柯 楊, 朱海云, 李 勃, 馬 瑜* , 李英梅, 張 鋒
(1. 陜西省微生物研究所,陜西 西安 710043;2.中國(guó)科學(xué)院 西安分院,陜西 西安 710043;3. 陜西省動(dòng)物研究所,陜西 西安 710043)
?
瓜類白粉病的生物防治研究進(jìn)展
柯 楊1, 朱海云1, 李 勃2, 馬 瑜1*, 李英梅3, 張 鋒3
(1. 陜西省微生物研究所,陜西 西安 710043;2.中國(guó)科學(xué)院 西安分院,陜西 西安 710043;3. 陜西省動(dòng)物研究所,陜西 西安 710043)
白粉病是危害瓜類作物最為嚴(yán)重的一種氣傳病害,引起該病的病原菌為單囊殼白粉菌Podosphaeraxanthii(synonymPodosphaerafusca)和二孢白粉菌Golovinomycescichoracearum(synonymErysiphecichoracearum),其中對(duì)Podosphaeraxanthii的報(bào)道較為常見(jiàn)。主要概述了瓜類白粉病病原菌的分類地位、病理特征和生物防治方面的研究進(jìn)展,重點(diǎn)闡述了微生物源生防制劑和植物源生防制劑對(duì)瓜類白粉病的防治成果,并對(duì)當(dāng)前研究與應(yīng)用中存在的問(wèn)題進(jìn)行了探討,為該病的深入研究和有效防治提供參考。
瓜類白粉病;病原菌;生物防治
瓜類作物(cucurbit),特指葫蘆科(Cucurbitaceae)植物中常見(jiàn)的瓜果和蔬菜作物,包括:黃瓜、甜瓜、西瓜、西葫蘆、南瓜等。瓜類作物作為人類主要的食用植物具有悠久的栽培歷史,但長(zhǎng)期大面積的種植也一直飽受各類病蟲(chóng)害的危害。據(jù)統(tǒng)計(jì),目前已知的引起瓜類作物的病害超過(guò)200種[1-2],但從發(fā)生頻率、分布范圍以及影響程度來(lái)看,白粉病對(duì)于瓜類作物的危害最嚴(yán)重[2-3]。單囊殼白粉菌Podosphaeraxanthii(synonymPodosphaerafusca)和二孢白粉菌Golovinomycescichoracearum(synonymErysiphecichoracearum)是引起瓜類白粉病的兩種主要病原真菌,其中,又以Podosphaeraxanthii的報(bào)道較為常見(jiàn)。這兩種真菌在地理分布上有所不同,P.xanthii主要分布在熱帶和溫帶地區(qū),G.cichoracearum主要流行于歐洲大陸,這一差異是由于P.xanthii相對(duì)于G.cichoracearum的喜溫性造成的[4]。瓜類白粉病原是營(yíng)活體寄生的真菌,通常生長(zhǎng)在植物的表面,但可通過(guò)穿透表皮細(xì)胞形成附著胞和在寄主組織中產(chǎn)生吸器來(lái)獲取營(yíng)養(yǎng)[5]。白粉病病原菌活體寄生的這一特點(diǎn),使得其在實(shí)驗(yàn)室內(nèi)無(wú)法通過(guò)營(yíng)養(yǎng)培養(yǎng)基獲得純培養(yǎng),給研究人員對(duì)它的遺傳學(xué)和分子生物學(xué)研究帶來(lái)諸多不便。與其他種類的白粉病一樣,瓜類白粉病的主要癥狀也表現(xiàn)在侵害葉片表面、葉柄和莖部,較少出現(xiàn)在果實(shí)上。在生產(chǎn)中,目前仍然依賴化學(xué)農(nóng)藥對(duì)其進(jìn)行防治,但化學(xué)品的長(zhǎng)期使用使得病原菌普遍產(chǎn)生不同程度的抗性,給防治造成了困難。同時(shí),由此導(dǎo)致的化學(xué)農(nóng)藥的過(guò)量使用也給農(nóng)業(yè)生態(tài)環(huán)境帶來(lái)了許多負(fù)面影響。因此,開(kāi)發(fā)高效、低毒、環(huán)境友好的新型防治技術(shù)已成為產(chǎn)業(yè)界和學(xué)術(shù)界共同關(guān)注的焦點(diǎn)[6]。本文就瓜類白粉病病原菌的分類地位、病理學(xué)特征及近年來(lái)針對(duì)其開(kāi)展的生物防治研究進(jìn)行了系統(tǒng)總結(jié),以期為我國(guó)瓜類白粉病的防治研究提供一些參考。
