王軍軍, 王雅楠, 徐大勇, 蔣伶活
(江南大學(xué) 生物工程學(xué)院 糧食發(fā)酵工藝與技術(shù)國家工程實(shí)驗(yàn)室,江蘇 無錫 214122)
?
白念珠菌CaGDT1基因的功能研究
王軍軍, 王雅楠, 徐大勇, 蔣伶活*
(江南大學(xué) 生物工程學(xué)院 糧食發(fā)酵工藝與技術(shù)國家工程實(shí)驗(yàn)室,江蘇 無錫 214122)
人類跨膜蛋白TMEM165與釀酒酵母ScGdt1均屬于陽離子/鈣離子交換器家族的成員,在本研究中,通過序列比對在白念珠菌中發(fā)現(xiàn)了ScGDT1的同源基因CaGDT1,表型互補(bǔ)實(shí)驗(yàn)顯示CaGDT1基因的表達(dá)能夠抑制ScGDT1基因缺失所造成的鈣離子敏感性,證明CaGDT1是ScGDT1的同功基因。此外,通過同源重組原理敲除了CaGDT1的2個等位基因。表型篩選結(jié)果表明gdt1/gdt1缺失株對鈣離子、細(xì)胞壁和內(nèi)質(zhì)網(wǎng)3種脅迫均不敏感,而對酮康唑和特比萘芬2種抗真菌藥物具有耐受性。
白念珠菌;CaGDT1;基因敲除;耐藥性
白念珠菌是一種免疫力低下人群的條件致病菌,寄生于正常人體的皮膚黏膜,與其宿主免疫系統(tǒng)維持平衡的狀態(tài)[1]。在免疫缺陷病人體內(nèi),它能夠入侵組織,引起嚴(yán)重的組織感染[2]。它能以不同的形態(tài)生長,包括酵母態(tài)、假菌絲和真菌絲3種形態(tài)[3]。在有血清的條件下,白念珠菌細(xì)胞由酵母態(tài)轉(zhuǎn)變成菌絲態(tài)細(xì)胞,這種轉(zhuǎn)變提升了其入侵宿主細(xì)胞的能力[4]。在真核生物細(xì)胞中,鈣離子是最普遍且最重要的信號傳導(dǎo)分子。鈣離子不僅參與細(xì)胞內(nèi)多種基礎(chǔ)代謝反應(yīng),而且作為一種多功能的信號載體,調(diào)節(jié)細(xì)胞內(nèi)各種生命活動[5-6]。在釀酒酵母的細(xì)胞質(zhì)中,通過細(xì)胞質(zhì)膜以及細(xì)胞器膜上的鈣轉(zhuǎn)運(yùn)蛋白和鈣離子交換器將胞內(nèi)鈣離子含量調(diào)節(jié)在一個最佳的鈣濃度,維持胞內(nèi)鈣穩(wěn)態(tài)[7-9]。例如,應(yīng)答內(nèi)質(zhì)網(wǎng)脅迫和信息素時,細(xì)胞通過質(zhì)膜上的鈣通道Cch1/Mid1/Ecm7,也稱為高親和性鈣離子吸收系統(tǒng)(HACS,calcium-uptake system),來控制鈣離子的攝入,而液泡通道蛋白Yvc1能夠應(yīng)答低滲休克,將鈣離子從液泡中釋放到胞質(zhì)中[10-11]。 細(xì)胞質(zhì)中過量的鈣離子則通過液泡膜上的鈣泵Pmc1和Ca2+/H+離子交換器 Vcx1被運(yùn)輸?shù)揭号葜袃Υ妫蛘呓?jīng)高爾基體上的鈣泵Pmr1和Ca2+/H+離子交換器Gdt1進(jìn)入內(nèi)質(zhì)網(wǎng)/高爾基體分泌途徑[7,9,12]。在白念珠菌中,許多與釀酒酵母功能相似的鈣轉(zhuǎn)運(yùn)蛋白和鈣通道已經(jīng)被發(fā)現(xiàn)和鑒定,它們包括液泡膜上的鈣泵CaPmc1,高爾基體膜上的鈣泵CaPmr1,內(nèi)質(zhì)網(wǎng)膜上的鈣泵CaSpf1,低親和性鈣離子吸收系統(tǒng)(LACS,low-affinity calcium-uptake system)CaFig1[13-17]。CDGs(Congenital Disorders of Glycosylation)是影響糖基化途徑的先天性代謝疾病,由人體TMEM165基因的突變引起[18]。TMEM165屬于高度保守的膜蛋白(UPF0016)家族成員,定位到高爾基體上,有陽離子/鈣離子交換器的特征,通過影響高爾基體鈣離子運(yùn)輸和pH平衡影響糖基化代謝。TMEM165的釀酒酵母同源蛋白ScG-dt1已被鑒定為高爾基體膜上的Ca2+/H+離子交換器,與高爾基體鈣泵ScPmr1蛋白協(xié)同調(diào)節(jié)胞內(nèi)鈣離子穩(wěn)態(tài)[19]。本研究通過序列比對在白念珠菌基因組中找到和鑒定了1個釀酒酵母ScGdt1的同功蛋白CaGdt1,它可以互補(bǔ)ScGdt1蛋白的鈣離子敏感性功能。此外,通過敲除CaGDT1基因,對其在白念珠菌細(xì)胞中的功能進(jìn)行初步探究。
