• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Top-down characterization of histone H4 proteoforms with ProteinGoggle 2.0

    2016-12-14 07:02:19XIAOKaijieTIANZhixin
    色譜 2016年12期
    關(guān)鍵詞:變體乙?;?/a>甲基化

    XIAO Kaijie, TIAN Zhixin

    (School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment andSustainability, Tongji University, Shanghai 200092, China)

    ?

    Top-down characterization of histone H4 proteoforms with ProteinGoggle 2.0

    XIAO Kaijie, TIAN Zhixin*

    (SchoolofChemicalScience&Engineering,ShanghaiKeyLaboratoryofChemicalAssessmentandSustainability,TongjiUniversity,Shanghai200092,China)

    Top-down characterization of combinatorial and dense post-translational modifications (PTMs) on core histones has long been a big analytical challenge because of enormous putative proteoforms for identification and simultaneously enormous putative sites of each individual PTM for localization. ProteinGoggle 2.0, as implemented with the isotopic mass-to-charge ratio and envelope fingerprinting algorithm, has multiple unique strengths for top-down characterization of histone PTMs together with high-resolution tandem mass spectrometry. Here we report our database search and proteoform identification of HeLa core histone H4 using ProteinGoggle 2.0. The Theoretical database containing all putative proteoforms was created with shotgun annotation from the human H4 flat text downloaded from UniProt; information including the amino acid sequence, putative PTMs (methylation, di-methylation, tri-methylation, acetylation and phosphorylation) and amino acid variation (A77 to P) was adopted from the flat text file. A total of 426 proteoforms were confidently identified with a spectrum level false discovery rate of less than 1%, which represents the most comprehensive H4 proteoforms reported so far. Side-by-side comparison of these proteoforms with those identified by ProSightPC 2.0 was also made. By and large, ProteinGoggle 2.0 can be adopted for database search and proteoform identification of proteins with multiple combinatorial PTMs as well as amino acid variation.

    ProteinGoggle 2.0; top-down; histone H4; proteoform

    Histones, as chromatin proteins, play important roles not only in structural organization of DNA, but also in regulation of almost all DNA activities through post-translational modifications (PTMs) [1,2]. Aberrant histone PTMs lead to diseases and cancers [3,4]. These histone PTMs often cross-talk and function through combinatorial histone code [5], which necessitates intact molecular characterization. Modern ESI high-resolution tandem mass spectrometry together with various peripheral hyphenated techniques (especially high-performance liquid chromatography) has evolved into a state-of-the-art instrumental analytical tool for both qualitative and quantitative characterization of histone PTMs [6-20].

    Tian et al. [9] have so far done the most comprehensive top-down analysis of core histones. The four families (H4, H2B, H2A, and H3) of HeLa core histones were first fractionated offline by reversed-phase liquid chromatography; various proteoforms with combinatorial PTMs (such as acetylation, methylation, and phosphorylation) within each family fraction were then separated by pH-gradient weak cation exchange chromatography (WCX) which was coupled online throughn-ESI to an Orbitrap mass spectrometer. Five data-dependent datasets (one for H4, H2B, H2A, H3_1 and H3_2 each) using alternative collision-induced dissociation (CID) and electron-transfer dissociation (ETD) were acquired and deposited online (http://www.peptideatlas.org/). In total, 708 proteoforms (including 105 from the H4 family) identified with protein database search engine ProSightPC 2.0 were reported; ever since, the authors have developed a top-down intact protein database search engine ProteinGoggle 2.0 using distinctly alternative search algorithm, isotopic mass-to-charge ratio and envelope fingerprinting (iMEF) [21]. The iMEF algorithm interprets mass spectra and identifies both precursor and product ions by fingerprinting theoretical isotopic envelopes onto the corresponding experimental ones, which are measured directly by MS and thus pre-processing of de-isotoping as uniformly practiced in all the other search engines is avoided. The iMEF algorithm is a combination of isotopicm/zfingerprinting (iMF) and isotopic envelope fingerprinting (iEF). The former is used to fish out putative precursor or product ion candidates from the theoretical database with fingerprinting of the theoretically highest isotopic peak; while the latter is used to identify matching precursor or product ions with fingerprinting of all the isotopic peaks above a theoretical abundance threshold. This threshold is designated as isotopic peak abundance cutoff (IPACO); for a matching precursor or product ion, theoretical isotopic peaks with relative abundance above IPACO should be experimentally observed; also them/zdeviation and relative abundance deviation of these experimentally isotopic peaks should be within user-specified threshold values. These two parameters are designated as isotopic peakm/zdeviation (IPMD) and isotopic peak abundance deviation (IPAD). Passing through the search parameters of IPACO, IPMD and IPAD, every matching precursor or product ion has an ideal experimental isotopic envelope. This ensures confident protein identification as well as site localization of PTMs if any. The iMEF algorithm also has its intrinsic unique strength of resolution of extremely dense data in protein tandem mass spectra and distinct exclusion of non-ideal data [22]. The newest ProteinGoggle 2.0 with full capacity has been applied for both qualitative identification and quantitative analysis of differentially expressed proteins in hepatocellular carcinoma [23].

