• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    亞臨界和超臨界二氧化碳-甲醇混合氣相及液相區(qū)中甲醇核磁弛豫速率比較研究

    2016-12-29 05:42:32程曉蒙李宏平鄭曉芳
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:混合氣混合物超臨界

    程曉蒙 李 宇 陳 總 李宏平 鄭曉芳

    (鄭州大學(xué)化學(xué)與分子工程學(xué)院,鄭州450001)

    亞臨界和超臨界二氧化碳-甲醇混合氣相及液相區(qū)中甲醇核磁弛豫速率比較研究

    程曉蒙 李 宇 陳 總 李宏平*鄭曉芳

    (鄭州大學(xué)化學(xué)與分子工程學(xué)院,鄭州450001)

    用核磁共振氫譜測(cè)量了不同溫度(293.15和308.15 K)及壓力高達(dá)25 MPa下二氧化碳-甲醇混合氣相(超臨界)及液相區(qū)(亞臨界)中甲醇(羥基及甲基)的縱向弛豫時(shí)間T1,exp。本工作的目的是考察近臨界區(qū)二氧化碳-甲醇混合物的壓力、溫度及組成對(duì)甲醇弛豫速率的影響,揭示混合物不同相區(qū)(氣相及液相區(qū))中自旋-晶格弛豫(SLR)過(guò)程的機(jī)理。此外,還對(duì)比研究了等溫條件下超臨界和亞臨界混合氣相及液相區(qū)中甲醇的SLR速率1/T1,exp隨混合物密度的變化規(guī)律。研究發(fā)現(xiàn),在本工作所涉及的溫度及壓力區(qū)間,對(duì)于純甲醇或液相區(qū)其SLR過(guò)程是以偶極-偶極(DD)作用機(jī)理為主導(dǎo),而在氣相區(qū)SLR過(guò)程則是以自旋-轉(zhuǎn)動(dòng)(SR)作用機(jī)理占優(yōu)勢(shì),也即,超臨界和亞臨界二氧化碳-甲醇混合物的SLR過(guò)程在不同相區(qū)有不同的作用機(jī)理控制。由于甲醇的SLR弛豫速率1/T1,exp是由甲醇分子間及分子內(nèi)的DD作用和SR作用三部分共同決定的,所以研究超臨界和亞臨界二氧化碳-甲醇混合物的SLR弛豫速率隨壓力、濃度及溫度的變化規(guī)律有助于提供更多該混合物不同相態(tài)區(qū)分子間相互作用的動(dòng)態(tài)學(xué)信息。

    二氧化碳-甲醇混合物;偶極-偶極作用機(jī)理;亞臨界和超臨界流體;自旋-晶格弛豫速率;自旋-轉(zhuǎn)動(dòng)作用機(jī)理

    1 Introduction

    Scientists have paid more attention to near critical fluids(NCFs) and supercritical fluids(SCFs)1-4,and NCFs/SCFs can be used in many processes,such as chemical reactions2,4-7,extraction and fractionation8,9,and material processing8,10,11.The eco-friendly NCFs/SCFs can be employed as ideal solvent media to substantially replace organic solvents while simultaneously reducing the environmental burden of a given process.Moreover,NC/SC technologies possess many advantages,which will solve more challenging problems after our fundamental knowledge of NCFs/ SCFs improves.As we know,the practical application systems are usually mixtures,and the mixtures near the critical region behave much differently from those in other phase regions.However, some important issues should be further examined.For instance, how do the properties of a subcritical fluid differ quantitatively from those of a SCF near the critical region?How do the microdynamics and micro-structure of the components influence the properties of the fluids near the critical region?

    It is well known that the features of the NCFs/SCFs are originated from their specific intermolecular interactions.Different methods have been introduced to study those interactions in NCFs/ SCFs,such as spectroscopy6,7,12,13,simulation14,15,calorimetry16,17,and small-angle X-ray scattering(SAXS)18,19.Among them,spectroscopic investigations of model systems as CO2-alkanol on thermodynamic and molecular dynamic background represent a current research area.Thus far CO2-methanol fluids,a scientifically interesting and a technologically important class of mixed solvents have enjoyed the most attention,and a number of authors have reported vibrational spectroscopy20-23,NMR spectroscopy24-31, absorption and emission spectra13as well as molecular dynamics simulation14on such systems.Meanwhile,NMR spectroscopy is regarded as a very informative method to probe the properties of fluids on a microscopic level,and NMR spectroscopy at NCFs/ SCFs conditions also has potential applications in the studies of hydrogen bonds or reaction monitoring24as molecular structural changes induced by pressure on hydrogen bonds are also very interesting topics.Moreover,measurement of nuclear magnetic relaxation times can offer micro-dynamic and micro-structural information and are thus very useful for the study of fluids of strongly interacting molecules.In CO2-methanol mixture,mutual influence of electric dipoles as well as hydrogen bonds on the nuclear magnetic relaxation times helps reveal the structure of the fluid and its molecular dynamics.The13C nuclear spin-lattice relaxation(SLR)studies on CO2(1)+methanol(2)were made at supercritical conditions by Grant group25,32,one work focused on the CO2clustering25,and another studied hydrogen bonding of methanol in supercritical CO2(ScCO2)32.However,the data were from a relatively narrow range of states(only one composition x2= 0.042 was examined)to investigate temperature(288-348 K25, 287-334 K32),pressure(8.0-20.0 MPa)and density effects on the SLR processes.The1H NMR longitudinal relaxation times(T1obs) of water in ScCO2were examined as a function of water density (313.3 K,10 and 20 MPa)by Kanakubo and coworkers,and they found that 1/T1obslinearly decreased with increasing water density up to approximate 12 mol·m-3and then kept unchanged at higher density33.Many nuclear spin interaction mechanisms may affect the longitudinal relaxation times(T1)values,among them,the spinrotation(SR)and the dipole-dipole(DD)mechanisms are the most important ones in the sub-and supercritical CO2mixtures25. Nevertheless,such topic as how the SLR processes may differ in subcritical or supercritical gas-like and liquid-like regions remains little explored.Hence in this work,the1H NMR longitudinal relaxation times of methanol in sub-and supercritical CO2were obtained as a function of pressure and temperature,respectively. The present work will help readers to understand the mechanism of the SLR time in different phase regions of CO2-methanol as homogenous gas-like,and liquid-like mixtures(the vapor-liquid equilibria(VLE)data are shown in Scheme 134,35).We demonstrate herein that there exists an obvious phase dependent SLR mechanism within the temperature and pressure range carried outherein,that is,the SLR process is dominated by the DD mechanism in both subcritical liquid-like mixture and methanol,whereas by the SR mechanism in supercritical gas-like mixture.We also find what is the most sensitive dynamic variable to probe or reflect the hydrogen bond information between methanol molecules in near critical CO2mixtures.The present study is sure to broaden our knowledge of molecular dynamics in near critical CO2-alkanol systems.