1.1 材料
1.1.1 菌株、質(zhì)粒和引物 本實(shí)驗(yàn)使用的菌株和質(zhì)粒見表1,引物見表2。
表1 菌株和質(zhì)粒
表2 實(shí)驗(yàn)所用引物
1.1.2 主要試劑 限制性內(nèi)切酶、CIAP堿性磷酸酶、T4連接酶、TaqDNA聚合酶等購自寶生物大連有限責(zé)任公司;5-氟乳清酸(5-FOA)購自上海諾泰化工有限公司;表型篩選所用藥物全部購自Sigma公司;醋酸鋰、聚乙二醇3350購自Sigma公司;所有引物均由南京金斯瑞生物科技有限公司合成。
1.1.3 培養(yǎng)基(質(zhì)量分?jǐn)?shù),%) LB培養(yǎng)基:蛋白胨1,酵母提取物0.5,NaCl 1,用NaOH調(diào)pH至7.0;YPD培養(yǎng)基:酵母浸出粉1,蛋白胨2,葡萄糖2;SD培養(yǎng)基:無氨基酵母氮源0.67,氨基酸混合物粉末0.2,葡萄糖2。
1.2 方法
1.2.1CaGDT1基因的敲除 采用NATR和Ura+兩種篩選標(biāo)記分別敲除CaGDT1的雙等位基因,最后獲得的正確轉(zhuǎn)化子將會生長在SD-URA+200 μg/mL ClonNAT的平板上,并且在0.1% 5-FOA選擇壓力下能夠?qū)RA3標(biāo)記基因彈出,用含有25 μg/mL ClonNAT的YPD平板篩選彈出NATR抗性基因的最終轉(zhuǎn)化子。
1.2.2 白念珠菌CaGDT1基因回補(bǔ)質(zhì)粒的構(gòu)建 對于質(zhì)粒pCR4-CaGDT1的克隆,以野生型菌株CAI4基因組為模版PCR 擴(kuò)增出2.1 kb含CaGDT1基因全長的片段,通過BamHI單酶切連接到載體pCR4質(zhì)粒上。同理,將含CaGDT1基因全長的片段,通過KpnI和SphI酶切位點(diǎn)連接到載體pHAC181上,克隆得到 pHAC181-CaGDT1。
1.2.3 平板敏感性實(shí)驗(yàn) 所有菌株均接種于YPD培養(yǎng)基中過夜培養(yǎng)至飽和,將菌液按1∶10依次梯度稀釋至10-4,取不同梯度的菌液各2.5 μL依次點(diǎn)在YPD以及含有不同藥物的YPD平板上,30 ℃培養(yǎng)2 d后拍照觀察。
2.1CaGDT1是ScGDT1在應(yīng)答鈣脅迫方面的同功基因
利用白念珠菌基因組數(shù)據(jù)庫(http://www.candidagenome.org),發(fā)現(xiàn)一個基因位點(diǎn)C2_04540C,編碼350個氨基酸的蛋白質(zhì)序列。序列比對分析結(jié)果表明,其與人類蛋白TMEM165和釀酒酵母ScGdt1的同源性分別為29.9%和39.9%(圖1A)。用SMART軟件(http://smart.embl-heidelberg.de)進(jìn)行結(jié)構(gòu)分析(圖1B),結(jié)果表明CaGdt1與人類蛋白TMEM165和釀酒酵母ScGdt1結(jié)構(gòu)相似,在C末端均有5個跨膜結(jié)構(gòu)域。因此,進(jìn)一步研究了CaGdt1能否在功能上互補(bǔ)ScGdt1。與之前的文獻(xiàn)[12]報道一致,在釀酒酵母中,與野生型菌株BY4741相比,gdt1單基因缺失株對較低濃度(低于0.4 mol/L)的鈣離子濃度不敏感,對于高濃度的CaCl2(0.6 mol/L 和 0.7 mol/L)敏感(圖1C)。將完整的白念珠菌CaGDT1基因克隆到釀酒酵母過表達(dá)載體pHAC181中,獲得質(zhì)粒pHAC181-CaGDT1,并將其導(dǎo)入釀酒酵母gdt1細(xì)胞中。通過倍比稀釋表型實(shí)驗(yàn),發(fā)現(xiàn)CaGDT1基因的過表達(dá)能夠抑制ScGDT1基因缺失所造成的高濃度鈣的敏感性(圖1C)。這些結(jié)果表明在應(yīng)答高鈣脅迫的條件下,CaGDT1是ScGDT1的同功基因。
