• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Herbicidal Activity of Toxin from Fusariumavenaceum GD-2 against Wild Oats (Avenafatua L.)

    2016-12-21 07:49:05CHENGLiangGUOQingyun
    微生物學(xué)雜志 2016年2期
    關(guān)鍵詞:粗提物正丁醇西寧

    CHENG Liang, GUO Qing-yun*

    (1. Key Lab. of Agric. Integrated Pest Management in Qinghai Prov., Inst. of Plant Protect., Qinghai Acad. of Agric. &Forest. Sci.;2. Sci. Observ. & Exper. Stat’n of Crop Pest in Xining, Ministry of Agric., Xining, Qinghai 810016)

    ?

    Herbicidal Activity of Toxin fromFusariumavenaceumGD-2 against Wild Oats (AvenafatuaL.)

    CHENG Liang1, 2, GUO Qing-yun1, 2*

    (1.KeyLab.ofAgric.IntegratedPestManagementinQinghaiProv.,Inst.ofPlantProtect.,QinghaiAcad.ofAgric. &Forest.Sci.;2.Sci.Observ. &Exper.Stat’nofCropPestinXining,MinistryofAgric.,Xining,Qinghai810016)

    The herbicidal activity potential of toxin fromFusariumavenaceum GD-2 was evaluated against wild oats (AvenafatuaL.) in this study. The toxin was assayedinvitroto evaluate its inhibition against seed germination ofA.fatua. The toxin ofF.avenaceumGD-2 was shown to have an inhibitory effect of around 77.54% at 5 mg/mL against germination ofA.fatuaseeds. The inhibitory effect shown by the toxins against radicle had higher activity than plumule under the same concentration. The toxin ofF.avenaceumGD-2 significantly diminished the plant length the part on the ground with various treatments when treated with the toxin under greenhouse conditions. However, there were no significantly different reductions in plant length and the weed fresh weight with different treatments. In detached leaf injection bioassay, the toxic metabolite was characterized after the culture filtrates crude extraction with petroleum ether, chloroform, ethyl acetate andn-butanol. The residues left after solvent evaporation were evaluated separately for their toxicity against the target weed. Residue (5 mg/mL) obtained from n-butanol fraction showed the highest toxic activity when compared with others. Moreover, a host range experiments on the sensitivity of 10 plant species revealed that barnyard grasses and goosefeet were more sensitive to the toxin of the culture filtrate. Three herbicidal active compounds were isolated and purified from cultural filtrate with the same UV absorption peak. The recent results showed potential for the development of the toxins produced byF.avenaceumGD-2 as a bio-herbicidal source to control and eliminateA.fatuaweed.

    herbicidal activity; phytotoxin;Fusariumavenaceum; wild oat (AvenafatuaL.) ; host-range

    In cultivated wheat fields of the NW area of China, wild oats (AvenafatuaL.) is an aggressive weed, which competes with the wheat for soil nutrients, water and light. In the mean time, they can be suitable host for numerous pests (aphids, wheat stalks sawfly) and pathogens (wheat head blight, leaf spot and smut diseases). The hazard degree of wild oats might include up to 15.6% and 25.3% in winter and spring wheat fields, respectively[1]. The serious damage area of about 1.6 million per ha. and yield losses of 1.75 billion kg per year have been reported due to wild oats interference[2].

    Many measures such as chemical control, crop rotation, manual control and no-tillage have been established for controlling wild oats in wheat fields[3]. The adverse effects of constant use of these chemical compounds have led to the emergence of different resistant weed varieties[4]. Biological control may offer a promising solution. Many pathogenic organisms, especially fungi of the genusFusarium, as biological control agents have received greater attention in recent years.

    Fungi are among important microorganisms that produce a variety of bioactive extracellular toxic compounds. Herbicidal properties of such toxic metabolites of fungi have been exploited in weed integrated management[5-9]. SomeFusariumtoxins, such as enniatine and fumonisin, have been evaluated for their herbicidal properties[10-11]. In one of the studies,Fusariumnygamaiwas used for controllingStrigahermonthicawhich is the most common parasitic weeds in sub-Saharan Africa. The results revealed that four toxins produced byFusariumnygamai[12]isolated fromStrigahermonthicawere able to strongly inhibitS.hermonthicaseed germination[13]. Another showed that certain of such products have been patented and a few such as phosphinothricin, bialaphos, hydantocidin, have been commercialized[14-16].

    FusariumavenaceumGD-2 was isolated from diseased wild oats plants, which showed high potential for biological control of wild oats[17]. However, little information exists on the wild oat and host range of the toxic metabolites produced by pathogenic fungusF.avenaceumGD-2. In this paper, the first objective of this study was to isolate toxic metabolites produced byF.avenaceumand investigate the effects of fungal toxins on wild oat and other plants. The second objective was to purify the toxins in order to determine their chemical properties.

    1 Materials and methods

    1.1 Materials

    1.1.1 Selection of frequently occurring weed of wheat field Mature seeds ofAvenafatuaL. were collected from wheat fields located in the Xining, Institute of plant protection, Qinghai Academy of Agriculture and Forestry Sciences, P. R. China. The seeds specimens were dried under room temperature, packed in paper bags and stored at 4 ℃ until use.

    1.1.2 Preparation of cultural filtrate of test fungus Pure culture ofF.avenaceumGD-2 was obtained from Key Laboratory of Agricultural Integrated Pest Management in Qinghai Province, China. Potato dextrose broth (PDB) (2%) was autoclaved at 121 ℃ in 500 mL Erlenmeyer flasks, with 100 mL medium in each flask. Flasks were inoculated with three fungal mycelial disks (5 mm) cut from margins of actively growing fungal colonies. Inoculated flasks were incubated under shaking conditions at 220 r/min for 7 days at 25 ℃ in 12 hours alternation of light and darkness. After 7 days, the cultures were filtered using four layers of cheesecloth and filtrates were preserved at 4 ℃ in a refrigerator. The cultural filtrates were used within 1 week to avoid any contamination or component degradation.

    1.1.3 Toxin extraction A volume of 200 mL of original culture filtrate ofF.avenaceumwas extracted three times with 200 mL petroleum. The upper petroleum ether layer was separated off and vacuum dried in a rotary evaporator at 40 ℃ to remove any traces of solvents and to obtain the final residues. The remaining filtrate was extracted similarly in succession with chloroform, ethyl acetate andn-butanol. The final residues obtained from culture filtrate ofF.avenaceumwere stirred in vials for further experiments.