    Scheme 1 Schematic representation of the mixtures of CO2(1)+methanol(2)in different phase regions

    2 Experimental

    The1H NMR spectra were recorded by a Varian Unity Inova 400 MHz NMR spectrometer(USA)with a SFC NMR flow probe described by Maiwald and coworkers24.CO2(purity higher than 99.995%,Messer-Griesheim,Germany)and methanol(HPLC grade,purity higher than 99.9%,Merck,Darmstadt,Germany) were used as received.A standard inversion recovery pulse sequence was used to measure the spin-lattice relaxation times.The densities of mixtures were measured by a vibrating tube densimeter(Anton Paar,DMA 512 P,Austria).The pressure was measured by a pressure transducer(HKM-375M-350 bar SG, Kulite Semi Conductor Products,Leonia,USA),and the temperature was kept constant by a Thermo Haake C41P and K20 thermostat(Germany)for NMR and densimeter,respectively. Details about the experimental setup,sample preparation as well as the density measurements were described previously24.The SLR time measurements were made in this work on methyl and hydroxyl protons of methanol in CO2mixtures,respectively.Thus the relaxation data will reflect both the methyl and hydroxyl group dynamics and their change with temperature,pressure and density of fluid.The VLE data of CO2and methanol mixture at different temperatures are illustrated in Scheme 1.The critical parameters of the binary mixture at 308.15 K are critical composition(xC,CO2) in the range of 0.883-0.973 and critical pressure(Pc,mix)of 7.01 MPa34,respectively.Although we could not find the exact value of Pc,mixat 293.15 K,we know that Pc,mix(293.15 K)should fall in between Pc,mix(291.15 K)and Pc,mix(298.15 K).Since the estimated Pc,mixat 291.2 and 298.2 K are 4.33 MPa34and 6.23 MPa(with=0.9693)35,respectively,the value of Pc,mix(293.15 K)is sure to be within the range of 4.33-6.23 MPa or lower than 6.23 MPa. Herein,the pressures must be finely controlled to ensure the mixtures being in single phase regions,and the gas-like and liquidlike mixtures(as illustrated in Scheme 1)refer to super-and subcritical fluids,respectively,at the experimental conditions under study(temperature at two isotherms of 293.15 and 308.15 K; pressures from Plowup to 25 MPa,and the value of Plowwas selected to be higher than the critical pressure of the mixture under investigation).

    In the present work,the1H SLR times of both methyl T1,exp(CH3) and hydroxyl groups T1,exp(OH)of methanol in near critical CO2have been determined over a range of pressure up to 25 MPa at two isotherms of 293.15 and 308.15 K and along three isopleths (shown in Scheme 1),which corresponded to the methanol mole fraction of x2=0.0091(supercritical gas-like mixture),0.6607 (subcritical liquid-like mixture),and 1.0(pure liquid methanol). Hereof,for the binary mixture under study,critical fluid refers to a fluid with critical composition and a pressure above the critical pressure,whereas subcritical fluids mean homogenous fluids above the bubble-point curve16,as illustrated in Scheme 1.

    3 Results and discussion

    The measured1H relaxation rate,,has three possible contributions from intermolecular DD,intramolecular DD,and SR interactions(1 T1SR),which is given by Eq.(1)36:

    Under the“extreme narrowing approximation”,the given relaxation rates can be approximated as33,36

    τr,τtrans,and Dtrepresent the rotational correlation time,the translational correlation time,and the translational diffusion coefficient,respectively.τJis the angular momentum correlation time and T the thermodynamic temperature.Herein,τJcorresponds to the average time between collisions leading to the angular momentum energy transfer.We expect that as density of the mixture increases,the collision between solute molecules become frequent,which will shorten the angular momentum correlation time, that is,1/T1SRof the solute molecules.So the spin-rotational interactions are thought to be molecular collision frequencies dependent,which closely relates to those macroscopic properties such as temperature and density of fluid,whereas the dipolar interactions are temperature and fluid viscosity dependent.As the viscosity of fluid could be expressed as a function of density,the above two correlation times(T1SRandT1DD)thus can be treated as functions of densities of the fluid,and then the experimental relaxation rate(1/T1,exp)is certainly dependent on density and temperature according to the relationship shown in Eq.(1).In the following sections,we will distinguish between the spin-rotational and the dipolar contributions to the relaxation rate,and see how the SLR processes behave in different near critical regions,and explore whether there exists any dominant contributions in near critical gas-like and liquid-like regions.

    3.1 Density and temperature dependence of spinlattice relaxation rate(1/T1,exp)of both methyl [1/T1,exp(CH3)]and hydroxyl groups[1/T1,exp(OH)]of methanol in sub-and super-critical mixture of CO2and methanol

    The dominance of one of the two relaxation mechanisms under consideration can be easily recognized due to their different density(or concentration)33and temperature dependence37.Firstly, the density dependence of 1/T1,exp:it is expected that the collision frequency of methanol molecules in mixture will be enhanced as the density of mixture(ρmix)increases,which will shorten the τJ, thus leads to a reduction inof methaol molecules.Therefore, a negative slope of 1/T1,expwith ρmixis typical for a dominating SRrelaxation according to Eqs.(1)and(3),and it is the case for gas like mixtures(x2=0.0091)as shown in Figs.1 and 2.Concerning the liquid like mixture(x2=0.6607)and methanol(x2=1.0),the association degree of hydrogen bond is promoted as ρmixincreases38,then both the rotational and translational motions of methanol in near critical CO2will be slowed down33.In other words,τrand 1/Dtincrease with ρmix.And if DD contribution is predominant,τrand Dtof methanol in near critical CO2should play an important role in the intramolecular relaxation timeand the intermolecular relaxation time,respectively33,which brings about a positive slope of 1/T1,expwith ρmixaccording to Eqs. (1)and(2).Secondly,the temperature influence on 1/T1,exp:as can be seen from Hubbard′s relation39and Eq.(3),both τJand the SR relaxation rate 1/T1SRincrease with increasing temperature,whereas τrand τtransand thus the DD relaxation rates,decrease with increasing temperature36.Briefly,the relaxation rate 1/T1,expdecreases simultaneously with increasing ρmixand decreasing temperature for SR mechanism,whereas for DD mechanism the 1/T1,expincreases with increasing ρmixand decreasing temperature33,36,37.

