2.13,2.92,0.88 at 1000 K;6.49,32.00,1.30 at 5000 K,for TS1,TS5 and TS6,respectively).The harmonic and the anharmonic rate constants increased with the total energy from 452.05 to 1519.56 kJ·mol-1for the microcanonical system(Table 7 and Figs.5-7).The gap between the anharnonic and harmonic rate constants changed with the total energy(anharmonic/harmonic rate constant ratio=2.80,1.69,1.62 at 452.05 kJ·mol-1;7.49, 26.20,1.36 at 1519.56 kJ·mol-1,for TS1,TS5 and TS6,respectively).The ratio difference between the anharmonic and the harmonic rate constants in the canonical system was lower than that in the microcanonical system.Thus,the anharmonic effect was more intense in both canonical and microcanonical systems for TS5,and weaker in both canonical and microcanonical systems for TS1 and TS6.

    Table 6 Rate constants of TS1,TS5 and TS6 pathways at different temperatures for the canonical system

    Fig.5 Microcanonical and canonical rate constants for TS1

    Additionally,we employed the following formula to obtain the tunneling probabilities for the unimolecular dissociation of MB26:

    where

    here,ωbis the magnitude of the imaginary frequency,V0is the barrier height relative to the reactant,and V1is the barrier height relative to the products.

    Fig.6 Microcanonical and canonical rate constants for TS5

    Fig.7 Microcanonical and canonical rate constants for TS6

    Table 7 Rate constants of TS1,TS5 and TS6 pathways at different energies for the microcanonical system

    Table 8 Tunneling probabilities for the CH3CH2CH2C(O)OCH3dissociation reactions

    The tunneling probabilities increased with the total energy (Table 8).The values for the decomposition of MB in the barrier were obtained by MP2 methods.Note that the tunneling effect for the decomposition of MB was very small,which can be neglected in this work.

    4 Conclusions

    The anharmonic and harmonic rate constants of the unimolecular decomposition reaction of MB were calculated by using the RRKM theory.The reaction took place along with three kinds of pathways,including six reaction channels:(i)C―H scission: H from C transfers to O;(ii)C―O scission,H from C transfers to O or C;(iii)C―C scission and while H from C transfers to C or O.The rate constants of the reaction were evaluated by using the MP2/6-311++G(2d,2p)and CCSD(T)/6-311++G(2d,2p)methods in the temperature range of 1000-5000 K.TS1 showed the lowest energy barrier,and this reaction could thus be achieved.TS6 showed the highest energy barrier such that this reaction could not be reached.The anharmonic effect was represented in the Figs.2-7 and Tables 2-7.The difference between the harmonic and anharmonic rate constants increased with both the temperature and energy level.The anharmonic of the title reaction was also examined.Thus,the anharmonic rate constants were higher than the harmonic ones in both the microcanonical and the canonical systems,especially at high total energies and temperatures.The anharmonic effect played an important role in the unimolecular dissociation,such that the anharmonic effect could not be neglected.For the different models and vibrational states,the total number of states and density of states were counted,which affected the dissociation rate constant.For the first kind of reaction, it was a process of isomerization.With an increasing temperature or total energy,the anharmonic effect were more intense in bothcanonical and microcanonical systems for TS2.For the final kind of reaction,when one of the product was ethene for TS1 and TS6, with an increasing temperature or total energy,the anharmonic effect was not very pronounced in both canonical and microcanonical systems.These computational studies would be useful in providing a further insight into the chemical kinetics of MB,and further experimental studies are expected to be carried out with this reaction.

    (1) Solomon,S.;Qin,D.;Manning,M.;Chen,Z.;Marquis,M.; Averyt,K.B.;Tignor M.;Miller,H.L.“IPCC,Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the FourthAssessment Report of the Intergovernmental Panel on Climate Change”;Cambridge University Press:Cambridge and New York,2007;p 996.