目前,國(guó)際上對(duì)于引起瓜類作物發(fā)生白粉病的主要病原菌還沒(méi)有一個(gè)公認(rèn)的標(biāo)準(zhǔn)化定名。這些病原菌已有的命名包括:Sphaerothecafuliginea、Sphaerothecafusca、Podosphaerafusca或Podosphaeraxanthii。研究人員基于掃描電鏡和分子生物學(xué)實(shí)驗(yàn)結(jié)果,將Sphaerotheca屬縮減為與Podosphaera同義,Sphaerothecafuliginea與Podosphaeraxanthii、Sphaerothecafusca同物異名的觀點(diǎn)已經(jīng)得到了廣泛的接受[7-8]?;谡婢鷮W(xué)有性世代形態(tài)分類研究,P.xanthii自身所具有的大子囊座和巨大孔子囊可將其與P.fusca區(qū)分開(kāi)來(lái)[8-9],但這種形態(tài)學(xué)特征具有可塑性,很難評(píng)估物種內(nèi)部這些特征的自然變化情況,因而對(duì)于很多真菌學(xué)家而言,單憑形態(tài)學(xué)的物種概念顯然很難讓人信服。P.xanthii也存在這樣的狀況,根據(jù)形態(tài)學(xué)特征來(lái)定義這一物種存在兩個(gè)問(wèn)題。首先,在田間條件下,閉囊殼很少被觀察到[10];其次,盡管可以在實(shí)驗(yàn)室條件下誘導(dǎo)閉囊殼的產(chǎn)生,但無(wú)性繁殖所獲得的子囊孢子不能引起瓜類的感染[10-11]。此外,盡管研究人員已經(jīng)可以獲得一些基于ITS序列的分子片段數(shù)據(jù),但這些數(shù)據(jù)仍無(wú)法作為分子鑒定的確證。因?yàn)椋孟到y(tǒng)發(fā)育分析的方法來(lái)鑒定真菌不能簡(jiǎn)單依賴于基于單個(gè)基因的種系發(fā)生,而是需要多基因的聯(lián)合譜系分析。因此,將P.xanthii與P.fusca二者進(jìn)行區(qū)分依然存在爭(zhēng)議,仍有很多研究人員認(rèn)為P.xanthii是P.fusca.的同義詞[1]。
P.fusca引起的癥狀非常容易識(shí)別,肉眼可見(jiàn)葉面、葉柄和幼莖上存在由菌絲和分生孢子組成的白色粉末聚集(圖1)。在適宜的環(huán)境條件下,隨著病情的進(jìn)展,病原真菌可布滿整個(gè)葉面。白粉病病原菌吸收植物的營(yíng)養(yǎng),降低它的光合作用,使得葉片變得黃萎乃至枯干(圖2),嚴(yán)重的情況下可以導(dǎo)致整個(gè)植株的死亡。盡管瓜類植物的果實(shí)很少被白粉病病原菌直接侵害,但果實(shí)會(huì)因?yàn)槿静≈仓耆~片早衰導(dǎo)致的生長(zhǎng)受限而發(fā)育畸形、產(chǎn)斑,最終導(dǎo)致產(chǎn)量和品質(zhì)降低。
圖1 南瓜葉片白粉病染病癥狀[12]Fig.1 Powdery mildew disease symptoms on pumpkin leafA:葉片背面白粉病早期感染;B:葉面白粉病感染A:Early powdery mildew infection on lower leaf surface;B:Established powdery mildew infection on upper leaf surface
P.fusca具有與其他白粉病病原菌相似的無(wú)性生殖世代。其經(jīng)典的發(fā)育過(guò)程是:侵染易感宿主后,分生孢子產(chǎn)生短的萌發(fā)管,初級(jí)分化型附著胞產(chǎn)生在萌發(fā)管的末端,從而在表皮細(xì)胞內(nèi)形成初級(jí)吸器。在初級(jí)分化胞或者另一個(gè)分生孢子孔,初級(jí)菌絲形成次級(jí)附著胞,從而形成次級(jí)吸器。隨后,初級(jí)菌絲分支形成次級(jí)菌絲。直接來(lái)源于次級(jí)菌絲分生孢子梗作為形態(tài)學(xué)上的區(qū)分結(jié)構(gòu)。在每個(gè)分生孢子梗的頂端,5~10個(gè)分生孢子聚集成串。其中,次級(jí)菌絲糾纏在一起和分生孢子共同形成植株表面的白色菌絲體,是白粉病的典型癥狀[13]。