    1.2 Methods

    1.2.1 Characterization of herbicidal activity of culture filtrate extracts The following biological assays were conducted to characterize the herbicidal activity of the extracts.①Seed germination bioassay:TheA.fatuaseed-germination bioassay was conducted in 90-mm diameter Petri dishes. For surface sterilization,A.fatuaseeds were immersed in 1% sodium hypochlorite (NaOCl) solution for 3 min and thoroughly washed three times with sterile water, and air dried under room temperature. Disinfected seeds ofA.fatuawere distributed on the discs at a density of 30 seeds per dishes. A 200 μL aliquot of 2% methanol solution containing 200 μg of the extract was applied gently to each paper dishes, and two control treatments were performed with sterilized distilled water and only methanol under the same conditions as above. Four replicates were conducted for each treatment. The Petri dishes were arranged in a completely randomized design in a growth room maintained at 25 ℃ with 12 h light period daily. Plants ofA.fatuawere harvested 5 days after the start of germination (radicle emerged through seed coat). Data were expressed as percentage germination and radicle/plumule length. Seed germination was determined by counting the number of germinated seeds. Each measurement was repeated three times.②Greenhouse experiments:A.fatuaseeds were surface-sterilized in 1% NaOCl for 5 min, rinsed three times with sterile distilled water, and germinated on moistened filter paper in Petri dishes. After the seeds germinated (~72 h), they were planted in a commercial potting mix contained in peat strips. Each pot contained 10 plants. The potting mix was supplemented with a controlled-release(14∶14∶14, N∶ P∶K) fertilizer. The plants were placed in subirrigated trays that were mounted on greenhouse benches. Plants were grown at a temperature regime of (25/15±5)℃ (day/night) with supplemental light provided by 400 W Philips lamps 12 h per day.All the pots were arranged in a completely randomized design in greenhouse conditions. The extracts of culture filtrates of fungus were sprayed on 10 days weed seedlings. Treatment in a similar manner with distilled water and methanol only spray served as two control treatments. Each treatment was replicated four times. Plant height and biomass reductions were determined after 14 days. The experiment was repeated three times.③Detached leaf bioassay:Aqueous solutions of petroleum ether, chloroform, ethyl acetate andn-butanol residues were prepared in sterilized distilled water to obtain a final concentration of 5 mg/mL. Surface sterilized (2% NaOCl) leaves detached from 15 to 20 days old seedlings of the weed were treated with different organic extracts solutions and then were incubated for 24 h in moist chambers at room temperature. They were incubated at (28±2)℃ under constant fluorescent illumination (2×104erg/cm2/s).F.avenaceumwas further evaluated regarding its potential biological activity towards important plants. All organic solvent extracts obtained after cultural filtrate were combined, the combined extract was tested by the puncture and wilt bioassays. The following plants were tested: wheat (Triticumaestivum), rapeseed (Brassicanapus), barley (Hordeumvelgare), broadbean (Viciafaba), pea (Pisumsativum), carrot (Daucuscarota), mung bean (Vignaradiate), barnyardgrass (Echinochloacrus-galli), goosefoot (Chenopodiumalbum) and cabbage (Brassicaoleracea). Herbicidal activity was assessed after 24 h of incubation following the procedures outline above.In all the bioassays, sterilized methanol was used for control and sterilized distilled water served as control over control. All the treatments were carried out in quadruplicate and all the bioassays were repeated at least thrice.

    1.2.2 Isolation of toxic compounds from cultural filtrate Thirty hundred milliliters of cultural filtrate was fractionated with an equivalent volume ofn-butanol to obtain aliquot layer. This material wad applied to a silica gel column (800 mm×40 mm internal diameter) and eluted with dichloromethane, dichloromethane/methanol mixtures, and methanol. Each active fraction eluted wad subsequently applied to HPLC analysis using an Athena 120A C18 column (250 mm×4.6 mm i.d.×5 μm) in a equal participation mode using 5∶95 methanol/water as eluent (v/v) and a flow rate 1 m/min with an injection volume ("loop") of 10 μL to yield five separate compounds (compounds A to C). Yield of each isolated compound was appropriately 0.1 mg. 0.1 mg of compound A-C were dissolved by in 0.1 mL methanol and diluted with sterilized distilled water to obtain a final concentration of 100 μg/mL. Seed germination bioassay was conducted as described above.

    1.2.3 Statistical analysis All the data were subjected to standard analysis of variance procedures for a randomized complete design using the SPSS for windows (SPSS 2006). Treatment means were compared using the least significant difference (LSD) multiple range tests atP≤0.05.

    2 Results

    2.1 Herbicidal activity of culture filtrate extracts

    2.1.1A.fatuaseed-germination bioassay Data depicted in table 1 clearly indicate that the toxic compound(s) produced byF.avenaceumGD-2 had significant influence on germination and early seedling growth ofA.fatua.Seed-germination bioassay demonstrated that germination ofA.fatuaseeds was reduced by 6.74% due to methanol treatment. The effect of methanol treatment was not significant as compared to sterilized water treatment. All the organic extracts treatments significantly reduced germination by 58.55%~77.54%, as compared to the negative control. All the fungal cultural filtrate extracts significantly reduced shoot length as compared to sterilized water and methanol treatments. The highest adverse effect was recorded for then-butanol extracts, where a 91.37% reduction in plumule length was recorded over the sterilized water treatment. Similarly, 5 mg/mL concentration ofn-butanol extracts significantly reduced the length of radicle. All the organic extracts treatments significantly suppressed the length of radicle as compared to sterilized water treatment.