    (2) Robert,L.H.;Roger,B.;Robert,W.AIChE J.2006,52(1),2. doi:10.1002/aic.10747

    (3) Gail,S.;Thomson,M.J.;Sarathy,S.M.;Syed,S.A.;Dagaut, P.;Diévart,P.;Marchese,A.J.;Dryer,F.L.Proc.Combust.Inst 2007,31(1),305.doi:10.1016/j.proci.2006.08.051

    (4) Metcalfe,W.K.;Dooley,S.;Curran,H.J.;Simmie,J.M.;El-Nahas,A.M.;Navarro,M.V.J.Phys.Chem.A 2007,111(19), 4001.doi:10.1021/jp067582c

    (5) Huynh,L.K.;Violi,A.J.Org Chem.2008,73(1),94. doi:10.1021/jo701824n

    (6) Huynh,L.K.;Lin,K.C.;Violi,A.J.Phys.Chem.A 2008,112 (51),13470.doi:10.1021/jp804358r

    (7) Westbrook,C.K.;Pitz,W.J.;Curran,H.J.J.Phys.Chem.A 2006,110(21),6912.doi:10.1021/jp056362g

    (8) Herbinet,O.;Pitz,W.J.;Westbrook,C.K.Combustion and Flame 2008,154(4),507.doi:10.1016/j. combustflame.2008.03.003

    (9) Hill,J.;Nelson,E.;Tilman,D.;Polasky,S.;Tiffany,D.Proc. Natl.Acad.Sci.2006,103(30),11206.doi:10.1073/ pnas.0604600103

    (10) Farooqa,A.;Davidson,D.F.;Hanson,R.K.;Huynh,L.K.; Violi,A.Proc.Combust.Inst.2009,32,247.doi:10.1016/j. proci.2008.06.084

    (11) Dooley,S.;Curran,H.J.;Simmie,J.M.Combustion and Flame 2008,153(1-2),2.doi:10.1016/j.combustflame.2008.01.005

    (12) Fisher,E.M.;Pits,W.J.;Curran,H.J.;Westbrook,C.K.Proc. Combust.Inst.2000,28,1579.

    (13) Ali,M.A.;Violi,A.J.Org.Chem.2013,78(12),5898. doi:10.1021/jo400569d

    (14) Huynh,L.K.;Violi,A.J.Org.Chem.2008,73(1),94. doi:10.1021/jo701824n

    (15) (a)Yao,L.;Mebel,A.M.;Lu,H.F.;Neusser,H.J.;Lin,S.H. J.Phys.Chem.A 2007,111(29),6722.doi:10.1021/jp069012i (b)Yao,L.;Liu,Y.L.;Lin,S.H.Mod.Phys.Lett.B 2008,22 (31),3043.doi:10.1142/S0217984908017552 (c)Yao,L.;Lin,S.H.Sci.China.Ser.B 2008,51(12),1146. doi:10.1007/s11426-008-0125-1 (d)Yao,L.;He,R.X.;Mebel,A.M.;Lin,S.H.Chem.Phys. Lett.2009,470(4-6),210.doi:10.1016/j.cplett.2009.01.074 (e)Shao,Y.;Yao,L.;Lin,S.H.Chem.Phys.Lett.2009,478 (4-6),277.doi:10.1016/j.cplett.2009.07.051 (f)Yao,L.;Mebel,A.M.;Lin,S.H.J.Phys.Chem.A 2009,113 (52),14664.doi:10.1021/jp9044379 (g)Shao,Y.;Yao,L.;Mao,Y.C.;Zhong,J.J.Chem.Phys.Lett. 2010,501(1-3),134.doi:10.1016/j.cplett.2010.10.041 (h)Gu,L.Z.;Yao,L.;Shao,Y.;Yung,K.;Zhong,J.J.J.Theor. Comput.Chem.2010,9(1),813.doi:10.1142/ S0219633610006006 (i)Gu,L.Z.;Yao,L.;Shao,Y.;Liu,W.;Gao,H.Mol.Phys. 2011,109(16),1983.doi:10.1080/00268976.2011.602648 (j)Li,Q.;Xia,W.W.;Yao,L.;Shao,Y.Can.J.Chem.2012,90 (10),186.doi:10.1139/v11-137 (k)Li,Q.;Yao,L.;Shao,Y.CheM 2012,2(12),1. doi:10.5618/chem.2012.v2.n1.1 (l)Li,Q.;Yao,L.;Shao,Y.;Yang,K.J.Chin.Chem.Soc.2014, 61(3),309.doi:10.1002/jccs.201300277