圖2 甜瓜葉片白粉病病情進(jìn)展Fig.2 Progression of powdery mildew disease on melon leaf
P.fusca是雌雄異體的真菌,只有在兩種相反交配型的菌絲相遇時(shí)才進(jìn)行有性生殖。有性生殖的過(guò)程中,產(chǎn)生一種稱為chasmothecium的子實(shí)體,在P.fusca中,該子實(shí)體只包含一個(gè)含有8個(gè)子囊孢子或有性孢子的子囊果。通常情況下,chasmothecia被認(rèn)為是可以抵御不良環(huán)境的菌體形式。盡管相關(guān)研究不多,但導(dǎo)致疾病爆發(fā)的子囊孢子被認(rèn)為與無(wú)性分生孢子非常類似。在全球范圍內(nèi),主要的瓜類栽培區(qū)很少能觀察到chasmothecia的存在。正是由于這個(gè)原因,病原體的發(fā)病率和病原體有性世代與流行病學(xué)的相關(guān)性研究仍有待深入[10]。
圖3 Podosphaera fusca的主要生活史(重修[14])Fig.3 Life cycle of Podosphaera fusca
生物農(nóng)藥是由來(lái)源于植物、動(dòng)物、微生物和礦物中的自然物質(zhì)構(gòu)成的制劑。美國(guó)環(huán)境保護(hù)協(xié)會(huì)(the US Environmental Protection Agency,USEPA)基于所采用的活性成分的類型,將生物農(nóng)藥分為三大類:生物化學(xué)農(nóng)藥、植物殺蟲(chóng)劑和微生物農(nóng)藥[15]。Copping等[16]將生物農(nóng)藥分為天然產(chǎn)物和微生物兩大類。天然產(chǎn)物包含微生物來(lái)源、高等植物來(lái)源和動(dòng)物來(lái)源三大類;微生物包含病毒、細(xì)菌、真菌和原生生物。在世界范圍內(nèi),關(guān)于生物農(nóng)藥這一術(shù)語(yǔ),并沒(méi)有形成一個(gè)的統(tǒng)一的認(rèn)識(shí)。因此,國(guó)際生防劑制造協(xié)會(huì)(International Biocontrol Manufacturer’s Association,IBMA)和生物防治國(guó)際組織(International Organization for Biological Control,IOBC)提議用生防制劑這一術(shù)語(yǔ)來(lái)替代生物農(nóng)藥。并將生防制劑分為四大類:①macrobials(如寄生蜂的卵,食蚜蠅蛹);②微生物;③天然產(chǎn)物;④化學(xué)信息素(insect behavior-modifying agents)[17]。不管如何定義,在瓜類白粉病的防治中,生物制劑主要為微生物來(lái)源和植物來(lái)源。
3.1 微生物源生防制劑
微生物對(duì)瓜類白粉病的抑制可通過(guò)重寄生作用來(lái)實(shí)現(xiàn)。如白粉寄生孢(Ampelomyces)作為一種真菌寄生物,可抑制白粉病有性和無(wú)性孢子繁殖,破壞白粉病菌絲體、分生孢子梗及未成熟子囊座[18-19]。此外,玫煙色擬青霉(Paecilomycesfumosoroseus)也可通過(guò)重寄生作用,來(lái)侵入破壞黃瓜病害的菌絲體,抑制白粉病病原菌的生長(zhǎng)[20]。Gafni等[21]研究發(fā)現(xiàn),內(nèi)生酵母菌(Pseudozymaaphidis)通過(guò)產(chǎn)生可寄生于白粉病病原菌菌絲和孢子上的菌絲體,來(lái)抑制病原菌生長(zhǎng)。