    3.2Phase dependent relaxation mechanisms in sub-and super-critical CO2+methanol mixtures

    If both relaxation mechanisms contribute with the same amount in gas-like mixture,then in the density dependence of 1/T1,expthe sign of the slope may change and a minimum occurs,so does it for liquid-like mixture.However,the observed monotonous linear density dependences of 1/T1,expin Figs.1 and 2 indicate that only one relaxation contribution is possibly predominant in gas-like and liquid-like regions,respectively.The phase regions of the dominance of the DD and of the SR relaxation under consideration can be clearly demonstrated37with a diagram as Fig.1,showing the total relaxation rate 1/T1,exp(CH3)as a function of temperature and ρmix.It is evident from Fig.1,a negative density dependence of 1/T1,exp(CH3)at the two isotherms in gas-like regions suggests a dominant SR contribution to the overall SLR at this region, whereas a positive density dependence of 1/T1,exp(CH3)at the two isotherms reflects that the DD interactions predominate the relaxation process for both liquid-like mixture and methanol.A similar trend was also observed in Fig.2 for the rate of hydroxyl group,the values of 1/T1,exp(OH)linearly decrease with increasing density in gas-like mixture(x2=0.0091)whereas linearly increase with the increase in density for both liquid-like mixtures(x2= 0.6607)and methanol.

    Fig.1 Experimental relaxation rate of methyl group 1/T1,exp(CH3) isotherms(for methanol in CO2)in different phase regions plotted in dependence of density of CO2(1)+methanol(2)mixtures

    Fig.2 Spin lattice relaxation rate of hydroxyl group 1/T1,exp(OH) isotherms as a function of density of CO2(1)+methanol(2)mixtures

    Fig.3 Spin-lattice relaxation time of hydroxyl group T1,exp(OH) isotherms as a function of pressure for liquid-like CO2(1)+ methanol(2)mixtures(x2=0.6607,triangles)and methanol(x2=1.0,circles)

    The spin-lattice relaxation time of hydroxyl group T1,exp(OH)and methyl group T1,exp(CH3)isotherms as a function of pressure for near critical CO2+methanol mixtures including gas-like mixture (x2=0.0091),liquid-like mixture(x2=0.6607)and methanol(x2= 1.0)are shown in Figs.3-6,respectively.As it can be seen from Figs.3-6,the pressure dependence of relaxation times of hydroxyl group at the isotherms resembles that of the methyl group.We believe that the observed density dependence of 1/T1,expreveals astructural change in the hydrogen bonding between methanol molecules in mixtures.The degree of hydrogen bonding association between methanol molecules is stronger in pure methanol than that in liquid-like mixture38at constant temperature,which will slow down the rotational and translational motion of methanol,that is,a larger rise is expected inτrand 1/Dtvalues with increasing density or pressure for pure methanol compared with liquid-like mixture,therefore at constant temperature,the results of 1/T1,exp(x2=1.0)>1/T1,exp(x2=0.6607)(Figs.1 and 2)or T1,exp(x2= 1.0)<T1,exp(x2=0.6607)(Figs.3 and 5)can be reasonably explained under DD mechanism based on the formulae shown in Eqs.(1)and (2).As to the temperature dependence of relaxation time at constant methanol mole fraction,the higher the temperature,the less amount of hydrogen bonding in mixture,then both the rotational and translational motions of methanol in near critical CO2get accelerated with increasing temperature33.That is,the value of τrand τtranswill decrease with increasing temperature,which directly results in an increase in the value of T1DDwith increasing temperature according to Eq.(2).As exhibited in Figs.3 and 5,the temperature dependence of the relaxation time as T1,exp(308.15 K)>T1,exp(293.15 K)represents a characteristic DD-dominant mechanism in liquid-like region.Similarly,τJincreases with increasing temperature39,which leads to a decline in T1SRfollowing a rise in temperature according to Eq.(3).In other words,the temperature tendency of T1,exp(308.15 K)<T1,exp(293.15 K)in gas-like region (Figs.4 and 6)agrees with a feature of a SR-dominant mechanism.

    3.3Correlation of spin-lattice relaxation rate of hydroxyl group[1/T1,exp(OH)]isotherms in suband super-critical CO2+methanol mixtures

    Fig.4 Spin-lattice relaxation time of hydroxyl group T1,exp(OH) isotherms as a function of pressure for gas-like CO2(1)+ methanol(2)mixture(x2=0.0091)

    As it can be seen from Fig.1 and 2,the density dependence of relaxation rates of hydroxyl group at the two isotherms behaves in a similar way as that of the methyl group,and therefore in the following part,we will only pay attention to the relationship between the relaxation rates of hydroxyl group and the density of mixtures.

    From Fig.2,we could find that there exists a linear relationship between the density of mixture ρmixand the relaxation rate of hydroxyl group 1/T1,exp(OH),and then the data of 1/T1,exp(OH)were correlated with the ρmixdata using a linear regression equation given by

    For both methanol(x2=1.0000)and liquid-like mixture(x2= 0.6607),as the temperature impact upon 1/T1,exp(OH)is negligibly small,the weak temperature influence could be neglected,and hence we could merge two isotherms of density dependence of 1/T1,exp(OH)at 293.15 and 308.15 K for methanol(x2=1.0000)and fitted the two isotherms using the same set of parameters.Similarly,we also incorporated the two isotherms of 1/T1,exp(OH)-ρmixpairs at 293.15 and 308.15 K and simulated them using identical set of parameters for liquid-like mixture(x2=0.6607).The linear fit results for methanol and the near critical CO2(1)+methanol(2)mixtures are tabulated in Table 1.It is obvious from the A1(slope) values in Table 1 that the relaxation rates in methanol are more sensitive to the density change than that in liquid-like mixture when DD is the predominant relaxation.However,the temperature influence in gas-like mixture(x2=0.0091)is significant and cannot be ignored,and the relaxation rate correlation was then treated using different fitting parameters for 293.15 and 308.15 K isotherms,respectively.