    Table 1 Effect of cultural filtrate extracts fromF.avenaceumGD-2 on germination and growth ofAvenafatuaL. in seed germination bioassay

    TreatmentConcentration/(mg·mL-1)Germination/%Inhibition/%Plumulelength/mmInhibition/%Radiclelength/mmInhibition/%Petroleumether530.00±1.41cd68.913.27±2.99c91.373.38±2.50c92.14Chloroform540.00±1.26c58.553.77±2.15c90.047.05±3.70c83.60Ethylacetate528.33±2.77d70.644.05±1.46c89.313.12±1.37c92.74Butanol521.67±3.33e77.543.42±1.06c90.973.77±0.84c91.23CK(Methanol)090.00±2.41ab6.7432.82±3.95ab13.3435.90±3.16ab16.51CK(H2O)096.50±0.17a-37.87±9.97a-43.00±9.82a-

    Notes: In the columns, values with different letters show significant difference (P≤0.05) as determined by Duncan’s multiple range tests,the same as in Table 2

    2.1.2 Foliar spray bioassay Weed growth inhibitory activity of all the organic extracts treatments was determined at 5 mg/mL againstA.fatuaplants. Among the all extracts examined, the inhibitory effect of these extracts was not significantly difference for length and biomass ofA.fatuaplumule. Similarly, the extracts of culture filtrates ofF.avenaceumGD-2 significantly reduced plumule length and biomass by 44.57%~50.33% and 72.34%~74.49% in 25-day-oldA.fatuaplants, respectively (Table 2). The plumule length was significantly reduced inA.fatuaplants by foliar spray of cultural filtrate extracts ofF.avenaceum. The adverse effect of foliar spraying on plumule length was recorded for then-butanol extract, where a 50.33% reduction in plumule length was recorded over the negative control. All the foliar spray treatment significantly reduced plumule fresh biomass in 25-day-oldA.fatuaplants. Similarly, foliar spraying of n-butanol extracts significantly reduced the fresh biomass of plumule by 74.49% in 25-day-oldA.fatuaplants.

    Table 2 Effect of cultural filtrate extracts fromF.avenaceumGD-2 on the growth ofAvenafatuaL. in greenhouse bioassay

    TreatmentConcentration/(mg·mL-1)Shootlength/cmInhibition/%Plumulefreshbiomass/gReductioninfreshbiomass/%Petroleumether513.64±0.46b50.3310.49±0.08c73.40Chloroform514.47±0.13b47.3110.78±0.06c72.67Ethylacetate515.22±0.02b44.5710.91±0.09c72.34Butanol514.13±0.08b48.5410.16±0.06c74.49CK(Methanol)023.33±0.01b15.0435.51±0.47b9.96CK(H2O)027.46±1.04a-39.44±0.16a-

    2.1.3 Detached leaf bioassay The metabolites extracts ofF.avenaceumGD-2 was found to induce necrotic spots of varying sizes on the detached leaves as shown in table 3. Among the four organic solvent fractions tested, the highest toxic activity of then-butanol extract was obtained. The necrotic reaction covered the whole leaf area and the leaf was completely destroyed. The leaves ofA.fatuaexhibited some reduced sensitivity to the ethyl acetate extract and showed intermediate reactions to the chloroform and petroleum ether extracts of the culture filtrate and no toxic activity was found in methanol and water treatment.

    A range of plants was tested for their susceptibility toF.avenaceum, the possible active ingredient in a biological control agent for use against the weedA.fatua. The tested plant response to crude extract showed that 50% of the tested plants were slightly susceptible (Table 4).

    ChenopodiumalbumandEchinochloacrus-galliwere highly susceptible to the crude extract resulting in necrosis and heavy leaf necrosis with more than

    Table 3 Necrotic area resulting fromFusariumavenaceumGD-2 extract in the detached leaf bioassay

    TreatmentsConcentration/(mg·mL-1)Necroticarea/(mm2)aPetroleumether517.15cChloroform523.25cEthylacetate531.75bn?Butanol545.25aControl(Methanol)00dControl(Water)00d

    Note:aNecrotic area in the detached leaf bioassay was calculated according to the formula S=Π*d2/4, where d is the diameter of the necrotic area;Means with the same letter for each column are not significantly different after the Tukey’s LSD test atP≤0.05,the same below

    Table 4 Reaction of various plant species toFusariumavenaceumGD-2 crude extract in the detached leaf bioassay 70% of leaf area coalescing with a resultant death. The dicotyledonPisumsativumandViciafabawere slightly susceptible to the crude extract resulting in leaf spotting.Daucuscarotaexhibited some reduced sensitivity and the monocotyledonTriticumaestivumandHordeumvelgareshowed intermediate reactions to the crude extract, indicating selectivity of the toxic metabolites towards some plant species.

    PlantfamilyBotanicalnameCommonnameNecroticarea/(mm2)aPoaceaeTriticumaestivumwheat22.15bPoaceaeHordeumvegarebarley19.05bPoaceaeEchinochloacrus?gallibarnyardgrass36.05aFabaceaePisumsativumpea4.10cFabaceaeViciafababroadbean4.08cFabaceaeVignaradiatemungbean5.88cBrassicaceaeBrassicaoleraceacabbage9.51cBrassicaceaeBrassicanapusrapeseed6.79cApiaceaeDaucuscarotacarrot11.31cAmaranthaceaeChenopodiumalbumgoosefoot31.68a

    2.2 Isolation of toxic compounds from cultural filtrate

    Among the 3 compounds tested at 100 μg/mL concentration on the inhibition ofA.fatuaseed seedling growth, compound B proved to be much more toxic than compound A and C, being able to reduce plumule and radicle length by 81.76% and 91.37%, respectively, compare with 81.18% and 85.49% with compound A and 80.58% and 83.53% with compound C. The inhibitory effects of compound A-C on radicle length were greater than those on radicle length. This showed that there were strong destructive effects on the germination growth ofA.fatua.

    Table 5 Effect of compound A-C on seed seedling growth of A .fatua L.

    UV absorption spectra of compounds A to C detected with the photodiode array detector on HPLC separation revealed that each compound showed three similar peaks (approximately 220, and 260 nm) of absorption (Fig.1), suggesting that the chemical structure of the compounds is similar.

    Wave length/nm

    3 Discussion

    In this study, it was observed thatF.avenaceumGD-2 produced phytotoxin in irregular lesions on weed leaves.Fusariumavenaceumis able to produce a wide range of chemical different bioactive secondary metabolites on artificial laboratory media, including deoxynivalenol (DON), zearalenone (ZEA), nivalenol (NIV), T-2 toxin, HT-2 toxins, moniliformin (MON), beauvericin (BEA) and enniatins (ENNs)[5,7,18-19]. The toxicity severalF.avenaceummetabolites has been thoroughly investigated. The earlier studies regarding the herbicidal activity ofFusariumspp. were restricted to the use ofF.oxysporum,F.proliferatum,F.semitectum,F.nygama,F.sambucinum,F.nivale,F.compactumandF.solani. These results are in agreement with reports of[20]for toxic metabolites ofF.avenaceumonRubusspecies weeds. However, this study reveals that the metabolites ofF.avenaceumspecies also exhibit herbicidal activity at low concentration.