    (16) Gonzalez,C.;Schlegel,H.B.J.Chem.Phys.1989,90(4). 2154.doi:10.1063/1.456010

    (17) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, Revision C.02;Gaussian,Inc.:Wallingford,CT,2009.

    (18) Steinfeld,J.I.;Francisco,J.S.;Hase,W.L.Chemical Kinetics and Dynamic;Prentice-Hall:Englewood Cliffs,NJ,1989.

    (19) (a)Forst,W.;Prasil,Z.J.Chem.Phys.1970,53(12),3065. doi:10.1063/1.1674450 (b)Forst,W.Chem.Rev.1971,71(4),339.doi:10.1021/ cr60272a001 (c)Forst,W.Theory of Unimolecular Reactions;Academic Press:New York,1973.

    (20) Hoare,M.R.;Ruijgrok,T.W.J.Chem.Phys.1970,52(1),113. doi:10.1063/1.1672655

    (21) Eyring,H.;Lin,S.H.;Lin,S.M.Basic Chemical Kinetics; AWiley-interscience Publication:New York,1980.

    (22) Baer,T.;Hase,W.L.Unimolecular Reaction Dynamic:Theory and Experiment;Oxford University Press:New York,1996.

    (23) Gilbert,R.G.;Smith,S.C.Theory of Unimolecular and Recombination Reactions;Blackwell:Oxford,1990.

    (24) El-Nahas,A.M.;Navarro,M.V.;Simmie,J.M.;Bosselli,J.W.; Curran,H.J.;Dooley,S.;Metcalfe,W.J.Phys.Chem.A 2007, 111(19),3727.doi:10.1021/jp067413s

    (25) Zhang,L.W.;Yao,L.;Li,Q.;Wang,G.Q.;Lin,S.H. Molecular Physics 2014,112(21),2853.doi:10.1080/ 00268976.2014.915066

    (26) Miller,W.H.J.Am.Chem.Soc.1979,101(23),6810. doi:10.1021/ja00517a004

    Anharmonic Effect of the Decomposition Reaction of Methyl Butanoate

    DING Yang1SONG Li-Guo1YU Yi-Xuan1YAO Li1,*LIN Sheng-Hsien2
    (1Marine Engineering College,Dalian Maritime University,Dalian 116026,P.R.China;2Department of Applied Chemistry,National Chiao-Tung University,Hsin-chu 10764,Taiwan,P.R.China)

    In this paper,we have used the MP2/6-311++G(2d,2p)method to conduct a detailed investigation of the potential energy surface for the unimolecular dissociation reaction of methyl butanoate(MB).We have also used the Rice-Ramsperger-Kassel-Marcus(RRKM)theory to calculate the rate constants of the canonical and microcanonical systems at temperatures and total energies ranging from 1000 to 5000 K and 451.92 to 1519.52 kJ·mol-1,respectively.The results indicated that there was an obvious anharmonic effect for the TS2, TS4 and TS5 pathways,and that this effect was too pronounced to be neglected for the unimolecular dissociation reactions of MB.

    Anharmonic effect;Unimolecular decomposition reaction;RRKM theory;Rate constant

    O643

    10.3866/PKU.WHXB201607212

    Received:March 16,2016;Revised:July 20,2016;Published online:July 21,2016.

    *Corresponding author.Email:yaoli@dlmu.edu.cn;Tel:+86-13130432506.

    The project was supported by the Major Research Plan of the National Natural Science Foundation of China(91441132)and Fundamental Research Funds for the Central Universities,China(3132016127,3132016326).