圖1 CaGdt1的序列對比和功能互補(bǔ)分析Fig.1 Sequence alignment and functional complementation of CaGdt1A、B:CaGdt1、ScGdt1和TMEM165的氨基酸序列對比和結(jié)構(gòu)分析;C:CaGDT1互補(bǔ)ScGDT1應(yīng)答高鈣脅迫的功能A and B:amino acid alignment between CaGdt1, ScGdt1 and TMEM165 and their structural analysis;C:functional complementation of ScGDT1 by CaGDT1 in the sensitivity of budding yeast cells to calcium stresses
2.2CaGDT1敲除質(zhì)粒的構(gòu)建
為敲除白念珠菌CaGDT1基因,分別從CaGDT1基因組上擴(kuò)增ORF上下游各650 bp 左右的同源片段,分別連接到載體質(zhì)粒p5921上hisG-URA3-hisG兩側(cè)相應(yīng)酶切位點(diǎn),構(gòu)建了可以重復(fù)利用的敲除盒質(zhì)粒pKC1。敲除盒構(gòu)建示意圖見圖2A。
以野生型菌株CAI4 基因組DNA為模板,GDT 1-L-F、GDT 1-L-R為引物進(jìn)行PCR反應(yīng),擴(kuò)增CaGDT1基因上游的1個 683 bp 片段(同源片段L),擴(kuò)增產(chǎn)物純化后用SacI和KpnI雙酶切,連接到用同樣2種酶處理的 p5921 載體中,獲得質(zhì)粒pKCL1。同理,以GDT1-R-F、GDT1-R-R為引物進(jìn)行PCR反應(yīng),擴(kuò)增CaGDT1基因下游的1個642 bp片段(同源片段R)。通過BamHI和PstI酶切,連接到經(jīng)相同酶切處理的載體pKCL1中。最后將所獲得的陽性轉(zhuǎn)化子用SacI和PstI進(jìn)行酶切驗(yàn)證,結(jié)果如圖2B,只有1、9、10三個質(zhì)粒能夠切出5.5 kb的敲除盒片段大小,即成功構(gòu)建敲除質(zhì)粒,命名為pKC1。
圖2 CaGDT1敲除盒的構(gòu)建策略(A)和酶切驗(yàn)證(B)Fig.2 Strategy (A) and restriction digestion confirmation (B) for constructing CaGDT1 gene knockout cassette
2.3gdt1/gdt1雙等位基因缺失株的構(gòu)建
以實(shí)驗(yàn)室已有的野生型菌株CAI4為出發(fā)菌株,來敲除CaGDT1基因。敲除策略見圖3A。對于CaGDT1基因的第1個拷貝,采用SAT1flippe的敲除方法[20];對于CaGDT1的第2拷貝,用已構(gòu)建好的CaURA3敲除質(zhì)粒pKC1,用限制性內(nèi)切酶SacI/PstI線性化后獲得含有CaURA3篩選標(biāo)記的CaGDT1敲除盒進(jìn)行敲除。
圖3 CaGDT1雙等位基因的敲除原理(A)和基因型PCR驗(yàn)證(B)
Fig.3 Strategy of knocking-outCaGDT1 two alleles (A)and PCR Confirmation of Genotype (B)
最后,對所獲得的雙等位基因缺失菌株gdt1/gdt1進(jìn)行最終的基因組驗(yàn)證,PCR檢測結(jié)果見圖3B,1~2泳道所用的引物為GDT1-DF和GDT1-DR,野生型擴(kuò)增出2 038 bp的片段,gdt1/gdt1擴(kuò)增出868 bp(gdt1::FRT)和2 147 bp (gdt1::hisG)的片段;3~4泳道所用的引物為GDT1-ORF-UP和GDT1-ORF-DOWN,野生型擴(kuò)增出461 bp的片段,gdt1/gdt1沒有擴(kuò)增出任何片段。因此能夠證明gdt1/gdt1基因型正確。