    InA.fatuaseed-germination bioassay, the radicle growth had a greater response to the fungal crude extracts with respect to plumule growth at the same concentration level. There are similar reports of effective inhibition of weed seeds germination by fungal species toxins, such asDrechslerarostrata,Drechsleraaustraliensis,Alternariaalternata,FusariumsolaniandFusariumoxysporumagainst the radicle growth ofPartheniumhysterophorusandMyrotheciumverrucaria,Fusariumcompactumagainst seed germination ofOrobancheramoseseeds have also been reported[21-23]. This could be due to the direct contact with toxic compounds and may be may be ascribed to the high rate of absorption of the toxic metabolites[24].

    The occurrence of several different types of mycotoxins produced byF.avenaceumis also a risk factor due to possible synergistic effects. As data on the cytotoxicity and mode of action of many of the mycotoxins produced byF.avenaceumare almost completely lacking, more effort in this area is needed for proper risk assessment[25]. Enniatins are cyclic hexadepsipeptides, which are able to form cation selective channels in cellular membranes[26]. They are cytotoxic and toxic to insects, bacteria, and fungi. The toxic mode of action of moniliformin is suggested to be linked with inhibition of enzyme system and DNA synthesis, and also induce apoptosis in eukaryotic cells.

    Despite high toxic activity was found in then-butanol extract of theF.avenaceumculture filtrate in the greenhouse experiment, the inhibitory activity of all foliar spray treatments was not significant on plumule length and biomass inA.fatuaplants. This may be because of the presence and variations in concentration of toxic principles in particular fractions.

    The nonspecific toxins produced byF.avenaceumwere confirmed in this study by the ability to cause different degree disease symptoms in tested plants. Many toxins are produced byF.avenaceumare not selective, as they are able to cause the same toxic effects both on host and on non-host plants. For this reason, the toxicity to crop plants has to be ascertained. The isolate was able to weakly infect on pea, broad bean and mung bean. However, this fungus highly infected a large number of crop species in the Poaceae. These results suggest that toxins are host nonspecific, as in case of toxins produced by several otherFusariumspecies[27].

    The toxins produced in cultural filtrate consisted of three active compounds. Yield of each compound was less than 0.1 mg per 5 L fermentation liquor, indicating that toxicity of the compounds toA.fatuaseed germination and detached leaves is very potent. Due to the low yields, the structure of these compounds could not be identified in this study. However, the characteristic information about their UV spectra, each showing the same two absorption peaks, may facilitate the identification of these compounds in further studies. Therefore, further research will expand ongoing chemical properties identification of these bioactive compounds.

    Reference

    [1] Tu H.L., Qiu X. L., Xin C.Y., et al. Study on key techniques of integrated control over wild oat on farmland[J]. Sci. Agric. Sin, 1993, 26 (4):49-56.

    [2] Wei S.H., Zhang C.X., Zhu W.D., et al. Influence ofAvenafatuaon the yield characters of different wheat cultivars and its economic threshold[J]. J Triticeae Crops, 2008, 28(5):893-899.

    [3] Jordan D.L., Lancaster S.H., Lanier J.E., et al. Weed management in peanut with herbicide combinations containing imazapic and other pesticides[J]. Weed Technol, 2009, 23(1):6-10.

    [4] Travlos I.S., Giannopolitis C.N., Economou G. Diclofop resistance in sterile wild oat (AvenasterilisL.) in wheat fields in Greece and its management by other post-emergence herbicides [J]. Crop Prot, 2011, 30 (11): 1449-1454.

    [5] Amalfitano C., Pengue R., Andolfi A., et al. HPLC analysis of FA, 9, 10-dehydrofusaric acid, their methyl esters, toxic metabolites from weed pathogenicFusariumspecies[J]. Phytochem. Analysis, 2002, 13(5):277-282.

    [6] Dor E., Evidente A., Amalfitano C., et al. The influence of growth conditions on biomass, toxins and pathogenicity ofFusariumoxysporumf. sp.orthoceras, a potential agent for broomrape biocontrol[J]. Weed Res, 2007, 47(4):345-352.

    [7] Idris A.E., Abouzeid M.A., Boari A., et al. Identification of phytotoxic metabolites of a newFusariumsp. inhibiting germination ofStrigahermonthicaseeds[J]. Phytopathol. Mediterr, 2003, 42(1):65-70.

    [8] Souza A.P.S., Duarte M.L.R. Allelopathic activity of culture filtrate produced byFusariumsolani[J]. Planta daninha, 2007, 25(1):227-230.

    [9] Kroschel J., Elzein A. Bioherbicidal effect of Fumonisin B1, a phytotoxic metabolite naturally produced byFusariumnygamai, on parasitic weeds of the Genus Striga[J]. Biocontrol Sci. Technol, 2004, 14(2):117-128.

    [10]Abbas H.K., Boyette C. D., Hoagland R.E., et al. Bioherbicidal potential ofFusariummoniliformeand its phytotoxin, fumonisin[J]. Weed Sci, 1991,39(4): 673-677.

    [11]Hershenhorn J., Park S.H., Stierle A., et al.Fusariumavenaceumas a novel pathogen of spotted knap-weed and its phytotoxins, acetamido-butenolide and enniatin B[J]. Plant Sci, 1992, 86(2): 155-160.

    [12]Capasso R., Evidente A., Cutignano, A., et al. Fusaric and 9,10-dehydrofusaric acids and their methyl esters fromFusariumnygamai[J]. Phytochemistry, 1996, 41(4):1035-1039.

    [13]Zonno M.C., Vurro M., Evidente A., et al. Phytotoxic metabolites produced byFusariumnygamaifromStrigahermonthica[A]. In: Proceedings 1996 IX International Symposium on Biological Control of Weeds. Stellenbosch, South Africa, 1996, 223-226.

    [14]Saxena S., Pandey A.K. Microbial metabolites as ecofriendly agrochemicals for the next millenium[J]. Appl. Microbiol. Biotechnol, 2001, 55(4):395-403.

    [15]Pandey A.K., Singh J., Shrivastava G.M., et al. Fungi as herbicides: Current status and future prospects[M]. In: Trivedi PC (ed), Plant Protection: A Biological Approach, Jaipur, India, Avishkar Publishers and Distributors, 2003:305-339.