其次,微生物對(duì)白粉病的抑制也可通過(guò)拮抗作用來(lái)實(shí)現(xiàn)。Romero等[22]的研究發(fā)現(xiàn),枯草芽胞桿菌(Bacillussubtilis)對(duì)甜瓜白粉病病原菌P.fusca的拮抗作用是通過(guò)代謝產(chǎn)生的脂肽類物質(zhì)(主要是伊枯草菌素和豐原素)來(lái)實(shí)現(xiàn)的。Gafni等[21]研究還發(fā)現(xiàn),P.aphidis代謝產(chǎn)物的粗提物可用作抗生物質(zhì)抑制白粉病孢子的萌發(fā)。
同時(shí),經(jīng)外界因子誘導(dǎo)后,植物自身體內(nèi)產(chǎn)生的植物誘導(dǎo)抗病性(induced resistance)也會(huì)對(duì)白粉病產(chǎn)生抗性,主要包括由生物或非生物刺激寄主植物所產(chǎn)生的系統(tǒng)獲得抗性(SAR)和依賴于植物激素調(diào)節(jié)的誘導(dǎo)系統(tǒng)抗性(ISR)兩種類型。通過(guò)枯草芽胞桿菌(B.subtilisMBI600)產(chǎn)物BU EXP 1216S誘導(dǎo)哈密瓜抗白粉病實(shí)驗(yàn)發(fā)現(xiàn),BU EXP 1216S不僅可以降低白粉病病情,還可使植株的莖增粗,提高葉片葉綠素的含量和增加植株的鮮重[23]。而García-Gutiérrez等發(fā)現(xiàn),枯草芽胞桿菌(B.subtilisUMAF6639)對(duì)甜瓜白粉病的抗性則是通過(guò)依賴于茉莉酮酸和水楊酸調(diào)節(jié)通路的誘導(dǎo)系統(tǒng)抗性來(lái)實(shí)現(xiàn)。其中,脂肽類表面活性素(surfactin lipopeptide)是激發(fā)免疫反應(yīng)的主要決定因素[24]。
此外,將生防制劑與其他制劑聯(lián)用,可以提高生物防治的效果。Tesfagiorgisa等通過(guò)研究生物防治劑和可溶性硅對(duì)西葫蘆白粉病的影響發(fā)現(xiàn),在溫室條件下,所有的生防制劑對(duì)白粉病病原菌均有抑制作用,其防效最高可達(dá)90%,硅對(duì)白粉病的防效高達(dá)35%,二者聯(lián)用可提升大部分生防制劑的效果;在田間條件下,生防制劑和硅聯(lián)合使用同樣可降低白粉病發(fā)生。其中,細(xì)菌生防制劑和硅的作用在25 ℃以上減弱,而真菌生防制劑較好的適用于較高溫度(25~30 ℃)[25]。同樣,將B.subtilis和白粉寄生孢(Ampelomycesquisqualis)與殺真菌劑聯(lián)用防治西葫蘆白粉病顯示,B.subtilis和嘧菌酯聯(lián)用比單獨(dú)使用這兩者的效果好,類似的協(xié)同效果也出現(xiàn)在A.quisqualis與腈菌唑的聯(lián)用中[26]。其他相關(guān)的研究參見(jiàn)表1[27-33]。
表1 瓜類白粉病微生物防治研究進(jìn)展概況
3.2 植物源生防制劑
將植物含有的某些活性抗菌物質(zhì)或可誘導(dǎo)寄主植物增強(qiáng)對(duì)病原菌抗性的物質(zhì)的有效成分提取加工而成的植物源殺菌劑,可有效抑制病原菌生長(zhǎng)發(fā)育或殺死病原菌。其活性成分種類較多,包括生物堿類、類黃酮類、蛋白質(zhì)類、有機(jī)酸類和酚類化合物等。研究發(fā)現(xiàn),蛇床子素(osthol)可誘導(dǎo)植物體內(nèi)幾丁質(zhì)酶(chitinase)和過(guò)氧化物酶(peroxidase)的積累,增強(qiáng)幾丁質(zhì)酶基因轉(zhuǎn)錄,誘導(dǎo)植株對(duì)南瓜白粉病產(chǎn)生抗性反應(yīng),對(duì)南瓜白粉病具有預(yù)防、防治作用,且病原菌可介導(dǎo)蛇床子素增強(qiáng)葉片中PAL活性[34]。D-松醇(D-pinitol)具有激活植物先天免疫系統(tǒng)組件的能力,使黃瓜葉片中酚類物質(zhì)、谷氨酸脫羧酶、黃酮類及葉綠素的含量增加,提高抗氧化酶活性,激活相關(guān)抗性基因以增強(qiáng)植株對(duì)P.xanthii的抗性,可用于防治黃瓜白粉病[35]。