2.4gdt1/gdt1雙等位基因缺失株表型篩選
為研究白念珠菌CaGDT1基因的功能,構(gòu)建了CaGDT1雙等位基因缺失株。通過倍比稀釋表型篩選實(shí)驗(yàn)發(fā)現(xiàn),相比于野生型菌株CAI4,gdt1/gdt1缺失株對于300 μg/mL 剛果紅(Congo Red,CR)和150 μg/mL熒光白(Calcofluor white,CFW)等細(xì)胞壁干擾劑以及5 μg/mL 衣霉素(Tunicamycin,Tm)不敏感,對于不同濃度的鈣離子脅迫也不敏感(圖4)。然而,相比于野生型菌株,gdt1/gdt1缺失株對10 μg/mL的氟康唑(Fluconazole,F(xiàn)lu)不敏感,而對于10 μg/mL的酮康唑(Ketoconazole,KCZ)和特比萘芬(Terbinafine,Teb)則表現(xiàn)出耐受性。向gdt1/gdt1缺失株細(xì)胞中導(dǎo)入質(zhì)粒 pCR4-CaGDT1又消除了其對酮康唑和特比萘芬的耐受性(圖4)。
圖4 白念珠菌gdt1/gdt1基因缺失株的生長表型Fig.4 Growth phenotypes of the C. albicans gdt1/gdt1 mutant
本研究在白念珠菌中發(fā)現(xiàn)和鑒定了釀酒酵母ScGDT1的同功基因CaGDT1,為膜蛋白家族UPF0016增添了1個新的成員[18]。然而,雖然CaGDT1能夠互補(bǔ)ScGDT1基因缺失所造成的釀酒酵母細(xì)胞對高鈣脅迫的敏感性,但是CaGDT1基因的缺失并不造成白念珠菌細(xì)胞對高濃度鈣離子敏感。分析原因存在兩種可能性,其一是因?yàn)榘啄钪榫?xì)胞高爾基體上的鈣離子轉(zhuǎn)運(yùn)蛋白,CaPmr1能夠彌補(bǔ)CaGdt1蛋白缺失的功能;另一原因可能是CaGdt1的缺失導(dǎo)致的胞內(nèi)鈣離子濃度升高程度不足以持續(xù)激活鈣信號途徑,因此不會對細(xì)胞生長產(chǎn)生毒害作用。因此,在以后的研究中,將進(jìn)一步檢測gdt1/gdt1缺失株細(xì)胞內(nèi)鈣離子濃度,以及在gdt1/gdt1缺失株的基礎(chǔ)上構(gòu)建CaGDT1和CaPMR1的雙基因缺失株,進(jìn)一步研究它們之間的相互作用。此外,表型實(shí)驗(yàn)發(fā)現(xiàn)缺失了CaGDT1基因的白念珠菌細(xì)胞對酮康唑和特比萘芬兩種抗真菌藥物具有耐受性。這種耐藥表型可能與白念珠菌的抗真菌藥物耐受性存在關(guān)聯(lián),因?yàn)樵S多研究證明鈣離子信號途徑的激活和白念珠菌的抗真菌藥物耐受性存在關(guān)聯(lián)[24-27]。
[2] Yu Q,Ding X,Li M,et al. The P-type ATPase Spf1 is required for endoplasmic reticulum function and cell wall integrity inCandidaalbicans[J]. Int J Med Microbiol,2013,303(5):257-266.
[3] Sudbery P,Gow N,Berman J. The distinct morphogenic states ofCandidaalbicans[J]. Trends Microbiol,2004,12(7):317-324.
[5] Tan AR,Cai AY,Rintoul GL,et al. Elevated intracellular calcium causes distinct mitochondrial remodeling and calcineurin-dependent fission in astrocytes[J]. Cell Calcium,2011,49(2):108-114.
[6] Kaufman RJ,Swaroop M,Murtha-Riel P. Depletion of manganese within the secretory pathway inhibits O-linked glycosylation in mammalian cells[J]. Biochemistry,1994,33(33):9813-9819.