    [16]Mutsuo N, Kazuko I, Yasuyuki T, et al. Hydantocidin: a new compound with herbicidal activity fromStreptomyceshygroscopicus[J]. J Antibiot, 1991, 44(3):293-300.

    [17]Zhu H. X., Cheng L., Guo Q. Y. Identification and virulence of threeFusariumstrain againstAvenafatuaand safety on 5 crops[J]. China Journal of Biological Control, 2010, 26(S):84-89.

    [18]Evidente A., Amalfitano C., Agrelli D., et al. The influence of growth conditions on biomass, toxins and pathogenicity ofFusariumoxysporumf. sp.orthoceras, a potential agent for broomrape biocontrol[J]. Weed Res, 2007, 47(4):345-352.

    [19]Lindblad M, Gidlund A., Sulyok M., et al. Deoxynivalenol and other selectedFusariumtoxins in Swedish oats-occurrence and correlation to specificFusariumspecies[J]. Int J Food Microbial, 2013, 167(2):284-291.

    [20]Oleskevich C., Shamoun S.F., Vesonder R.F., et al. Evaluation ofFusariumavenaceumand other fungi for potential as biological control agents of invasiveRubusspecies in British Columbia[J]. Can. J Plant Pathol, 1998, 20(1):12-18.

    [21]Adrees H., Javaid A. Screening of some pathogenic fungi for their herbicidal potential against parthenium weed[J]. Pak. J. Phytopathol,2008, 20(1): 150-155.

    [22]Andolfi A., Boari A., Evidente A., et al. Metabolites inhibiting germination ofOrobancheramoseseeds produced byMyrotheciumverrucariaandFusariumcompactum[J]. J Agric. Food Chem, 2005, 53(5):1598-1603.

    [23]Javaid A., Adrees H. Parthenium management by cultural filtrates of phytopathogenic fungi[J]. Nat. Prod. Res, 2009, 23(16):1541-1551.

    [24]Javaid A., Shah M.B. Phytotoxic effects of aqueous leaf extracts of twoEucalyptusspp. againstPartheniumhysterophorusL[J]. Science International (Lahore), 2007, 19(4):303-306.

    [25]Gutleb A. C., Morrison E., Murk A. J. Cytotoxicity assays for mycotoxins produced byFusariumstrains: a review[J]. Environ. Toxicol. Pharmacol, 2002, 11(3-4):309-320.

    [26]Uhlig S., Jestoi M., Knutsen A. K., et al. Multiple regression analysis as a tool for the identification of relations between semi-quantitative LC-MS data and cytotoxicity of extracts of the fungusFusariumavenaceum(syn.F.arthrosporioides)[J].Toxicon, 2006,48(5):567-579.

    [27]Bottalico A., Perrone G. ToxigenicFusariumspecies and mycotoxins associated with head blight in small-grain cereals in Europe[J].Eur. J. Plant Pathol, 2002, 108(7): 611-624.

    國(guó)家自然科學(xué)基金項(xiàng)目(31160371,30860165);國(guó)家“十二五”科技支撐項(xiàng)目(2012BAD19B02);

    程亮 男,博士研究生。研究領(lǐng)域?yàn)樘烊划a(chǎn)物。Tel:0971-5313283,E-mail:liangcheng1979@163.com

    燕麥鐮刀菌GD-2毒素對(duì)野燕麥的除草活性研究

    程 亮1,2, 郭青云1,2*

    (1.青海省農(nóng)林科學(xué)院植物保護(hù)研究所 青海省農(nóng)業(yè)有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,青海 西寧 810016;2.農(nóng)業(yè)部西寧作物有害生物科學(xué)觀測(cè)實(shí)驗(yàn)站,青海 西寧 810016)

    評(píng)價(jià)了燕麥鐮刀菌GD-2毒素對(duì)野燕麥的除草活性潛力。毒素對(duì)野燕麥種子萌發(fā)抑制試驗(yàn)表明,當(dāng)毒素濃度達(dá)到5 mg/mL時(shí),對(duì)野燕麥種子的萌發(fā)抑制效果達(dá)77.54%,在相同濃度下,對(duì)野燕麥種子胚根的抑制效果高于對(duì)胚芽的抑制效果。在溫室條件下,毒素處理野燕麥植株后,各個(gè)不同處理野燕麥株高和地上部鮮重明顯減少,然而,各處理間沒(méi)有明顯差異。用石油醚、氯仿、乙酸乙酯和正丁醇依次萃取燕麥鐮刀菌發(fā)酵濾液并獲得粗提物,其中正丁醇浸提物(5 mg/mL)在離體葉片實(shí)驗(yàn)中效果優(yōu)于其他有機(jī)溶劑粗提物。此外,在毒素對(duì)10種植物的敏感性實(shí)驗(yàn)中,其中稗草和藜表現(xiàn)對(duì)燕麥鐮刀菌毒素敏感。從燕麥鐮刀菌中分離出3個(gè)除草活性化合物,且具有相同的紫外吸收峰。當(dāng)前結(jié)果表明燕麥鐮刀菌產(chǎn)生的毒素具有開發(fā)成為防除野燕麥生物源除草劑的潛力。

    除草活性;植物毒素;燕麥鐮刀菌;野燕麥;寄主范圍

    Q939.97

    A

    1005-7021(2016)02-0067-07

    10.3969/j.issn.1005-7021.2016.02.012

    國(guó)家高技術(shù)研究發(fā)展計(jì)劃(國(guó)家“863”計(jì)劃)(2011AA10A206)