Roberti的研究表明,魚(yú)腥藻BEA0300B水提取物可通過(guò)西葫蘆中的SA依賴的防御應(yīng)答的早期激活,使植物體內(nèi)幾丁質(zhì)酶、過(guò)氧化物酶、β-1,3-葡聚糖酶得到積累,對(duì)P.xanthii直接產(chǎn)生抗性[36]。Aubel等[37]發(fā)現(xiàn)植物與COS-OGA接觸后會(huì)觸發(fā)水楊酸(SA)信號(hào)轉(zhuǎn)導(dǎo)途徑,引發(fā)防御反應(yīng),其對(duì)黃瓜白粉病病原體沒(méi)有直接毒性作用,不能降低其發(fā)病率,但可減少病害危害。Jaulneau等[38]通過(guò)研究不同濃度的石莼(Ulvaarmoricana)提取物對(duì)于黃瓜白粉病的抑制作用,表明該提取物可降低發(fā)病率、減輕病情。張鉉哲等[39]利用不同類型植物油制劑對(duì)溫室栽培黃瓜進(jìn)行白粉病的預(yù)防和治療也取得了較好的防治效果。其他相關(guān)的研究參見(jiàn)表2[40-47]。
表2 瓜類白粉病植物防治研究進(jìn)展概況
3.3 其他來(lái)源生防制劑
劉琴等[48]以生物誘抗劑為誘導(dǎo)劑研究其對(duì)白粉病的預(yù)防效果及抗性誘導(dǎo)過(guò)程中一些抗病相關(guān)酶活性的變化表明,施用誘抗劑可提高黃瓜葉片中防御相關(guān)酶活性,防病效果與誘抗劑濃度及施用次數(shù)正相關(guān)。Medeiros等[49]用西葫蘆作供試植物研究發(fā)現(xiàn),牛奶可通過(guò)在孢子附近沉積抑制其萌發(fā),對(duì)病原菌分生孢子梗和分生孢子造成損害,與此同時(shí)促進(jìn)具有控制疾病潛力的真菌和細(xì)菌群落形成,與其對(duì)病原的預(yù)防效果相較,其防病效果更佳,但與農(nóng)藥相較不顯著。Naidu等[50]研究表明,使用堆肥茶可以使白粉病病原菌孢子萌發(fā)率降低,但是添加微生物后堆肥茶的效果更好。
白粉病是瓜類作物栽培中的最主要威脅之一,盡管培育瓜類抗病品種和開(kāi)發(fā)新型殺菌劑的工作從未中斷,但對(duì)其防治依然主要依賴化學(xué)殺菌劑的使用。對(duì)于種植者而言,利用經(jīng)濟(jì)有效的方法來(lái)持續(xù)控制病害的發(fā)生依然是當(dāng)前最迫切的需求。因此,盡管化學(xué)殺菌劑的應(yīng)用對(duì)于生態(tài)環(huán)境和生物的生存具有很大的負(fù)面影響,但是由于其成本低、見(jiàn)效快等特點(diǎn),仍在全球范圍內(nèi)(尤其是發(fā)展中國(guó)家)被廣泛應(yīng)用。近年來(lái),隨著綠色防控技術(shù)的發(fā)展和消費(fèi)者對(duì)于食品安全問(wèn)題的日益關(guān)注,廣譜、低毒、環(huán)境友好型的防治技術(shù)越來(lái)越受到市場(chǎng)的歡迎,用生物防治手段替代化學(xué)防治手段已經(jīng)成為一種具有吸引力的選擇。
目前,對(duì)于瓜類白粉病的生物防治主要限于實(shí)驗(yàn)室和溫室試驗(yàn),真正能夠廣泛應(yīng)用于大田的生物防治手段不多。針對(duì)瓜類白粉病生物防治的研究現(xiàn)狀,今后的研究應(yīng)致力于從微觀角度進(jìn)一步理清瓜類白粉病病原菌的病原菌分類學(xué)、致病性及病原菌與植物互作的機(jī)制,為開(kāi)發(fā)對(duì)瓜類白粉病病原菌具有針對(duì)性,且可應(yīng)用于生產(chǎn)實(shí)際的生防制劑提供理論依據(jù)和技術(shù)支持。
[1] McGrath MT. Diseases of cucurbits and their management[M]//Diseases of Fruits and Vegetables Volume I.Springer Netherlands,2004:455-510.