    Fig.6 Spin-lattice relaxation time of methyl group T1,exp(CH3) isotherms as a function of pressure for gas-like CO2(1)+ methanol(2)mixture(x2=0.0091)

    Table 1 Linear fit parameters of Eq.(4)afor methanol and CO2(1)+methanol(2)mixturesb

    In brief,it is found that temperature plays a more important role in the SLR process in gas-like mixture when spin-rotation is the dominant contribution as shown in Figs.1,2,4 and 6,whereas pressure or density has considerable impact upon the relaxation time or rate in methanol and liquid-like mixture when dipoledipole mechanism predominates the relaxation process(Table 1, Figs.1-3 and Fig.5).In contrast,the1H proton longitudinal relaxation times of H2O in ScCO2were studied at 313.3 K(10 and 20 MPa)by Kanakubo and coworkers33,and they also reported that the relaxation rate decreased linearly with increasing water density up to approximate 12 mol·m-3and then kept unchanged at higher density,which agrees well with our assumption that spin-rotation interaction is the predominant mechanism at low concentration or density of the mixture.Since the density dependence of 1/T1,expin gas-like regions is mainly spin-rotation mechanism,that means 1/T1,exp∝,and as we know∝TτJ,so the above density dependence of 1/T1,expreflects a change in τJof methanol in ScCO2,together with the hydrogen bonding between methanol molecules in the mixture.In other words,the angular momentum correlation time τJis a very sensitive variable to probe the hydrogen bonding information between methanol molecules in ScCO2mixture.

    4 Conclusions

    In summary,the phase dependent relaxation mechanism becomes obvious as ρmixis used as variable.The decrease in ρmixmakes the SLR process switch from dipole-dipole to spin-rotation mechanism,and the transition between the two different relaxation mechanisms as well as their dependence on density and temperature are clearly observed.We demonstrate that the spin-rotation mechanism predominates in gas-like region with significant temperature impact(Figs.1,2,4 and 6),whereas the dipole-dipole mechanism is the dominant contribution for both methanol and liquid-like mixture with minor or negligible temperature effect (Figs.1 and 2).

    (1) Liu,H.Z.;Jiang,T.;Han,B.X.;Liang,S.G.;Zhou,Y.X. Science 2009,326,1250.doi:10.1126/science.1179713

    (2) Ke,J.;Han,B.X.;George,M.W.;Yan,H.K.;Poliakoff,M.J. Am.Chem.Soc.2001,123,3661.doi:10.1021/ja003446o

    (3) Jessop,P.G.;Subramaniam,B.Chem.Rev.2007,107,2666. doi:10.1021/cr040199o

    (4) Kajimoto,O.Chem.Rev.1999,99,355.doi:10.1021/cr970031l

    (5) Hou,Z.S.;Han,B.X.;Zhang,X.G.;Zhang,H.F.;Liu,Z.M. J.Phys.Chem.B 2001,105,4510.doi:10.1021/jp003903n

    (6) Li,H.P.;Han,B.X.;Liu,J.;Gao,L.;Hou,Z.S.;Jiang,T.;Liu, Z.M.;Zhang,X.G.;He,J.Chem.Eur.J.2002,8,5593. doi:0947-6539/02/0824-5593

    (7) Li,H.P.;Liu,J.;Han,B.X.;Gao,L.Fluid Phase Equilibr. 2002,200,111.doi:10.1016/S0378-3812(02)00021-3

    (8) McHugh,M.A.;Kukonis,V.J.Supercritical Fluid Extraction, 2nd ed.;Butterworth-Heinmann:Boston,1994.

    (9) Brunner,G.Gas Extraction:An Introduction to Fundamentals of Supercritical Fluids and their Application to Separation Processes;Steinkopff Darmstadt:New York,1994.

    (10) Cheng,X.;Huang,S.;Li,H.;An,N.;Wang,Q.;Li,Y.RSC Advances 2016,6,4545.doi:10.1039/c5ra25725e

    (11) Xue,W.;Qi,L.;Li,X.;Huang,S.;Li,H.;Guan,X.;Bai,G.; Liu,L.E.Chem.Eng.J.2012,209,118.doi:10.1016/j. cej.2012.08.022

    (12) Li,H.P.;Liu,J.;Zhang,H.F.;Wang,S.G.;Han,B.X.;Liu,F. F.J.Supercrit.Fluids 2001,21,227.doi:10.1016/S0896-8446 (01)00097-3

    (13) Li,H.P.;Arzhantsev,S.;Maroncelli,M.J.Phys.Chem.B 2007, 111,3208.doi:10.1021/jp067916y

    (14) Li,H.P.;Maroncelli,M.J.Phys.Chem.B 2006,110,21189. doi:10.1021/jp064166j

    (15) Zhang,X.G.;Han,B.X.;Zhang,J.L.;Li,H.P.;He,J.;Yan,H. K.Chem.Eur.J.2001,7,4237.doi:0947-6539/01/0719-4237

    (16) Li,H.P.;Zhang,X.G.;Han,B.X.;Liu,J.;He,J.;Liu,Z.M. Chem.Eur.J.2002,8,451.doi:0947-6539/02/0802-0451

    (17) Mu,T.C.;Zhang,X.G.;Han,B.X.;Li,H.P.;Liu,J.C.;Wu, W.Z.;Chen,J.W.;Du,J.M.Fluid Phase Equilibr.2003,214, 53.doi:10.1016/S0378-3812(03)00315-7

    (18) Zhang,J.L.;Han,B.X.;Zhao,Y.J.;Li,J.S.;Yang,G.Y. Chem.Eur.J.2011,17,4266.doi:10.1002/chem.201002153

    (19) Zhao,Y.J.;Zhang,J.L.;Wang,Q.A.;Li,J.S.;Han,B.X. Phys.Chem.Chem.Phys.2011,13,684.doi:10.1039/C0CP00869A

    (20) Asprion,N.;Hasse,H.;Maurer,G.Fluid Phase Equilbr.2001, 186,1.doi:10.1016/S0378-3812(01)00363-6

    (21) Bai,S.;Yonker,C.R.J.Phys.Chem.A 1998,102,8641. doi:10.1021/jp981302e

    (22) Bulgarevich,D.S.;Otake,K.;Sako,T.;Sugeta,T.;Takebayashi, Y.;Kamizawa,C.;Shintani,D.;Negishi,A.;Tsurumi,C.J. Chem.Phys.2002,116,1995.doi:10.1063/1.1431585