[7] Cunningham KW. Acidic calcium stores ofSaccharomycescerevisiae[J]. Cell Calcium,2011,50(2):129-138.
[8] Cui J,Kaandorp JA,F(xiàn)ilatov MV,et al. Calcium homeostasis and signaling in yeast cells and cardiac myocytes[J]. FEMS Yeast Res,2009,9(8):1137-1147.
[9] Cyert MS. Calcineurin signaling inSaccharomycescerevisiae:how yeast go crazy in response to stress[J]. Biochem Biophys Res Commun,2003,311(4):1143-1150.
[10]Denis V,Cyert MS. Internal Ca2+release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue[J]. J Cell Biol,2002,156(1):29-34.
[11]Martin DC,Kim H,Cunningham KW,et al. New regulators of a high affinity Ca2+influx system revealed through a genome-wide screen in yeast[J]. J Biol Chem,2011,286(12):10744-10754.
[12]Demaegd D,F(xiàn)oulquier F,Morsomme P,et al. Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells[J]. Proc Natl Acad Sci USA,2013,110(17):6859-6864.
[13]Ding X,Yu Q,Li M,et al. Ecm7,a regulator of HACS, functions in calcium homeostasis maintenance,oxidative stress response and hyphal development inCandidaalbicans[J]. Fungal Genet Biol,2013,57:23-32.
[14]Brand A,Lee K,Gow NA,et al. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth inCandidaalbicanshyphae[J]. Mol Microbiol,2009,71(5):1155-1164.
[15]Bates S,MacCallum DM,Gow NA,et al.Candidaalbicanspmr1p,a secretory pathway P-type Ca2+/Mn2+-ATPase,is required for glycosylation and virulence[J]. J Biol Chem,2005,280(24):23408-23415.
[16]Sanglard D,Ischer F,Bille J,et al. Calcineurin A ofCandidaalbicans:involvement in antifungal tolerance,cell morphogenesis and virulence[J]. Mol Microbiol,2003,48(4):959-976.
[17]Yang M,Brand A,Gow LAR,et al. Fig1 facilitates calcium influx andlocalizes to membranes destined to undergo fusion during mating inCandidaalbicans[J]. Eukaryotic Cell,2011,10(3):435-444.