    Here we reported our database search and proteoforms identification of the aforementioned histone H4 using ProteinGoggle 2.0. A total of 426 proteoforms were confidently identified with a spectrum level false discovery rate (FDR) of less than 1%, which represents the most comprehensive H4 proteoforms reported so far. Side-by-side comparison of these proteoforms with those identified by ProSightPC 2.0 was also made.

    1 Experimental

    The histone H4 dataset was downloaded from Peptide Atlas (http://www.peptideatlas.org/) with the dataset identifier as PASS00070. The dataset has been published online together with its database search results from ProSightPC 2.0. Originally, the dataset was acquired with WCX-tandem mass spectrometry (alternative CID and ETD) analysis of HeLa histone H4 family which was obtained from RPLC fractionation of HeLa core histones mixture. ProSightPC 2.0 search was conducted in the “absolute mass” mode, and the adopted mass tolerance of precursor and product ion were ±1 Da and 10 ppm (10×10-6), respectively. Methylation (mono-, di-, and tri-), acetylation, and phosphorylation were treated dynamically and all annotated in the customized database. With a spectrum-level FDR≤1% using the reverse database in the decoy search, 105 H4 proteoforms were identified with “Number of Best Hits=1”, i. e. all proteoforms were uniquely given their respective matching product ions and possible candidates annotated in the customized database.

    In database search of this dataset with ProteinGoggle 2.0, a flat text file of human histone H4 (P62805) containing amino acid sequence together with candidate PTMs was first downloaded from UniProt. The customized forward and random databases were created with mono-methylation (R4, K21), di-methylation (R4, K21), tri-methylation (K21), acetylation (S2, K6, K9, K13, K17, K32, K92), and phosphorylation (S2, S48, Y52, T81) as dynamic PTMs and max PTMs per proteoform were limited to 6. Initial methionine was either kept or removed; and mutation of A77 to P was also considered. With all these options taken into account, a total of 6 672 candidate proteoforms were annotated. Initial protein spectrum matches (PrSMs) search in both the forward and the random databases was carried out with the following tolerance parameters: IPACO, IPMD, IPAD for the precursor ions and product ions were 40%/15 ppm/100% and 20%/15 ppm/50%, respectively; percentage of matching product ions (PMPs)≥5; PTM score≥1 or Proteoform score≥1.

    Spectrum-level FDR control is achieved throughPScore cutoff of combined PrSMs from the target-decoy searches both forward and random databases.Pscore is used to evaluate the probability of a random proteoform match from a MS/MS spectrum and its scoring is built on Poison distribution. The exact computation ofPscore,Pf,n, is shown in Equations 1 and 2.

    (1)

    (2)

    In Equations 1 and 2, “x” is the random match probability of an isotopic peak in the MS/MS spectrum; “f”is the total number of isotopic peaks in the spectrum; “n” is the number of peaks hitting a theoretical peak for random; “NTheo” is the number of theoretical product ions of the matched proteoform; “2 000” is them/zscan range of the MS spectrum, which could be read in from the raw experimental data; “z” is the charge state of the corresponding precursor ion for the MS/MS spectrum; “IPMD” is the short name of isotopic peak mass-to-charge ratio deviation, and is the experimentalm/zdeviation of an isotopic peak relative to its theoretical value; and “M” is the relative molecular mass (in Da) of the proteoform.

    2 Results and discussion

    With database search of the H4 dataset using ProteinGoggle 2.0, 7 139 and 41 PrSMs were obtained from the forward and random searches, respectively. These PrSMs were combined and ranked byPscore from high to low; a cutoffPscore, 169.09 (negative log value), was then chosen to obtain forward PrSMs with a spectrum level FDR≤1. Above this cutoffPscore, there are 5 969 and 29 PrSMs from the forward and random searches, and the FDR=29×2×100%/(5 969+29)=0.97%. The 5 969 forward PrSMs were grouped with amino acid sequence and PTMs to remove duplicates and obtain the final 426 proteoforms. The detailed information (including spectrum index, retention time (min), isolationm/z, experimentalm/z, theoreticalm/z, IPMD (ppm),z, theoretical monoisotopic mass (Da), sequence, PTMs, number of matching product ions (MPs), number of non-MPs,Pscore, PTM score, and proteoform score) for each of the 426 proteoforms was provided in Supplemental Table S1.