[3] Martínez-Cruz J, Romero D, Dávila JC, et al. ThePodosphaeraxanthiihaustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions[J]. Fungal Genet Biol, 2014, 71:21-31.
[4] Miazzi M, Laguardia C, Faretra F. Variation inPodosphaeraxanthiion cucurbits in Southern Italy [J]. Journal of Phytopathology, 2011, 159(7-8): 538-545.
[5] McGrath MT. Fungicide resistance in cucurbit powdery mildew: experiences and challenges [J]. Plant disease, 2001, 85(3): 236-245.
[6] 柯楊, 馬瑜, 沈瑩華, 等. 冬凌草內(nèi)生細(xì)菌的分離鑒定及其對(duì)植物病害的生防作用[J]. 微生物學(xué)雜志, 2013,33(1): 20-24.
[7] Cohen R, Burger Y, Katzir N. Monitoring physiological races ofPodosphaeraxanthii(syn.Sphaerothecafuliginea), the causal agent of powdery mildew in cucurbits: Factors affecting race identification and the importance for research and commerce [J]. Phytoparasitica, 2004, 32(2): 174-183.
[8] Braun U, Shishkoff N, Takamatsu S. Phylogeny ofPodosphaerasect.Sphaerothecasubsect.Magnicellulatae(Sphaerothecafuligineaauct. s.lat.) inferred from rDNA ITS sequences-a taxonomic interpretation[J]. Schlechtendalia, 2001, 7: 45-52.
[9] Braun U, Takamatsu S. Phylogeny ofErysiphe,Microsphaera,Uncinula(Erysipheae) andCystotheca,Podosphaera,Sphaerotheca(Cystotheceae) inferred from rDNA ITS sequences-some taxonomic consequences[J]. Schlechtendalia, 2000, 4: 1-33.
[10]McGrath MT. Heterothallism inSphaerothecafuliginea[J]. Mycological Society of America, 1994, 86(4): 517-523.
[11]Bardin M, Nicot PC, Normand P, et al. Virulence variation and DNA polymorphism inSphaerothecafuliginea, causal agent of powdery mildew of cucurbits[J]. European Journal of Plant Pathology, 1997, 103(6): 545-554.
[12]Elaine R. Powdery Mildew in Cucurbits[EB/OL]. http://www.omafra.gov.on.ca/english/crops/organic/news/2012/2012-08a8.htm, 2013-01-09/2015-02-05.
[13]Pérez-García A, Olalla L, Rivera E, et al. Development ofSphaerothecafuscaon susceptible, resistant, and temperature-sensitive resistant melon cultivars[J]. Mycological Research, 2001, 105(10): 1216-1222.
[14]Davis RM, Gubler WD, Koike ST. Pest Notes: Powdery Mildew on Vegetables[EB/OL]. http://www.ipm.ucdavis.edu/PMG/PESTNOTES/pn7406.html, 2014-04-25/2015-02-10.
[15]USEPA. What are Biopesticides?[EB/OL]. http://www.epa.gov/oppbppd1/biopesticides/whatarebiopesticides.htm, 2015-02-07/2015-02-10.
[16]Copping LG, Menn JJ. Biopesticides: a review oftheir action, applications and efficacy[J]. Pest Manag Sci, 2000, 56(8): 651-676.
[17]Mishra J, Tewari S, Singh S, et al. Biopesticides: Where We Stand?[M]. Plant Microbes Symbiosis: Applied Facets. Springer India, 2015: 37-75.
[18]Kiss L, Pintye A, Zséli G. Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism byAmpelomyces[J]. Eur J Plant Pathol, 2010, 126(4): 445-451.
[19]Kiss L. Chapter 3 Intracellular mycoparasites in action: Interactions between powdery mildew fungi andAmpelomyces[M]. British Mycological Society Symposia Series, Academic Press, 2008, 27: 37-52.
[20]KavkováM, Curn V.Paecilomycesfumosoroseus(Deuteromycotina:Hyphomycetes) as a Potential mycoparasite onSphaerothecafuliginea(Ascomycotina:Erysiphales)[J]. Mycopathologia, 2005, 159: 53-63.