    國家自然科學(xué)基金(91441132)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(3132016127,3132016326)資助項(xiàng)目

    猜你喜歡
    丁酸甲酯常數(shù)
    丁酸梭菌的篩選、鑒定及生物學(xué)功能分析
    中國飼料(2021年17期)2021-11-02 08:15:10
    關(guān)于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級數(shù)的系數(shù)
    復(fù)合丁酸梭菌制劑在水產(chǎn)養(yǎng)殖中的應(yīng)用
    HIV-1感染者腸道產(chǎn)丁酸菌F.prausnitzii和R.intestinalis變化特點(diǎn)
    傳染病信息(2021年6期)2021-02-12 01:52:14
    離子交換樹脂催化合成苯甲酸甲酯
    云南化工(2020年11期)2021-01-14 00:50:52
    幾個常數(shù)項(xiàng)級數(shù)的和
    萬有引力常數(shù)的測量
    丁酸乙酯對卷煙煙氣的影響
    煙草科技(2015年8期)2015-12-20 08:27:06
    K/γ-Al2O3催化丙酸甲酯合成甲基丙烯酸甲酯
    卡前列甲酯栓聯(lián)合鈣劑預(yù)防及治療產(chǎn)后出血的效果觀察
    精品一区二区三区视频在线| 欧美精品人与动牲交sv欧美| 国产成人午夜福利电影在线观看| 老司机亚洲免费影院| 亚洲精品国产av成人精品| 亚洲情色 制服丝袜| 国产成人av激情在线播放| 9色porny在线观看| 国产在视频线精品| 国产欧美日韩一区二区三区在线| 国产淫语在线视频| 一级片免费观看大全| 亚洲成国产人片在线观看| 亚洲 欧美一区二区三区| 国产精品一二三区在线看| 日韩精品免费视频一区二区三区 | 日日撸夜夜添| 又黄又粗又硬又大视频| 国产成人欧美| 久久狼人影院| 最近最新中文字幕大全免费视频 | 自线自在国产av| 亚洲久久久国产精品| 1024视频免费在线观看| 91久久精品国产一区二区三区| 久久韩国三级中文字幕| 久久人人97超碰香蕉20202| 亚洲久久久国产精品| 国产永久视频网站| 国产亚洲午夜精品一区二区久久| 午夜老司机福利剧场| 999精品在线视频| 欧美老熟妇乱子伦牲交| 国产精品无大码| 久久ye,这里只有精品| 国产精品一区www在线观看| 天天影视国产精品| 亚洲欧美精品自产自拍| 九色成人免费人妻av| 老司机亚洲免费影院| 国产成人精品一,二区| 亚洲av免费高清在线观看| 亚洲精品国产av蜜桃| www.av在线官网国产| 街头女战士在线观看网站| 欧美另类一区| 少妇 在线观看| av在线老鸭窝| 永久免费av网站大全| 2018国产大陆天天弄谢| 51国产日韩欧美| 在线观看免费视频网站a站| 永久网站在线| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 免费看不卡的av| 亚洲精品自拍成人| 综合色丁香网| 妹子高潮喷水视频| 国产探花极品一区二区| 又大又黄又爽视频免费| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 18禁国产床啪视频网站| 哪个播放器可以免费观看大片| 国产片内射在线| 久久精品夜色国产| 两个人免费观看高清视频| 欧美精品一区二区大全| 在线观看国产h片| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 久久久亚洲精品成人影院| 亚洲欧洲日产国产| 韩国高清视频一区二区三区| 精品酒店卫生间| 99香蕉大伊视频| 看免费av毛片| 黑人巨大精品欧美一区二区蜜桃 | 久久青草综合色| 黄色 视频免费看| 亚洲精品美女久久av网站| 一区在线观看完整版| 久久影院123| 国产日韩欧美视频二区| 