    * 通訊作者。女,碩士。研究領(lǐng)域?yàn)檗r(nóng)田雜草綜合治理。Tel:0971-5313283

    猜你喜歡
    粗提物正丁醇西寧
    牛蒡根皮多酚、多糖粗提物對(duì)海蘭褐殼蛋雞產(chǎn)蛋性能及血液生化指標(biāo)的影響
    正丁醇和松節(jié)油混合物對(duì)組織脫水不良的補(bǔ)救應(yīng)用
    Dynamical signatures of the one-dimensional deconfined quantum critical point
    痛風(fēng)散粗提物鎮(zhèn)痛實(shí)驗(yàn)研究
    云南化工(2021年5期)2021-12-21 07:41:20
    植物粗提物可作為防治獼猴桃根結(jié)線蟲的綠色藥劑
    大風(fēng)子正丁醇部位化學(xué)成分的研究
    中成藥(2018年9期)2018-10-09 07:18:48
    輕輕松松聊漢語(yǔ)——“中國(guó)夏都”西寧
    金橋(2018年7期)2018-09-25 02:28:28
    三葉青藤正丁醇部位化學(xué)成分的研究
    中成藥(2018年7期)2018-08-04 06:04:08
    中華抱莖蓼正丁醇部位化學(xué)成分的研究
    中成藥(2018年3期)2018-05-07 13:34:25
    青海西寧蘭州格爾木往來(lái)更暢通
    石油瀝青(2018年5期)2018-03-23 04:49:19
    欧美人与善性xxx| 国产在线一区二区三区精| 亚洲高清免费不卡视频| 亚洲,一卡二卡三卡| 欧美另类一区| 97在线视频观看| 校园人妻丝袜中文字幕| 欧美日韩精品成人综合77777| 国产 一区精品| 一级,二级,三级黄色视频| 欧美日韩综合久久久久久| 亚洲成色77777| 精品一品国产午夜福利视频| 国产日韩欧美亚洲二区| 老熟女久久久| av黄色大香蕉| 欧美精品高潮呻吟av久久| 国产高清三级在线| 80岁老熟妇乱子伦牲交| 亚洲无线观看免费| 午夜福利,免费看| 国产免费现黄频在线看| 久久国产精品大桥未久av| 伊人久久精品亚洲午夜| 少妇精品久久久久久久| 女性被躁到高潮视频| 久久久久精品性色| 在线免费观看不下载黄p国产| 97精品久久久久久久久久精品| 久久精品国产亚洲网站| 国产精品一二三区在线看| 久久精品久久久久久久性| 飞空精品影院首页| 九九爱精品视频在线观看| 午夜影院在线不卡| 国产在线一区二区三区精| 色婷婷久久久亚洲欧美| 国产黄色视频一区二区在线观看| 国产无遮挡羞羞视频在线观看| 美女视频免费永久观看网站| 天堂俺去俺来也www色官网| 人妻系列 视频| 好男人视频免费观看在线| 日日爽夜夜爽网站| 美女cb高潮喷水在线观看| 成人无遮挡网站| 亚洲四区av| 国产亚洲精品久久久com| 色婷婷久久久亚洲欧美| 麻豆精品久久久久久蜜桃| 久热这里只有精品99| 中文字幕人妻丝袜制服| 有码 亚洲区| 精品一区二区三区视频在线| 久热这里只有精品99| 久久久亚洲精品成人影院| 最新中文字幕久久久久| 精品久久久精品久久久| 在线观看人妻少妇| 色网站视频免费| 精品久久久久久电影网| 国产综合精华液| 中文字幕精品免费在线观看视频 | 亚洲在久久综合| 日韩成人伦理影院| 日本91视频免费播放| 亚洲五月色婷婷综合| 亚洲欧美中文字幕日韩二区| 999精品在线视频| 老熟女久久久| 国产乱人偷精品视频| 又黄又爽又刺激的免费视频.| 国产精品一区www在线观看| 免费日韩欧美在线观看| 免费日韩欧美在线观看| 99九九在线精品视频| 国产黄色视频一区二区在线观看| 久久久久久人妻| 一边摸一边做爽爽视频免费| 国产精品久久久久久精品电影小说| 亚洲五月色婷婷综合| 高清在线视频一区二区三区| 国产欧美亚洲国产| 亚洲一级一片aⅴ在线观看| 高清欧美精品videossex| 91成人精品电影| 人妻制服诱惑在线中文字幕| 免费观看在线日韩| 最黄视频免费看| 一级a做视频免费观看| 国产成人aa在线观看| 久热这里只有精品99| freevideosex欧美| 久久韩国三级中文字幕| 成人综合一区亚洲| 国产永久视频网站| 日本爱情动作片www.在线观看| 飞空精品影院首页| www.av在线官网国产| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| 日韩一区二区视频免费看| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 熟妇人妻不卡中文字幕| 男女免费视频国产| 丰满迷人的少妇在线观看| 99热全是精品| h视频一区二区三区| 免费大片黄手机在线观看| av网站免费在线观看视频| av网站免费在线观看视频| 国产精品一国产av| 91国产中文字幕| 日韩精品有码人妻一区| 国产精品免费大片| av在线播放精品| 久久久久精品性色| 久久久国产欧美日韩av| 精品一品国产午夜福利视频| 日韩一区二区视频免费看| 精品国产一区二区三区久久久樱花| 色5月婷婷丁香| 国产成人一区二区在线| 性高湖久久久久久久久免费观看| 色网站视频免费| 国产免费福利视频在线观看| 日本av免费视频播放| 亚洲欧洲日产国产| 夜夜骑夜夜射夜夜干| 亚洲精品国产av蜜桃| 亚洲,欧美,日韩| 天天躁夜夜躁狠狠久久av| 五月伊人婷婷丁香| 9色porny在线观看| 2021少妇久久久久久久久久久| 日日爽夜夜爽网站| 99热全是精品| 国产日韩欧美在线精品| 国产精品麻豆人妻色哟哟久久| 在线观看人妻少妇| 日韩一区二区视频免费看| 欧美激情国产日韩精品一区| 国产在线免费精品| 国产av码专区亚洲av| 在线观看人妻少妇| 大又大粗又爽又黄少妇毛片口| av.在线天堂| 九九久久精品国产亚洲av麻豆| 亚洲精品国产色婷婷电影| 日本欧美国产在线视频| 久久久久精品久久久久真实原创| 一级毛片 在线播放| 国产视频首页在线观看| 在线观看美女被高潮喷水网站| 汤姆久久久久久久影院中文字幕| 欧美日韩视频精品一区| 菩萨蛮人人尽说江南好唐韦庄| 99久久中文字幕三级久久日本| 一级毛片 在线播放| 成人影院久久| av国产久精品久网站免费入址| a级毛片黄视频| 亚洲人与动物交配视频| 国产高清三级在线| 亚洲无线观看免费| 午夜福利在线观看免费完整高清在| 亚洲精品久久久久久婷婷小说| 欧美bdsm另类| 日韩成人伦理影院| 国产熟女欧美一区二区| 国产永久视频网站| 亚洲欧洲日产国产| 久热久热在线精品观看| 永久网站在线| 99九九线精品视频在线观看视频| 另类精品久久| 在线观看一区二区三区激情| 高清不卡的av网站| 我要看黄色一级片免费的| 99热这里只有是精品在线观看| 成人午夜精彩视频在线观看| 我的老师免费观看完整版| 国产精品国产三级国产av玫瑰| 黄片播放在线免费| a级毛色黄片| 久久国产精品男人的天堂亚洲 | 美女国产高潮福利片在线看| 国产色爽女视频免费观看| 久久久久久久久久人人人人人人| 国产精品一区二区三区四区免费观看| 在线精品无人区一区二区三| 亚洲av日韩在线播放| 爱豆传媒免费全集在线观看| 五月天丁香电影| 丝瓜视频免费看黄片| 亚洲成人av在线免费| 99久久精品国产国产毛片| 日本欧美视频一区| 国产av码专区亚洲av| 日韩中字成人| 在线观看国产h片| 婷婷色综合www| 在线播放无遮挡| 美女国产视频在线观看| 亚洲国产欧美日韩在线播放| 91午夜精品亚洲一区二区三区| 黄色毛片三级朝国网站| 蜜桃在线观看..