    (23) Bulgarevich,D.S.;Sako,T.;Sugeta,T.;Otake,K.;Takebayashi, Y.;Kamizawa,C.;Horikawa,Y.;Kato,M.Ind.Eng.Chem.Res. 2002,41,2074.doi:10.1021/ie0106332

    (24) Maiwald,M.;Li,H.;Schnabel,T.;Braun,K.;Hasse,H.J. Supercrit.Fluids 2007,43,267.doi:10.1016/j. supflu.2007.05.009

    (25) Bai,S.;Taylor,C.M.V.;Liu,F.;Mayne,C.L.;Pugmire,R.J.; Grant,D.M.J.Phys.Chem.B 1997,101,2923.doi:10.1021/ S1089-5647(96)04048-5

    (26) Wallen,S.L.;Palmer,B.J.;Garrett,B.C.;Yonker,C.R.J. Phys.Chem.1996,100,3959.doi:10.1021/jp9524082

    (27) Nikiforov,M.Y.;Lukyanchikova,I.A.;Grechukhin,M.V.; Alper,G.A.;Krestov,G.A.Russ.J.Phys.Chem.1996,70,968.

    (28) Ke,J.;Jin,S.;Han,B.;Yan,H.;Shen,D.J.Supercrit.Fluids 1997,11,53.doi:10.1016/S0896-8446(97)00029-6

    (29) Hoffmann,M.M.;Conradi,M.S.J.Phys.Chem.B 1998,102, 263.doi:10.1021/jp9726706

    (30) Kanakubo,M.;Aizawa,T.;Kawakami,T.;Sato,O.;Ikushima, Y.;Hatakeda,K.;Saito,N.J.Phys.Chem.B 2000,104,2749. doi:10.1021/jp992278n

    (31) Bich,E.;Hensen,U.;Michalik,M.;Wandschneider,D.;Heintz, A.Phys.Chem.Chem.Phys.2002,4,5827.doi:10.1039/ B205242C

    (32) Taylor,C.M.V.;Bai,S.;Mayne,C.L.;Grant,D.M.J.Phys. Chem.B 1997,101,5652.doi:10.1021/jp964049w

    (33) Kanakubo,M.;Liew,C.C.;Aizawa,T.;Kawakami,T.;Sato,O.; Ikushima,Y.;Hatakeda,K.;Saito,N.Chem.Lett.2000,1320. doi:10.1246/cl.000819

    (34) Chang,C.J.;Chiu,K.L.;Day,C.Y.J.Supercrit.Fluids 1998, 12,223.doi:10.1016/S0896-8446(98)00076-X

    (35) Brunner,E.;Hültenschmidt,W.;Schlichth?rle,G.J.Chem. Thermodyn.1987,19,273.doi:10.1016/0021-9614(87)90135-2

    (36) Mussig,S.,Franck,E.U.;Holz,M.Zeit.Phys.Chem.(Inter.J. Res.Phys.Chem.Chem.Phys.)2000,214,957.doi:10.1524/ zpch.2000.214.7.957

    (37) McConnell,J.Theory of Nuclear Magnetic Relaxation in Liquids;Cambridge University Press:Cambridge,1987.

    (38) Schnabel,T.;Srivastava,A.;Vrabec,J.;Hasse,H.J.Phys. Chem.B 2007,111,9871.doi:10.1021/jp0720338

    (39) Hubbard,P.S.Phys.Rev.1963,131,1155.doi:10.1103/ PhysRev.131.1155

    A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2and Methanol

    CHENG Xiao-Meng LIYu CHEN Zong LIHong-Ping*ZHENG Xiao-Fang
    (College of Chemistry and Molecular Engineering,Zhengzhou University,Zhengzhou 450001,P.R.China)

    1H NMR longitudinal relaxation times(T1,expof the hydroxyl and methyl group)of methanol in supercritical and subcritical gas-like and liquid-like CO2+methanol mixtures were obtained as a function of pressure up to 25 MPa and at 293.15 and 308.15 K,respectively.This study was designed to investigate the mechanism of the spin-lattice relaxation(SLR)time T1in different phase regions of CO2+methanol as homogenous gas-like,and liquid-like mixtures,and the influence of pressure,temperature,and composition on the relaxation rate was examined.Moreover,the density dependent isotherms of the SLR rates 1/T1,expwere comparatively studied between gas-like and liquid-like binary mixtures.There exists an obvious phase dependent SLR mechanism within the temperature and pressure range carried out herein,that is,the SLR process is dominated by the dipole-dipole(DD)interaction mechanism for both liquid-like mixture and methanol,whereas by the spin-rotation(SR)mechanism for gas-like mixture.Measurement of nuclear magnetic relaxation times can offer micro-dynamic and micro-structural information and are very useful for the study of fluids of stronglyinteracting molecules.Mutual influence of electric dipoles as well as hydrogen bonds helps determine the structure of the fluid and its molecular dynamics.The present work increases our knowledge of molecular dynamics of alcohols in sub-and supercritical CO2.

    CO2-methanol mixture;Dipole-dipole interaction mechanism;Subcritical and supercritical fluid;Spin-lattice relaxation rate;Spin-rotation mechanism

    O645

    10.3866/PKU.WHXB201608122

    Received:July 14,2016;Revised:August 3,2016;Published online:August 12,2016.

    *Corresponding author.Email:lihongping@zzu.edu.cn;Tel:+86-371-67781205.

    The project was supported by the National Natural Science Foundation of China(21543009,21073167,J1210060),and Innovative Research Grant for Undergraduate Students of National/Zhengzhou University,China(201410459047,201510459046,2016xjxm259).