[18]Foulquier F,Amyere M ,Matthijs G,et al. TMEM165 deficiency causes a congenital disorder of glycosylation[J]. Am J Hum Genet,2012,91(1):15-26.
[19]Demaegd D,F(xiàn)oulquier F,Colinet AS,et al. Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells[J]. Proc Natl Acad Sci USA,2013,110(17):6859-6864.
[20]Reuss O, Vik A, Kolter R,et al. The SAT1 flipper, an optimized tool for gene disruption inCandidaalbicans[J].Gene,2004,341:119-127.
[21]Li X,Huang X,Jiang L,et al. The MAP kinase-activated protein kinase Rck2p plays a role in rapamycin sensitivity inSaccharomycescerevisiaeandCandidaalbicans[J]. FEMS Yeast Res.,2008,8(5):715-724.
[22]Jiang L,Alber J,Wang J,et al. TheCandidaalbicansplasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+homoeostasis[J]. Biochem J,2012,444(3):497-502.
[23]Jiang L,Niu S,Sturgil TW,et al. Analyses of the effects of Rck2p mutants on Pbs2pDD-induced toxicity inSaccharomycescervisiaeidentify a MAP kinase docking motif, and unexpected functional inactivation due to acidic substitution of T379[J]. Mol Genet Genom,2004,271(2):208-219.
[24]Sanglard D,Ischer F,Bille J,et al. Calcineurin A ofCandidaalbicans: involvement in antifungal tolerance, cell morphogenesis and virulence[J]. Mol Microbiol,2003,48(4):959-976.
[25]Reedy J,Scott F,Heitman J,et al. Elucidating theCandidaalbicanscalcineurin signaling cascade controlling stress response and virulence[J]. Fungal Gen Biol,2010,47(2):107-116.
[26]Steinbach W,Reedy J,Heitman J,et al. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections[J]. Nat Rev Microbiol,2007,5(6):418-430.
[27]Edlind T,Smith L,Nickels J,et al. Antifungal activity inSaccharomycescerevisiaeis modulated by calcium signalling[J]. Mol Microbiol,2002,46(1):257-268.
Function ofCaGDT1 Gene inCandidaalbicans
WANG Jun-jun, WANG Ya-nan, XU Da-yong, JIANG Ling-huo
(Coll.ofBio-Engin.,JiangnanUni.,StateLab.ofGrainFerment.Technol. &Tech.,Wuxi2141222)
Human transmembrane protein 165 (TMEM165) andSaccharomycescerevisiaeScGdt1 belong to the members of cation/Ca2+exchanger family. In this study, homologous gene ofCaGDT1 of ScGDT1 was found inCandidaalbicansthrough sequence comparison. Phenotypic mutual complementary experiment showed that the expression ofCaGDT1 could suppress the calcium ion sensitivity caused byScGDT1 deletion, proved thatCaGDT1 andScGDT1 are analogous genes. In addition, two alleles ofCaGDT1 were knockout through homologous recombination principle. The results of phenotypic screening suggested that thegdt1/gdt1 deletion strain was all not sensitive to triple stresses of calcium ion, cell wall, ER, however, was tolerant against antifungal drugs, ketoconazole and terbinafine.
Candidaalbicans;CaGDT1; gene knockout; drug resistance
國家自然科學(xué)基金項(xiàng)目 (81371784);江南大學(xué)自主研究計劃重點(diǎn)項(xiàng)目(JUSRP51313B)
王軍軍 男,碩士研究生。從事酵母遺傳學(xué)與分子生物學(xué)研究。E-mail: wangjun317603088@qq.com
* 通訊作者。男,博士,教授,博士生導(dǎo)師。從事酵母和絲狀真菌遺傳學(xué)與分子生物學(xué)研究。E-mail: linghuojiang@hotmail.com
2015-04-07;
2015-04-30
Q933;R379.4
A
1005-7021(2016)02-0014-06
10.3969/j.issn.1005-7021.2016.02.003