黄色配什么色好看| av片东京热男人的天堂| 又黄又粗又硬又大视频| 赤兔流量卡办理| 欧美日韩成人在线一区二区| 日日摸夜夜添夜夜爱| 内地一区二区视频在线| 亚洲第一区二区三区不卡| 日韩三级伦理在线观看| 99热这里只有是精品在线观看| 久久国产精品男人的天堂亚洲 | 欧美成人午夜精品| 日本黄色日本黄色录像| 久久这里只有精品19| 国产在视频线精品| 久久久欧美国产精品| 国产黄色免费在线视频| 国产综合精华液| 欧美亚洲日本最大视频资源| 欧美日韩一区二区视频在线观看视频在线| 午夜激情久久久久久久| 婷婷成人精品国产| 国产有黄有色有爽视频| av一本久久久久| 建设人人有责人人尽责人人享有的| 18禁国产床啪视频网站| 国产极品粉嫩免费观看在线| 日本欧美国产在线视频| 高清视频免费观看一区二区| av片东京热男人的天堂| 人妻少妇偷人精品九色| 捣出白浆h1v1| 亚洲av成人精品一二三区| 成人无遮挡网站| 在线观看人妻少妇| 在线观看免费日韩欧美大片| 亚洲,一卡二卡三卡| 亚洲图色成人| 久久久久久久久久久久大奶| 啦啦啦中文免费视频观看日本| 国产成人欧美| 满18在线观看网站| 欧美少妇被猛烈插入视频| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 国产 一区精品| 久久97久久精品| av在线app专区| 日本黄大片高清| 夫妻午夜视频| 欧美人与性动交α欧美软件 | 蜜桃在线观看..| 午夜福利乱码中文字幕| 久久亚洲国产成人精品v| 成人亚洲欧美一区二区av| 男女边摸边吃奶| 国产精品人妻久久久影院| 亚洲欧美日韩卡通动漫| 91精品伊人久久大香线蕉| 国产免费一区二区三区四区乱码| av不卡在线播放| 另类精品久久| 亚洲av在线观看美女高潮| 韩国精品一区二区三区 | 视频在线观看一区二区三区| 日韩大片免费观看网站| 久久久久精品性色| 人妻 亚洲 视频| 国产在线一区二区三区精| 国产又色又爽无遮挡免| 美女脱内裤让男人舔精品视频| av有码第一页| 99久久中文字幕三级久久日本| 国产亚洲欧美精品永久| 亚洲欧美中文字幕日韩二区| av黄色大香蕉| 另类亚洲欧美激情| 蜜臀久久99精品久久宅男| 色哟哟·www| 免费大片18禁| 少妇人妻精品综合一区二区| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄| 伦理电影免费视频| 97精品久久久久久久久久精品| 99久久人妻综合| 欧美性感艳星| 国产精品熟女久久久久浪| 日韩电影二区| 大香蕉久久网| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 日韩 亚洲 欧美在线| 日韩电影二区| 只有这里有精品99| 亚洲精品久久午夜乱码| 国产欧美日韩一区二区三区在线| www.av在线官网国产| 欧美精品一区二区免费开放| 一级片'在线观看视频| 国产精品嫩草影院av在线观看| 国产一区有黄有色的免费视频| 久久人妻熟女aⅴ| 成人国产av品久久久| 建设人人有责人人尽责人人享有的| 日韩精品免费视频一区二区三区 | 五月伊人婷婷丁香| 大片电影免费在线观看免费| 免费黄色在线免费观看| 国产精品不卡视频一区二区| 视频在线观看一区二区三区| av又黄又爽大尺度在线免费看| 国产亚洲精品久久久com| 少妇 在线观看| 亚洲精品国产av蜜桃| 亚洲成色77777| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 久久99热6这里只有精品| 久久婷婷青草| 国产精品久久久久久久电影| 又粗又硬又长又爽又黄的视频| 咕卡用的链子| 超碰97精品在线观看| 热99久久久久精品小说推荐| 亚洲精品视频女| 亚洲精品久久午夜乱码| 精品人妻一区二区三区麻豆| 亚洲国产精品一区二区三区在线| av在线观看视频网站免费| 久久久精品94久久精品| 麻豆乱淫一区二区| 日韩在线高清观看一区二区三区| 人妻 亚洲 视频| 少妇高潮的动态图| 