[21]Gafni A, Calderon CE, Harris R, et al. Biological control of the cucurbit powdery mildew pathogenPodosphaeraxanthiiby means of the epiphytic fungusPseudozymaaphidisand parasitism as a mode of action[J]. Front Plant Sci, 2015, 6:132.
[22]Romero D, de Vicente A, Rakotoaly RH, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism ofBacillussubtilistowardPodosphaerafusca[J]. Mol Plant Microbe Interact, 2007, 20(4): 430-440.
[23]Zhang S, Vallad GE, White TL, et al. Evaluation of microbial products for management of powdery mildew on summer squash and cantaloupe in Florida[J]. Plant Disease, 2011, 95(4): 461-468.
[24]García-Gutiérrez L, Zeriouh H, Romero D, et al. The antagonistic strainBacillussubtilisUMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses [J]. Microb Biotechnol, 2013, 6(3): 264-274.
[25]Tesfagiorgis HB, Laing MD, Annegarn HJ. Evaluation of biocontrol agents and potassium silicate for the management of powdery mildew of zucchini[J]. Biological Control, 2014, 73: 8-15.
[26]Gilardi G, Manker DC, Garibaldi A, et al. Efficacy of the biocontrol agents Bacillus subtilis andAmpelomycesquisqualisapplied in combination with fungicides against powdery mildew of zucchini[J]. Journal of Plant Diseases and Protection, 2008, 115(5): 208.
[27]Almqvist AC. Biological control of powdery mildew in greenhouse produced cucumber-an evaluation of two microbiological control agents [D].SLU, 2012
[28]Elkot GAE, Soliman A., Derbalah H. Use of cultural filtrates of certain microbial isolates for powdery mildew control in Squash[J]. Journal of Plant Protection Research, 2011, 51(3): 252-260.
[29]García-Gutiérrez L, Romero D, Zeriouh H, et al. Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon[J]. Plant and Soil, 2012, 358(1-2): 201-212.
[30]Gilardi G, Baudino M, Garibaldi A, et al. Efficacy of biocontrol agents and natural compounds against powdery mildew of zucchini[J]. Phytoparasitica, 2012, 40(2): 147-155.
[31]Kim JJ, Goettel MS, Gillespie DR. Evaluation ofLecanicilliumlongisporum, Vertalec?against the cotton aphid,Aphisgossypii, and cucumber powdery mildew,Sphaerothecafuligineain a greenhouse environment[J]. Crop Protection, 2010, 29(6): 540-544.
[32]Elad Y, Kirshner B, Yehuda N, et al. Management of powdery mildew and gray mold of cucumber byTrichodermaharzianumT39 andAmpelomycesquisqualisAQ10[J]. BioControl, 1998, 43(2): 241-251.
[33]Kim YS, Song JG, Lee IK, et al.Bacillussp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances[J]. Mycobiology, 2013, 41(3):164-166.
[34]Zhiqi Shi, Fei Wang, Wei Zhou, et al. Application of Osthol Induces a Resistance Response Against Powdery Mildew in Pumpkin Leaves[J]. Int. J. Mol. Sci, 2007, 8: 1001-1012.
[35]Jia Chen, Fernandez D, Dan Dan Wang, et al. Biological control mechanisms of D-pinitol against powdery mildew in cucumber[J]. Physiological and Molecular Plant Pathology, 2014, 88: 52-60.
[36]Robert R, Galletti S, Burzi PL, et al. Induction of defence responses in zucchini (Cucurbitapepo) byAnabaenasp. water extract[J]. Biological Control, 2014, Accepted Manuscript.
[37]Aubel GV, Buonatesta R, Cutsem PV. COS-OGA: A novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew[J]. Crop Protection, 2014, 65: 129-137.
[38]Jaulneau V, Lafitte C, Corio-M, et al. An Ulva armoricana extract protects plants against three powdery mildew pathogens [J]. European Journal of Plant Pathology, 2011, 131(3):393-401.
[39]張鉉哲, 姚亮亮, 徐生軍, 等. 三種植物油生物農(nóng)藥對(duì)黃瓜白粉病的防治效果[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2010, 41(6): 23-27.
[40]Choi GJ, Lee SW, Jang KS, et al. Effects of chrysophanol, parietin, and nepodin ofRumexcrispusonbarley and cucumber powdery mildews[J].Crop Protection, 2004, 23(12): 1215-1221.