    國(guó)家自然科學(xué)資金(21543009,21073167,J1210060)和國(guó)家級(jí)、鄭州大學(xué)大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃(201410459047,201510459046,2016xjxm259)資助項(xiàng)目

    猜你喜歡
    混合氣混合物超臨界
    多組分纖維混合物定量分析通用計(jì)算模型研制
    正丁醇和松節(jié)油混合物對(duì)組織脫水不良的補(bǔ)救應(yīng)用
    超臨界CO2在頁(yè)巖氣開(kāi)發(fā)中的應(yīng)用研究進(jìn)展
    云南化工(2021年5期)2021-12-21 07:41:20
    600MW超臨界機(jī)組熱經(jīng)濟(jì)性定量分析
    ER308L焊絲硫含量對(duì)Ar-He混合氣TIG焊焊縫成形的影響
    焊接(2015年6期)2015-07-18 11:02:24
    1200MW等級(jí)超超臨界機(jī)組可行性研究
    混合物按照歐盟CLP進(jìn)行分類標(biāo)簽
    萃取精餾分離甲苯-正庚烷混合物的模擬研究
    Audi公司新一代1.8L增壓燃油分層噴射汽油機(jī)(第2部分)——混合氣形成、燃燒過(guò)程和增壓
    汽油機(jī)均質(zhì)充氣壓縮點(diǎn)火燃燒過(guò)程的混合氣形成
    日本免费在线观看一区| 久久婷婷青草| 精品卡一卡二卡四卡免费| 中文乱码字字幕精品一区二区三区| 国产一级毛片在线| 777久久人妻少妇嫩草av网站| 亚洲国产精品成人久久小说| 曰老女人黄片| 香蕉精品网在线| 国产亚洲一区二区精品| 性少妇av在线| 亚洲精华国产精华液的使用体验| 免费黄网站久久成人精品| 亚洲av免费高清在线观看| 看免费av毛片| 亚洲国产精品一区三区| 国产片内射在线| 18禁裸乳无遮挡动漫免费视频| 视频区图区小说| 亚洲欧洲国产日韩| 成人国产麻豆网| 观看av在线不卡| 免费人妻精品一区二区三区视频| 久久久久久久久久久久大奶| av在线观看视频网站免费| 亚洲成国产人片在线观看| 亚洲,一卡二卡三卡| 久久久久国产精品人妻一区二区| 两个人免费观看高清视频| 国产成人精品福利久久| 波多野结衣一区麻豆| 日韩三级伦理在线观看| 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 欧美xxⅹ黑人| 精品一区二区免费观看| 国产免费一区二区三区四区乱码| 免费黄网站久久成人精品| 久热这里只有精品99| av视频免费观看在线观看| 香蕉国产在线看| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区三区| 国产精品99久久99久久久不卡 | 久热久热在线精品观看| 性高湖久久久久久久久免费观看| 女人精品久久久久毛片| 老司机影院成人| 国产一区有黄有色的免费视频| 国产精品av久久久久免费| 精品久久久久久电影网| 老司机亚洲免费影院| 亚洲av在线观看美女高潮| 亚洲经典国产精华液单| 中文字幕色久视频| 亚洲欧美精品综合一区二区三区 | 亚洲av男天堂| 男人爽女人下面视频在线观看| 美女中出高潮动态图| 久久99一区二区三区| 一级片'在线观看视频| 成年人午夜在线观看视频| 久久国产精品男人的天堂亚洲| 欧美日韩一区二区视频在线观看视频在线| 又粗又硬又长又爽又黄的视频| 一区二区三区乱码不卡18| 日日啪夜夜爽| 人成视频在线观看免费观看| 成人影院久久| 欧美成人精品欧美一级黄| 亚洲久久久国产精品| 国产黄频视频在线观看| 日日爽夜夜爽网站| 日日啪夜夜爽| 母亲3免费完整高清在线观看 | 日本91视频免费播放| 人体艺术视频欧美日本| 有码 亚洲区| 狂野欧美激情性bbbbbb| 伦精品一区二区三区| 亚洲美女黄色视频免费看| 久久人人爽av亚洲精品天堂| 狠狠精品人妻久久久久久综合| 久久鲁丝午夜福利片| 69精品国产乱码久久久| 久久精品国产综合久久久| 国产乱人偷精品视频| 国产男女超爽视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 99久久精品国产国产毛片| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av不卡免费在线播放| 国产精品 欧美亚洲| 国产精品免费视频内射| 国产探花极品一区二区| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 亚洲国产精品999| 91aial.com中文字幕在线观看| xxxhd国产人妻xxx| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久男人| 国产精品亚洲av一区麻豆 | 欧美在线黄色| 欧美日韩成人在线一区二区| 91精品国产国语对白视频| 伊人久久国产一区二区| 亚洲精品aⅴ在线观看| 男女边吃奶边做爰视频| 国产成人欧美| 欧美激情高清一区二区三区 | 国产片特级美女逼逼视频| 少妇人妻久久综合中文| 丰满少妇做爰视频| 成年动漫av网址| 老司机影院毛片| 在线看a的网站| 1024视频免费在线观看| 亚洲激情五月婷婷啪啪| 99热国产这里只有精品6| 欧美国产精品一级二级三级| 久久韩国三级中文字幕| 9热在线视频观看99| 欧美日韩精品网址| a 毛片基地| 欧美日韩亚洲高清精品| 日韩制服丝袜自拍偷拍| 伊人久久大香线蕉亚洲五| 国产乱人偷精品视频| 成年动漫av网址| 久久久久精品人妻al黑| 最近中文字幕2019免费版| 欧美精品人与动牲交sv欧美| 在线观看免费日韩欧美大片| 精品午夜福利在线看| 又黄又粗又硬又大视频| 欧美+日韩+精品| 99热国产这里只有精品6| 欧美另类一区| 亚洲国产欧美网| 国产成人精品一,二区| 日韩人妻精品一区2区三区| 丰满乱子伦码专区| 韩国精品一区二区三区| 精品人妻偷拍中文字幕| 午夜福利视频精品| 国产av一区二区精品久久| 香蕉国产在线看| 人人妻人人添人人爽欧美一区卜| 老女人水多毛片| 交换朋友夫妻互换小说| 少妇猛男粗大的猛烈进出视频| 91成人精品电影| 交换朋友夫妻互换小说| av卡一久久| 建设人人有责人人尽责人人享有的| 国产欧美亚洲国产| 又粗又硬又长又爽又黄的视频| 建设人人有责人人尽责人人享有的| 伦理电影大哥的女人| 中文字幕色久视频| 久久久久久人人人人人| 精品福利永久在线观看| 国产1区2区3区精品| 免费黄频网站在线观看国产| 日本色播在线视频| 国产精品嫩草影院av在线观看| 国产成人午夜福利电影在线观看| 国产精品秋霞免费鲁丝片| 我要看黄色一级片免费的| 两个人免费观看高清视频| 欧美人与性动交α欧美精品济南到 | 