日产精品乱码卡一卡2卡三| 黄片无遮挡物在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产毛片在线视频| 亚洲精品aⅴ在线观看| av又黄又爽大尺度在线免费看| 一本久久精品| 午夜福利视频在线观看免费| 午夜免费男女啪啪视频观看| 色视频在线一区二区三区| 最近中文字幕高清免费大全6| 看非洲黑人一级黄片| 久久久久久伊人网av| 久久久精品94久久精品| 久久久久国产精品人妻一区二区| 伊人久久国产一区二区| 色网站视频免费| av片东京热男人的天堂| 一本久久精品| 日本欧美视频一区| 男女下面插进去视频免费观看 | 99热6这里只有精品| 国产精品国产av在线观看| 国产黄色免费在线视频| 在线观看美女被高潮喷水网站| 国产亚洲一区二区精品| 久久久久久久久久成人| 国产精品 国内视频| 国产1区2区3区精品| 国产精品国产av在线观看| 色吧在线观看| 内地一区二区视频在线| 五月伊人婷婷丁香| 妹子高潮喷水视频| 欧美亚洲 丝袜 人妻 在线| 高清欧美精品videossex| 91精品三级在线观看| 亚洲av福利一区| 女人被躁到高潮嗷嗷叫费观| av播播在线观看一区| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看 | 亚洲欧美成人精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜在线中文字幕| 黄片无遮挡物在线观看| 丝袜脚勾引网站| 免费av不卡在线播放| 国产综合精华液| 成年女人在线观看亚洲视频| 18禁裸乳无遮挡动漫免费视频| 三级国产精品片| 久久人妻熟女aⅴ| 在线观看免费高清a一片| 少妇的逼水好多| 色婷婷av一区二区三区视频| 18禁观看日本| 成人黄色视频免费在线看| 熟女人妻精品中文字幕| 成年美女黄网站色视频大全免费| 亚洲国产av新网站| 性色av一级| 午夜福利网站1000一区二区三区| 亚洲国产精品一区三区| 成人午夜精彩视频在线观看| 午夜激情久久久久久久| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 欧美精品亚洲一区二区| 亚洲第一区二区三区不卡| 91精品国产国语对白视频| 午夜视频国产福利| 一边亲一边摸免费视频| 国产精品久久久av美女十八| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 亚洲精品456在线播放app| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 亚洲精品美女久久久久99蜜臀 | 日本欧美视频一区| 少妇的丰满在线观看| 乱人伦中国视频| 日韩中字成人| 国产精品久久久久久精品古装| 国产高清不卡午夜福利| 看免费av毛片| 高清视频免费观看一区二区| 久久综合国产亚洲精品| 宅男免费午夜| 国产片内射在线| 成年女人在线观看亚洲视频| 午夜久久久在线观看| 日本91视频免费播放| 久久精品久久久久久噜噜老黄| a级毛片黄视频| 免费女性裸体啪啪无遮挡网站| 亚洲,一卡二卡三卡| 亚洲性久久影院| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕免费大全7| 国产亚洲一区二区精品| 视频在线观看一区二区三区| 亚洲国产色片| 午夜福利网站1000一区二区三区| 中文字幕精品免费在线观看视频 | 性色avwww在线观看| www.av在线官网国产| 色视频在线一区二区三区| 尾随美女入室| 国产日韩一区二区三区精品不卡| 久久毛片免费看一区二区三区| 十分钟在线观看高清视频www| 女的被弄到高潮叫床怎么办| 最黄视频免费看| 丰满饥渴人妻一区二区三| 国产精品 国内视频| 亚洲国产精品成人久久小说| 男女免费视频国产| 中文乱码字字幕精品一区二区三区| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 