[41]Jia Chen, Guang-Hui Dai. Effect of d-pinitol isolated and identified fromRobiniapseudoacaciaagainst cucumber powdery mildew[J]. Scientia Horticulturae, 2014, 176: 38-44.
[42]Candido V, Campanelli G, Viggiani G, et al. Melon yield response to the control of powdery mildew by environmentally friendly substances[J]. Scientia Horticulturae, 2014, 166:70-77.
[43]Daayf F, Schmitt A, Belanger RR. The effects of plant extracts ofReynoutriasachalinensison powdery mildew development and leaf physiology of long English cucumber[J]. Plant disease, 1995, 79(6): 577-580.
[44]Bardin M, Schmitt A, Nicot P. Diversity in the effect of an extract fromFallopiasachalinensison isolates of cucurbit powdery mildews grown on melon[J]. Inducedresistance in plants against insect and disease, 2013, 88: 93-97.
[45]Nawal H. Mohamed, Abeer M. El-Hadidy. Studies of Biologically Active Constituents ofVerbascumeremobiumMurb. and its Inducing Resistance against some Diseases of Cucumber [J]. Egypt. J. Phytopathol., 2008, 36(1-2): 133-150.
[46]Morsy SM, Drgham EA, Mohamed G. M. .Effect of Garlic and Onion Extracts or their Intercropping on Suppressing Damping-off and Powdery Mildew Diseases and Growth Characteristics of Cucumber[J]. Egypt. J. Phytopathol., 2009, 37(1): 35-46.
[47]Kim JC, Choi GJ, Lee SW, et al. Screening extracts ofAchyranthesjaponicaandRumexcrispusfor activity against various plant pathogenic fungi and control of powdery mildew[J]. Pest Manag Sci, 2004, 60(8): 803-808.
[48]劉琴, 吳毅歆, 薛原, 等. 一種生物誘抗劑防治黃瓜白粉病效果及對(duì)誘導(dǎo)酶的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2013, 29(36): 367-371.
[49]Medeiros FHV, Bettiol W, Souza RM, et al. Microorganisms, application timing and fractions as players of the milk-mediated powdery mildew management[J]. Crop Protection, 2012, 40: 8-15.
[50]Naidu Y, Meon S, Siddiqui Y. In vitro and in vivo evaluation of microbial-enriched compost tea on the development of powdery mildew on melon[J]. BioControl, 2012, 57(6): 827-836.
Advances in Bio-Control of Cucurbits Powdery Mildew
KE Yang1, ZHU Hai-yun1, LI Bo2, MA Yu1, LI Ying-mei3, ZHANG Feng3
(1.ShaanxiProv.Inst.ofMicrobiol.,Xi’an710043; 2.Xi’anBranchAcad.ofCAS,Xi’an710043;3.ShaanxiProv.Inst.ofZool.Xi’an710043)
Powdery mildew is the most serious air-borne disease that spoils cucurbitaceous crops. The causes of the disease werePodosphaeraxanthii(synonymPodosphaerafusca) andGolovinomycescichoracearum(synonymErysiphecichoracearum), of bothP.xanthiiis more commonly reported. Advances in the taxonomic status, pathological features, and biocontrol of cucurbits powdery pathogens were summarized in this paper. The key points is to elaborate the research achievements of bio-control with microbial and botanical resources against cucurbits powdery. The present existing problems in current studies and application were also discussed, providing references for the further research and effective control of this disease.
cucurbits powdery; pathogen; biocontrol
國(guó)家十二五支撐計(jì)劃項(xiàng)目(2014BAD14B06);陜西省農(nóng)業(yè)攻關(guān)計(jì)劃項(xiàng)目(2014K02-10-01,2015NY038,2015NY042);
柯楊 女,碩士,助理研究員。主要從事植物真菌病害的生物防治研究。E-mail: keyang-bio@163.com
* 通訊作者。女,博士,副研究員。主要從事植物真菌病害的生物防治研究。E-mail:mayu08518@163.com
2015-03-06;
2015-05-29
Q939.95;S432.4
A
1005-7021(2016)01-0106-07
10.3969/j.issn.1005-7021.2016.01.018
陜西省科學(xué)院應(yīng)用基礎(chǔ)研究專項(xiàng)(2013K-14,2015K-11);西安市現(xiàn)代農(nóng)業(yè)創(chuàng)新計(jì)劃項(xiàng)目(NC1314(2))