| 色婷婷av一区二区三区视频| 婷婷色av中文字幕| 精品人妻偷拍中文字幕| 一本大道久久a久久精品| 日韩成人伦理影院| 国产精品免费大片| 午夜福利视频在线观看免费| 欧美bdsm另类| 国产视频内射| 欧美xxⅹ黑人| 国产免费一区二区三区四区乱码| 99国产精品免费福利视频| 亚洲一级一片aⅴ在线观看| 在线观看www视频免费| 全区人妻精品视频| 国产免费视频播放在线视频| 久热这里只有精品99| 国产精品秋霞免费鲁丝片| 97精品久久久久久久久久精品| 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 天天影视国产精品| 久久精品国产自在天天线| 国产成人aa在线观看| 人人妻人人澡人人爽人人夜夜| √禁漫天堂资源中文www| 亚洲不卡免费看| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 女人久久www免费人成看片| 国产亚洲午夜精品一区二区久久| 亚洲不卡免费看| 汤姆久久久久久久影院中文字幕| 亚洲欧美中文字幕日韩二区| 狠狠婷婷综合久久久久久88av| 人人妻人人添人人爽欧美一区卜| 国产精品人妻久久久久久| www.色视频.com| 亚洲国产精品成人久久小说| 国产精品久久久久久久电影| 嫩草影院入口| 欧美激情极品国产一区二区三区 | 久久午夜综合久久蜜桃| 日韩电影二区| 国产成人91sexporn| av不卡在线播放| 国产色爽女视频免费观看| 欧美日韩在线观看h| 精品一区二区三区视频在线| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 不卡视频在线观看欧美| 9色porny在线观看| 18+在线观看网站| av又黄又爽大尺度在线免费看| 久久久久久人妻| 一区二区三区精品91| 女性被躁到高潮视频| .国产精品久久| 欧美日韩视频高清一区二区三区二| 日韩精品免费视频一区二区三区 | 亚洲内射少妇av| 黑人巨大精品欧美一区二区蜜桃 | 青青草视频在线视频观看| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久| 天堂俺去俺来也www色官网| 两个人的视频大全免费| 国产精品熟女久久久久浪| 色94色欧美一区二区| 国产综合精华液| 久久久精品免费免费高清| 国产成人免费观看mmmm| 日日啪夜夜爽| 亚洲av成人精品一二三区| 欧美3d第一页| 国产精品成人在线| 亚洲精品第二区| 久久99一区二区三区| 18禁在线无遮挡免费观看视频| 国产精品99久久久久久久久| 久久ye,这里只有精品| 亚洲三级黄色毛片| 久久久久视频综合| 国产乱人偷精品视频| 观看av在线不卡| 久久精品国产亚洲网站| 日本黄大片高清| 好男人视频免费观看在线| 亚洲精品美女久久av网站| 多毛熟女@视频| 亚洲av成人精品一区久久| 视频区图区小说| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 久久久久国产精品人妻一区二区| 22中文网久久字幕| a 毛片基地| 亚洲第一区二区三区不卡| 一二三四中文在线观看免费高清| 国产欧美亚洲国产| 在线观看美女被高潮喷水网站| 另类亚洲欧美激情| 免费av中文字幕在线| 精品一区二区三卡| 精品午夜福利在线看| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| av在线app专区| 少妇人妻 视频| 嘟嘟电影网在线观看| 免费高清在线观看视频在线观看| 99热这里只有是精品在线观看| 久久免费观看电影| 美女国产高潮福利片在线看| 欧美精品人与动牲交sv欧美| 国产 精品1| 亚洲国产精品一区二区三区在线| 99久国产av精品国产电影| 九九在线视频观看精品| 成人无遮挡网站| 亚洲成色77777| 激情五月婷婷亚洲| 18禁观看日本| 麻豆成人av视频| 亚洲在久久综合| 五月伊人婷婷丁香| 国模一区二区三区四区视频| 久久久久久久久久久丰满| 我的老师免费观看完整版| 人人妻人人添人人爽欧美一区卜| 91成人精品电影| 一区二区三区精品91| 插阴视频在线观看视频| 免费看不卡的av| 久久久久久伊人网av| 久久99热6这里只有精品| 人成视频在线观看免费观看| 国产精品一区www在线观看| 亚洲av日韩在线播放| 国内精品宾馆在线| 我的老师免费观看完整版| 国产精品熟女久久久久浪| 永久网站在线| 午夜激情av网站| 天天操日日干夜夜撸| 国产精品熟女久久久久浪| 永久网站在线| 国产精品一区www在线观看| 人成视频在线观看免费观看| 欧美xxxx性猛交bbbb| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 久久久午夜欧美精品| 久久人人爽人人片av| 最新的欧美精品一区二区| 秋霞在线观看毛片| 如日韩欧美国产精品一区二区三区 | 国产高清国产精品国产三级| 国产又色又爽无遮挡免| 天堂8中文在线网| 高清视频免费观看一区二区| 久久青草综合色| 国产一区二区三区综合在线观看 | 亚洲人成网站在线播| 免费观看a级毛片全部| 美女视频免费永久观看网站| 最新中文字幕久久久久| 中文字幕人妻熟人妻熟丝袜美| 99久久中文字幕三级久久日本| 午夜福利视频在线观看免费| 国产国拍精品亚洲av在线观看| 日本欧美视频一区| 欧美另类一区| 人妻一区二区av| 久久综合国产亚洲精品| 黄色一级大片看看| 精品久久久精品久久久| 我的老师免费观看完整版| 欧美日韩av久久| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩另类电影网站| 制服诱惑二区| av线在线观看网站| 黑人高潮一二区| 日本91视频免费播放| 成人国语在线视频| 久久精品熟女亚洲av麻豆精品| 少妇的逼好多水| av视频免费观看在线观看| 国产亚洲最大av| 亚洲性久久影院| 久久精品久久精品一区二区三区| 欧美最新免费一区二区三区| 日韩亚洲欧美综合| 亚洲av国产av综合av卡| 美女视频免费永久观看网站| 九九久久精品国产亚洲av麻豆| 