麻豆精品久久久久久蜜桃| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 国产欧美亚洲国产| 日日爽夜夜爽网站| 亚洲成色77777| 国产成人a∨麻豆精品| 女人久久www免费人成看片| 日日爽夜夜爽网站| 波野结衣二区三区在线| 精品国产国语对白av| 精品酒店卫生间| 黄色毛片三级朝国网站| 亚洲成色77777| 热re99久久国产66热| 国产白丝娇喘喷水9色精品| 一二三四中文在线观看免费高清| 秋霞伦理黄片| 欧美另类一区| 国产毛片在线视频| 久久97久久精品| 九草在线视频观看| 亚洲成人手机| 狠狠婷婷综合久久久久久88av| 99久久综合免费| 久久女婷五月综合色啪小说| 日韩免费高清中文字幕av| 国产高清不卡午夜福利| 99久久精品国产国产毛片| 免费女性裸体啪啪无遮挡网站| 成人无遮挡网站| 精品国产一区二区三区久久久樱花| 免费观看性生交大片5| 91精品三级在线观看| 看免费av毛片| 免费av不卡在线播放| 亚洲高清免费不卡视频| 美女脱内裤让男人舔精品视频| 精品一区在线观看国产| 香蕉精品网在线| 欧美日本中文国产一区发布| 久久这里只有精品19| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| 久久精品国产自在天天线| 婷婷色综合www| 99re6热这里在线精品视频| 女人精品久久久久毛片| 如何舔出高潮| 国产永久视频网站| 久久国产亚洲av麻豆专区| tube8黄色片| 日本av免费视频播放| 日韩免费高清中文字幕av| 久久毛片免费看一区二区三区| 国产精品无大码| 老司机影院成人| 久久久国产精品麻豆| 欧美国产精品一级二级三级| 男人舔女人的私密视频| 91午夜精品亚洲一区二区三区| 9热在线视频观看99| 亚洲av欧美aⅴ国产| 国产精品一区www在线观看| 亚洲精品自拍成人| 国产成人欧美| 日本vs欧美在线观看视频| 国产高清三级在线| 97在线视频观看| 热99久久久久精品小说推荐| 看免费av毛片| 99国产综合亚洲精品| 亚洲欧美清纯卡通| 天天躁夜夜躁狠狠久久av| 国产乱来视频区| 午夜av观看不卡| 女人被躁到高潮嗷嗷叫费观| 一级毛片 在线播放| 国产高清三级在线| av一本久久久久| 在线精品无人区一区二区三| 好男人视频免费观看在线| 免费观看av网站的网址| 久久久久国产精品人妻一区二区| freevideosex欧美| 纯流量卡能插随身wifi吗| 美女国产视频在线观看| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| 夜夜爽夜夜爽视频| 国产片内射在线| 99国产精品免费福利视频| 美女福利国产在线| av.在线天堂| 国产成人aa在线观看| 国产精品国产三级专区第一集| 亚洲av免费高清在线观看| 一级片免费观看大全| 在线观看www视频免费| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 777米奇影视久久| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 美女脱内裤让男人舔精品视频| 亚洲欧美清纯卡通| 1024视频免费在线观看| 纯流量卡能插随身wifi吗| 一级毛片 在线播放| 在线观看一区二区三区激情| www.熟女人妻精品国产 | 成人影院久久| 久久久久国产网址| 最近手机中文字幕大全| 亚洲av中文av极速乱| 欧美成人精品欧美一级黄| 国产麻豆69| 精品一区二区三卡| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久精品电影小说| 90打野战视频偷拍视频| 男人爽女人下面视频在线观看| 制服丝袜香蕉在线| 亚洲人与动物交配视频| av免费观看日本| 乱码一卡2卡4卡精品| 免费久久久久久久精品成人欧美视频 | 免费大片18禁| 大陆偷拍与自拍| 97人妻天天添夜夜摸| 2022亚洲国产成人精品| 精品99又大又爽又粗少妇毛片| 少妇人妻 视频| 亚洲三级黄色毛片| 