藍(lán)新華
(賀州學(xué)院 理學(xué)院,廣西 賀州 542899)
?
一個(gè)含Bessel函數(shù)的積分定理的推廣
藍(lán)新華
(賀州學(xué)院 理學(xué)院,廣西 賀州 542899)
運(yùn)用留數(shù)理論和Hankel函數(shù)的相關(guān)性質(zhì),對(duì)K.S.Kodbig關(guān)于含Bessel函數(shù)的廣義積分定理進(jìn)行推廣,給出一般情形下Bessel函數(shù)的無(wú)窮積分定理,并得到一些相應(yīng)性質(zhì).
Bessel函數(shù);留數(shù)定理;Hankel函數(shù)
本文中,主要對(duì)一類(lèi)含Bessel函數(shù)的積分進(jìn)行探索,得到含Bessel函數(shù)的無(wú)限積分的解.其結(jié)果進(jìn)一步推廣了K.S.Kodbig的結(jié)論.
引理2[2]設(shè)Jv(x)是第一類(lèi)v階Bessel函數(shù),Re s(f(x),z)表示f(x)在z點(diǎn)的留數(shù),當(dāng)v?-1時(shí),有
引理3[4]卷積積分方程
有特解
其中
(i)當(dāng)φ(x),φ(x)都是奇函數(shù)時(shí)
(1)
(ii)當(dāng)φ(x)為奇函數(shù),φ(x)為偶函數(shù)時(shí)
(2)
(3)
(4)
(5)
所以,當(dāng)R→∞時(shí),∫Cf(η)dη→0.
(6)
又因?yàn)閣j(j=1,2,…,n)是f(η)的一階極點(diǎn)[8],有
(7)
由(3)~(7)得
(ii)當(dāng)φ(x)為奇函數(shù),φ(x)為偶函數(shù)時(shí).在上述所作的復(fù)平面,有
再利用(3)~(7),得到
整理即得結(jié)論(2).
(i)當(dāng)φ(x),φ(x)都是偶函數(shù)時(shí)
(ii)當(dāng)φ(x)為偶函數(shù),φ(x)為奇函數(shù)時(shí)
由定理1,可得
推論1 若φ(x)=φ(x)=x,g(x,z)=x+z,Resz>0,則
若在定理1中令φ(x)=mx,φ(x)=nx(m>0,n>0),g(x)=x2+z2,則得到推論2.
推論2 若m>0,n>0,Resz>0,則
性質(zhì)1 若m>0,n>0,s>0,則
在推論2中,若令z=is,則得到性質(zhì)2.
性質(zhì)2 若m>0,n>0,s>0,則
[1]K S Kolbig.An infinite integral of Bessel function[J].Comp.Appl.Math,1996,67:181-183.
[2]Ali A Al-Jarrah,A Al-Momani.On A Certain Class of Bessel Integrals[J].Turk.J.Math,2004(28):399-413.
[3]I S Gradshteyn,I M Ryzhik.Table of Integrals,Series,and Products[M].New York: A.Jeffrey,Ed.Academic Press,1994.
[4]Biserka Drascic,Tibor K pogany.On integral representation of Bessel function of the first kind[J].J.Math.Anal.Appl.,2005,308:775-780.
[5]G N Watson.A Treatise on the Theory of Bessel Functions [M].Cambridge:Univ.Press,1966.
[6]R C McPhedran,D H Dawes,T C Scott.On a Bessel Function Integral[J].AAECC,1992(2):207-216.
[7]Bruce C Bernd,M L Glasser.A new class of Bessel function integrals[J].Aequationes Mathematicae,1997(16):183-186.
[8]蓋云英,包革軍.復(fù)變函數(shù)與積分變換[M].北京:科學(xué)出版社,2003.
[9]M Abramowitz,I A Stegun,Eds.Handbook of Mathematical Functional with Formulas,Graphs,and Mathematical Tables[M].New York:9 th printing with corrections.Dover,1972.
(責(zé)任編輯:陳衍峰)
Generalization of an Integral Theorem Of Bessel functions
LAN Xin-hua
(CollegeofScience,Hezhouuniversity,Hezhou,Guangxi542899,China)
Based on the residue theory and the properties of Hankel function, we popularize the conclusions of K.S.Kodbig and obtain the Infinite Integral Theorem in the general case about Bessel function.It promotes the results of K.S.Kodbig and some properties are obtained .
Bessel function; residue theory ; Hankel function
2016-04-15
廣西省教育廳項(xiàng)目(20140628);賀州學(xué)院科研項(xiàng)目成果“含Bessel函數(shù)廣義積分的研究”(2016ZZZK07);賀州學(xué)院碩士點(diǎn)建設(shè)數(shù)學(xué)支撐學(xué)科自主課題項(xiàng)目(2016HZXYSX11)
藍(lán)新華,廣西上林人,講師.
O174.6
A
1008-7974(2016)05-0035-03
10.13877/j.cnki.cn22-1284.2016.10.012