老司机亚洲免费影院| a级片在线免费高清观看视频| av福利片在线| 亚洲五月色婷婷综合| 九草在线视频观看| 欧美中文综合在线视频| 18禁动态无遮挡网站| 免费观看av网站的网址| 亚洲精品久久午夜乱码| 国产淫语在线视频| 精品一区二区三区四区五区乱码 | 91久久精品国产一区二区三区| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 国产精品一区二区在线不卡| 国产乱人偷精品视频| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 少妇精品久久久久久久| 久久久久精品久久久久真实原创| 亚洲五月色婷婷综合| 黄色配什么色好看| 婷婷色麻豆天堂久久| 久久ye,这里只有精品| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品自产自拍| 久久青草综合色| 免费黄频网站在线观看国产| 美女主播在线视频| 久久精品夜色国产| 熟女电影av网| 啦啦啦中文免费视频观看日本| 亚洲欧美色中文字幕在线| 免费高清在线观看视频在线观看| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站| 中文字幕制服av| 国产福利在线免费观看视频| 久久韩国三级中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最近2019中文字幕mv第一页| 99精国产麻豆久久婷婷| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 国产熟女午夜一区二区三区| 亚洲精品第二区| 欧美日韩综合久久久久久| 激情五月婷婷亚洲| 一级爰片在线观看| 免费播放大片免费观看视频在线观看| 最近的中文字幕免费完整| 久久久久久久久久人人人人人人| 国产综合精华液| 日本欧美视频一区| 美女国产视频在线观看| 18禁观看日本| 国产精品成人在线| 欧美日韩精品网址| 久久人妻熟女aⅴ| 黄片播放在线免费| 成年动漫av网址| 少妇人妻 视频| 一二三四在线观看免费中文在| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 天天影视国产精品| 国产成人91sexporn| 久久人人爽人人片av| 国产精品av久久久久免费| 久久人人爽av亚洲精品天堂| 少妇的逼水好多| 桃花免费在线播放| 免费黄网站久久成人精品| freevideosex欧美| 午夜激情av网站| 国产免费现黄频在线看| 久久久久久久精品精品| 亚洲精品一二三| 成人国产av品久久久| 国产一区有黄有色的免费视频| 香蕉国产在线看| 亚洲欧美中文字幕日韩二区| 免费观看av网站的网址| 欧美日韩国产mv在线观看视频| 亚洲,欧美精品.| 自拍欧美九色日韩亚洲蝌蚪91| 狠狠精品人妻久久久久久综合| 亚洲精品日韩在线中文字幕| 久久久久精品性色| 最近最新中文字幕大全免费视频 | 青青草视频在线视频观看| 亚洲三级黄色毛片| 中文字幕色久视频| 精品亚洲成国产av| 精品国产一区二区久久| 三上悠亚av全集在线观看| 丝袜人妻中文字幕| 亚洲欧美中文字幕日韩二区| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 亚洲精品美女久久久久99蜜臀 | 亚洲一级一片aⅴ在线观看| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 亚洲一区中文字幕在线| 日本-黄色视频高清免费观看| 卡戴珊不雅视频在线播放| 国产不卡av网站在线观看| 日韩中文字幕视频在线看片| 十八禁高潮呻吟视频| 亚洲熟女精品中文字幕| 热re99久久精品国产66热6| 亚洲av欧美aⅴ国产| 午夜老司机福利剧场| 在线天堂中文资源库| 国产精品欧美亚洲77777| 91成人精品电影| 又大又黄又爽视频免费| 久久久久久人人人人人| 91国产中文字幕| 亚洲四区av| 人人妻人人澡人人爽人人夜夜| 国产一区二区 视频在线| 男女无遮挡免费网站观看| 精品久久久久久电影网| 国产深夜福利视频在线观看| 亚洲精品日韩在线中文字幕| 97精品久久久久久久久久精品| 最近最新中文字幕大全免费视频 | 免费观看性生交大片5| 成年女人在线观看亚洲视频| 大码成人一级视频| av线在线观看网站| 美女主播在线视频| 亚洲国产欧美日韩在线播放| 国产精品成人在线| 亚洲av综合色区一区| 日韩av不卡免费在线播放| 美国免费a级毛片| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 赤兔流量卡办理| 欧美精品国产亚洲| 青春草视频在线免费观看| 久久久久久伊人网av| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 午夜激情av网站| 满18在线观看网站| 成年人午夜在线观看视频| 黄频高清免费视频| 国产精品久久久久成人av| 色网站视频免费| 亚洲成人手机| 久久女婷五月综合色啪小说| 99九九在线精品视频| 国产一区二区激情短视频 | 国产男女超爽视频在线观看| 午夜91福利影院| www.av在线官网国产| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 一级毛片电影观看| 久久毛片免费看一区二区三区| 日本猛色少妇xxxxx猛交久久| 日韩视频在线欧美| 大片电影免费在线观看免费| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 极品少妇高潮喷水抽搐| av免费在线看不卡| 一个人免费看片子| 自拍欧美九色日韩亚洲蝌蚪91| 欧美av亚洲av综合av国产av | 我要看黄色一级片免费的| 熟女电影av网| 热99国产精品久久久久久7| 你懂的网址亚洲精品在线观看| 午夜日韩欧美国产| 黄色一级大片看看| 午夜日韩欧美国产| 国产有黄有色有爽视频| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 久久精品夜色国产| 国产黄频视频在线观看| 如何舔出高潮| 最新中文字幕久久久久| 久久精品国产a三级三级三级| 婷婷色综合大香蕉| 男人爽女人下面视频在线观看| 大香蕉久久网| 国产成人精品婷婷| 国产爽快片一区二区三区| 电影成人av| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 一区二区三区精品91| 国产日韩欧美视频二区| 在线观看免费日韩欧美大片| 黄色 视频免费看| 国产一区二区三区av在线| 热re99久久精品国产66热6| 日本av免费视频播放| 国产成人欧美| 亚洲国产av新网站| 免费黄频网站在线观看国产| 日韩av免费高清视频| 久久狼人影院| 国产人伦9x9x在线观看 | 久久韩国三级中文字幕| 