亚洲国产精品一区三区| 黑丝袜美女国产一区| 亚洲四区av| 蜜臀久久99精品久久宅男| 免费黄网站久久成人精品| 亚洲成国产人片在线观看| 国产不卡av网站在线观看| 亚洲 欧美一区二区三区| 肉色欧美久久久久久久蜜桃| 99热6这里只有精品| 久久久久精品久久久久真实原创| 精品人妻一区二区三区麻豆| 男女国产视频网站| videosex国产| 美女国产高潮福利片在线看| 久久99蜜桃精品久久| 精品人妻一区二区三区麻豆| 伦理电影免费视频| 亚洲av电影在线进入| 国产 精品1| 欧美日韩视频精品一区| 十八禁高潮呻吟视频| 免费av中文字幕在线| 久久久久精品人妻al黑| 欧美国产精品va在线观看不卡| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三区在线| 国产精品国产三级国产av玫瑰| 久久国产精品男人的天堂亚洲 | videosex国产| 国产精品99久久99久久久不卡 | 日韩一本色道免费dvd| 国产一级毛片在线| 亚洲成国产人片在线观看| 尾随美女入室| 春色校园在线视频观看| 欧美日韩成人在线一区二区| videos熟女内射| www.熟女人妻精品国产 | 亚洲精品日本国产第一区| 免费人妻精品一区二区三区视频| 中文字幕制服av| 五月玫瑰六月丁香| 欧美+日韩+精品| 一本大道久久a久久精品| 18在线观看网站| 久久精品国产亚洲av天美| 欧美国产精品一级二级三级| videosex国产| 亚洲五月色婷婷综合| 国产一区二区在线观看av| 久久婷婷青草| 国精品久久久久久国模美| 制服丝袜香蕉在线| 国产精品蜜桃在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情 高清一区二区三区| 国产av国产精品国产| 亚洲精品aⅴ在线观看| 国产一级毛片在线| 大片电影免费在线观看免费| 国产一区二区激情短视频 | 精品一品国产午夜福利视频| 国产免费视频播放在线视频| 一级,二级,三级黄色视频| 中文字幕免费在线视频6| 亚洲综合色网址| 黄色一级大片看看| 美女国产高潮福利片在线看| 人人妻人人澡人人看| 午夜免费观看性视频| 久久 成人 亚洲| 日韩一本色道免费dvd| 国产在线一区二区三区精| 搡老乐熟女国产| 全区人妻精品视频| 国产无遮挡羞羞视频在线观看| 视频区图区小说| 热99久久久久精品小说推荐| 亚洲综合精品二区| 香蕉国产在线看| 欧美97在线视频| 亚洲色图综合在线观看| 边亲边吃奶的免费视频| 国产深夜福利视频在线观看| 有码 亚洲区| 熟女av电影| 一本久久精品| 免费观看a级毛片全部| 欧美97在线视频| 国精品久久久久久国模美| 一级,二级,三级黄色视频| 新久久久久国产一级毛片| 国产日韩一区二区三区精品不卡| 伦理电影大哥的女人| 久久久久国产精品人妻一区二区| 免费在线观看黄色视频的| 久久毛片免费看一区二区三区| 亚洲精品av麻豆狂野| 男的添女的下面高潮视频| 成年av动漫网址| 久久ye,这里只有精品| 肉色欧美久久久久久久蜜桃| 性色av一级| 搡女人真爽免费视频火全软件| 自线自在国产av| 爱豆传媒免费全集在线观看| 国产xxxxx性猛交| 国产亚洲欧美精品永久| 蜜桃在线观看..| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| 啦啦啦中文免费视频观看日本| 少妇高潮的动态图| 最近手机中文字幕大全| 一级,二级,三级黄色视频| 飞空精品影院首页| 十分钟在线观看高清视频www| 丁香六月天网| 国国产精品蜜臀av免费| 国产毛片在线视频| 午夜福利视频精品| 精品熟女少妇av免费看| 亚洲国产精品成人久久小说| 国产一区二区三区av在线| 韩国精品一区二区三区 | 成年av动漫网址| 国产精品人妻久久久影院| 欧美老熟妇乱子伦牲交| 亚洲色图综合在线观看| 精品熟女少妇av免费看| 侵犯人妻中文字幕一二三四区| 亚洲一码二码三码区别大吗| 欧美丝袜亚洲另类| 草草在线视频免费看| 久久精品熟女亚洲av麻豆精品|