国产亚洲av片在线观看秒播厂| 18禁裸乳无遮挡动漫免费视频| 精品久久久噜噜| √禁漫天堂资源中文www| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 久久人妻熟女aⅴ| 欧美日韩av久久| 蜜臀久久99精品久久宅男| 国产精品久久久久久精品古装| 一区在线观看完整版| 亚洲不卡免费看| 一本—道久久a久久精品蜜桃钙片| 国产免费又黄又爽又色| 国产视频首页在线观看| 久久久久国产网址| 一区二区三区免费毛片| 午夜福利网站1000一区二区三区| 少妇人妻精品综合一区二区| 亚洲熟女精品中文字幕| 丝瓜视频免费看黄片| 亚洲精品乱久久久久久| 国产午夜精品一二区理论片| 日韩成人av中文字幕在线观看| 伦理电影大哥的女人| 午夜福利影视在线免费观看| 91久久精品电影网| 99热这里只有是精品在线观看| 美女主播在线视频| 乱码一卡2卡4卡精品| 2018国产大陆天天弄谢| 欧美+日韩+精品| 精品少妇内射三级| 成人毛片60女人毛片免费| videossex国产| 国产欧美亚洲国产| 一级毛片我不卡| 亚洲av日韩在线播放| 简卡轻食公司| 欧美日韩视频精品一区| 老熟女久久久| 亚洲美女视频黄频| 亚洲国产成人一精品久久久| 国产成人91sexporn| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看av| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 午夜免费观看性视频| 综合色丁香网| 精品国产露脸久久av麻豆| 丝袜脚勾引网站| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 午夜免费鲁丝| 高清午夜精品一区二区三区| 国产成人aa在线观看| 男人操女人黄网站| 丝袜喷水一区| 成人影院久久| 波野结衣二区三区在线| 精品人妻熟女av久视频| 精品久久久久久久久亚洲| 午夜福利视频在线观看免费| 国产亚洲最大av| 国产在线免费精品| 在线 av 中文字幕| 18禁观看日本| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 亚洲欧美成人综合另类久久久| 熟妇人妻不卡中文字幕| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 性色avwww在线观看| 久久免费观看电影| 国产 精品1| 22中文网久久字幕| 丰满迷人的少妇在线观看| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片 | 亚洲欧美日韩另类电影网站| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| 久久久久精品久久久久真实原创| 黑人巨大精品欧美一区二区蜜桃 | av又黄又爽大尺度在线免费看| 夜夜爽夜夜爽视频| 日本猛色少妇xxxxx猛交久久| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| 国产高清三级在线| 97超视频在线观看视频| 性色av一级| 18在线观看网站| 丝袜脚勾引网站| 全区人妻精品视频| 日韩三级伦理在线观看| 精品视频人人做人人爽| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 国产精品女同一区二区软件| 亚洲无线观看免费| 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 在线观看免费日韩欧美大片 | 国产 一区精品| 国产精品人妻久久久影院| 热99国产精品久久久久久7| 免费观看在线日韩| av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 亚洲怡红院男人天堂| 青春草国产在线视频| 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 全区人妻精品视频| www.色视频.com| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 国产在线免费精品| 性色avwww在线观看| 欧美老熟妇乱子伦牲交| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 五月天丁香电影| 超色免费av| 国产精品久久久久久久久免| 日本午夜av视频| 国产在线一区二区三区精| av又黄又爽大尺度在线免费看| 大又大粗又爽又黄少妇毛片口| av一本久久久久| 国产探花极品一区二区| 中文字幕av电影在线播放| 精品久久久噜噜| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩视频高清一区二区三区二| 成人免费观看视频高清| 亚洲色图综合在线观看| 精品视频人人做人人爽| 黑人欧美特级aaaaaa片| 五月开心婷婷网| 高清欧美精品videossex| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 欧美人与性动交α欧美精品济南到 | 一级爰片在线观看| 精品久久蜜臀av无| 亚洲欧美成人精品一区二区| 国产高清有码在线观看视频| 看免费成人av毛片| 国模一区二区三区四区视频| 满18在线观看网站| 99热6这里只有精品| 国产一区二区在线观看日韩| 又黄又爽又刺激的免费视频.| 丰满乱子伦码专区| 成年人免费黄色播放视频| 欧美 亚洲 国产 日韩一| 午夜日本视频在线| 中文字幕亚洲精品专区| av又黄又爽大尺度在线免费看| 中国美白少妇内射xxxbb| 高清不卡的av网站| 日本黄大片高清| 国产视频内射| 精品久久久久久电影网| 99久久精品一区二区三区| 在线观看美女被高潮喷水网站| 国产探花极品一区二区| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠久久av| 另类精品久久| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放| 亚洲一级一片aⅴ在线观看| 十八禁高潮呻吟视频| 国产欧美另类精品又又久久亚洲欧美| 久久久欧美国产精品| 黄色毛片三级朝国网站| 伦理电影大哥的女人| 下体分泌物呈黄色| 大香蕉久久成人网| 精品亚洲成a人片在线观看| 国产精品欧美亚洲77777| av有码第一页| 免费日韩欧美在线观看| 日本与韩国留学比较| 精品人妻一区二区三区麻豆| 伦理电影免费视频| 九草在线视频观看| 久久久久网色| 91aial.com中文字幕在线观看| 亚洲不卡免费看| 日本wwww免费看| 成人午夜精彩视频在线观看| 久久精品久久精品一区二区三区| 三级国产精品欧美在线观看|