99国产综合亚洲精品| 婷婷色综合www| 天堂中文最新版在线下载| 色婷婷久久久亚洲欧美| 亚洲激情五月婷婷啪啪| 亚洲成人一二三区av| 国产一区二区三区av在线| 亚洲国产欧美日韩在线播放| 久久这里只有精品19| 国产日韩欧美亚洲二区| 国产精品人妻久久久影院| 亚洲国产看品久久| 欧美国产精品一级二级三级| 午夜福利,免费看| 色视频在线一区二区三区| 亚洲在久久综合| 啦啦啦在线免费观看视频4| 久久久久久久久久久免费av| 中文字幕精品免费在线观看视频| 亚洲av日韩在线播放| 久久韩国三级中文字幕| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 99国产精品免费福利视频| 久久99热这里只频精品6学生| 九草在线视频观看| 日韩成人av中文字幕在线观看| 国产又爽黄色视频| 日韩av免费高清视频| 久久精品熟女亚洲av麻豆精品| 久久久精品国产亚洲av高清涩受| 韩国av在线不卡| 免费人妻精品一区二区三区视频| 国产欧美日韩一区二区三区在线| 美女国产视频在线观看| 欧美97在线视频| 欧美另类一区| 亚洲,欧美精品.| 久久热在线av| 国产成人精品福利久久| av电影中文网址| 大话2 男鬼变身卡| 人妻系列 视频| 哪个播放器可以免费观看大片| 999久久久国产精品视频| 久久久久久伊人网av| 国产又爽黄色视频| 国产精品一区二区在线不卡| 大香蕉久久网| 超碰成人久久| 丝袜人妻中文字幕| 在线亚洲精品国产二区图片欧美| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| 久久人人爽av亚洲精品天堂| 国产成人精品在线电影| av不卡在线播放| 久久免费观看电影| 国产无遮挡羞羞视频在线观看| av福利片在线| 亚洲国产毛片av蜜桃av| 久久ye,这里只有精品| 精品人妻熟女毛片av久久网站| av卡一久久| 日本-黄色视频高清免费观看| 水蜜桃什么品种好| av免费观看日本| 97在线人人人人妻| 国产激情久久老熟女| 国产不卡av网站在线观看| 最近中文字幕高清免费大全6| av在线播放精品| 久久狼人影院| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 美女大奶头黄色视频| 久久国内精品自在自线图片| 成人亚洲欧美一区二区av| 国产av国产精品国产| 深夜精品福利| 成人影院久久| 两个人免费观看高清视频| 久久久国产一区二区| 日本91视频免费播放| 亚洲伊人久久精品综合| 丝瓜视频免费看黄片| 国产男人的电影天堂91| 婷婷色av中文字幕| 日本wwww免费看| 男人添女人高潮全过程视频| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区| 超碰成人久久| 中文欧美无线码| 亚洲伊人色综图| 亚洲国产欧美在线一区| 18禁国产床啪视频网站| 好男人视频免费观看在线| 天天操日日干夜夜撸| 另类精品久久| 中国三级夫妇交换| 熟女av电影| 色播在线永久视频| 欧美精品一区二区大全| 蜜桃国产av成人99| 十分钟在线观看高清视频www| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 岛国毛片在线播放| 男人爽女人下面视频在线观看| 黄片无遮挡物在线观看| 十八禁高潮呻吟视频| 免费av中文字幕在线| 黄色一级大片看看| 国产片特级美女逼逼视频| 亚洲美女黄色视频免费看| 女人高潮潮喷娇喘18禁视频| av一本久久久久| 亚洲国产日韩一区二区| 五月天丁香电影| 亚洲精品,欧美精品| 精品亚洲乱码少妇综合久久| 夫妻午夜视频| 国产精品.久久久| 亚洲精品日本国产第一区| 91aial.com中文字幕在线观看| 精品亚洲成a人片在线观看| √禁漫天堂资源中文www| 久久久久国产网址| 免费日韩欧美在线观看| 哪个播放器可以免费观看大片| av在线老鸭窝| 国产成人av激情在线播放| 国产有黄有色有爽视频| 国产精品一二三区在线看| 性少妇av在线| 亚洲精品一二三| 毛片一级片免费看久久久久| 男女啪啪激烈高潮av片| 熟妇人妻不卡中文字幕| 夫妻午夜视频| 美女高潮到喷水免费观看| 超碰成人久久| 国产精品一国产av| 巨乳人妻的诱惑在线观看| 日本av手机在线免费观看| 成年美女黄网站色视频大全免费| 蜜桃国产av成人99| 亚洲综合色网址| 国产一区二区三区综合在线观看| 老司机亚洲免费影院| 国产熟女午夜一区二区三区| 亚洲三级黄色毛片| 亚洲色图综合在线观看| 中文天堂在线官网| 男人舔女人的私密视频| 黑人猛操日本美女一级片| 90打野战视频偷拍视频| 亚洲精品成人av观看孕妇| 色婷婷av一区二区三区视频| 欧美激情 高清一区二区三区| 欧美日韩国产mv在线观看视频| 亚洲精品久久久久久婷婷小说| 人人妻人人澡人人看| 18禁观看日本| 亚洲成国产人片在线观看| 男女无遮挡免费网站观看| 一级毛片电影观看| 精品少妇黑人巨大在线播放| 9191精品国产免费久久| 成人毛片60女人毛片免费| 秋霞在线观看毛片| 69精品国产乱码久久久| 国产乱人偷精品视频| 久久久国产一区二区| 熟女av电影| 久久韩国三级中文字幕| 免费观看在线日韩| 9热在线视频观看99| 成人手机av| 18禁观看日本| 日韩三级伦理在线观看| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 黄片小视频在线播放| 日日爽夜夜爽网站| 天堂中文最新版在线下载| 亚洲五月色婷婷综合| 国产欧美日韩综合在线一区二区| 女人高潮潮喷娇喘18禁视频| 午夜激情久久久久久久| 热99久久久久精品小说推荐| 国产综合精华液| videosex国产| av电影中文网址| 久久99一区二区三区| 久久人人爽人人片av| 日本午夜av视频| 精品亚洲乱码少妇综合久久| 国产成人精品婷婷| 欧美激情 高清一区二区三区| 一二三四中文在线观看免费高清| 欧美最新免费一区二区三区| 99久国产av精品国产电影| 亚洲av中文av极速乱| 亚洲国产欧美日韩在线播放| 亚洲av成人精品一二三区| 一个人免费看片子| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人手机av| 极品少妇高潮喷水抽搐| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 黄色视频在线播放观看不卡| 午夜福利网站1000一区二区三区| 一区二区三区激情视频| 少妇人妻久久综合中文| 免费在线观看视频国产中文字幕亚洲 | 国产午夜精品一二区理论片| 亚洲 欧美一区二区三区| 亚洲第一青青草原| av国产精品久久久久影院| 国产一区二区三区综合在线观看| 精品久久久精品久久久| 国产精品 国内视频| 如何舔出高潮| 日韩三级伦理在线观看| a级片在线免费高清观看视频|