    Statistically, these 426 proteoforms, with 84 unique molecular formulae, were identified from 244 precursor ions across 168 MS/MS spectra in an elution window of 52.69 minutes. Each MS/MS spectrum (10m/zisolation window, actually) may contain multiple precursor ions, and each of these precursor ions may contain multiple co-eluting isomeric proteoforms. As for the distribution of these proteoforms in terms of amino acid sequence, 254 proteoforms have the normal sequence (without initial methionine, no amino acid variation); 106 proteoforms have amino acid variation of A77→P (without initial methionine); 4 proteoforms have initial methionine (with or without A77→P), and the last proteoform has R79→C. It should be noted that mutation of this A77 to P was originally reported and reviewed in UniProt, and the identification here is supported by both precursor ion fingerprinting tolerance and fragmentation. About 70% of the 426 proteoforms have 3 or more PTMs each (Fig. S1); acetylated proteoforms elute in the order of decreasing acetylation number per proteoform (Supplemental Fig. S2). The more acetylation a proteoform has, the less proton charges it has, and thus be eluted earlier in this WCX separation. A total of 10 proteoforms (S1AcK12AcY88P, R3dMeK5AcY88P, R3dMeS47P, S1AcS47P, S1AcK20MeY88P, S1PK-20dMeS47PY51PY88P, S1AcK5AcY88P, S1AcK-20dMeS47P, K12AcK20dMeS47P, S1AcK20dMeY-88P) containing combinatorial PTMs beyond the N-terminal tail have been identified in this study. These proteoforms may not be identified by the alternative bottom-up approach where the enzymatic tail (SGRGKGGKGLGKGGAKRHRKVLR) was analyzed. As an example, the iEF map and graphical fragmentation map for the proteoform with S1AcK12AcY88P are shown in Fig. S3a and S3b, respectively.

    For comparison of ProteinGoggle 2.0 and ProSightPC 2.0 in the database search of the H4 dataset, the results from the two search engines have a good proteoforms overlap (Fig. 1). However, the former has 327 unique proteoforms not identified by the latter; while it is 6 vice versa. Detailed side-by-side comparison of the two search engines in identification of the 6 proteoformsis provided in Table 1 and Fig. 2-4.

    Fig. 1 Overlap of H4 proteoforms identified by ProSightPC 2.0 and ProteinGoggle 2.0

    For ETD spectrum 1 320 with MS scan 1 310 (Table 1), ProSightPC 2.0 and ProteinGoggle 2.0 identified the proteoforms of S1AcK5AcK8AcK-12AcK16Ac and S1AcK5AcK8AcK12AcK16AcK-20dMe with 6 and 12 matching product ions, respectively. The precursor ion iEF maps of two proteoforms are shown in Fig. 2a and 2b. The theoretically highest isotopic peaks in the precursor ion isotopic envelopes are two peaks away from each other, i. e. the nominal mass difference between the two proteoforms is 2 Da. The graphical fragmentation map from ProteinGoggle 2.0 is shown in Fig. 2c, where all PTMs are uniquely localized.

    For CID spectrum 1 368 with MS scan 1 365 (Table 1), the identification difference between the two search engines is similar to that in spectrum 1 320. ProSightPC 2.0 identified H4 proteoform with K8AcK12AcK16AcK20MeY51p; whereas ProteinGoggle 2.0 identified two ambiguous proteoforms, S1AcR3MeK5AcK8AcK12AcK16Ac and R3dMeK5AcK8AcK12AcK16AcK20tMe, due to limited matching product ions. The precursor ion found by ProSightPC 2.0 is a relatively lower experimental isotopic envelope (Fig. 2d); whilethe precursor ion found by ProteinGoggle 2.0 is a relatively higher one (Fig. 2e). The two precursor ions are 4 Da (4 isotopic peaks) away from each other.

    Table 1 Side-by-side comparison of ProSightPC 2.0 with ProteinGoggle 2.0 in interpretation of the tandem mass spectra 1320, 1368, 1439, 1810, 2885 and 2919 in the H4 dataset

    *SGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVY-ALKRQGRTLYGFGG; **K12AcK16AcK20Me, K8AcK16AcK20Me, K8AcK12AcK20Me, K5AcK16AcK20Me, K5AcK12AcK20Me, K5AcK8AcK20Me, R3MeK12AcK16Ac, R3MeK8AcK16Ac, R3MeK8AcK12Ac, R3MeK5AcK16Ac, R3MeK5AcK12Ac, R3MeK5AcK8Ac, S1AcK16AcK20Me, S1AcK12AcK20Me, S1AcK8AcK20Me, S1AcK5AcK20Me, S1AcR3MeK16Ac, S1AcR3MeK12Ac, or S1AcR3MeK5Ac.

    Fig. 2 (a, b) iEF maps for the two precursor ions identified for ETD spectrum 1320 by ProSightPC 2.0 and ProteinGoggle 2.0; (c) graphical fragmentation map for H4 proteoforms with PTMs of S1AcK5AcK8AcK12AcK16AcK20dMe identified from MS/MS spectra 1320 by ProteinGoggle 2.0; (d, e) iEF maps for the two precursor ions identified for CID spectrum 1368 by ProSightPC 2.0 and ProteinGoggle 2.0; (f) iEF map for the same precursor ions identified for CID spectrum 1810 by ProSightPC 2.0 and ProteinGoggle 2.0

    Fig. 3 (a, b) iEF maps for the two precursor ions identified for ETD spectrum 1439 by ProSightPC 2.0 and ProteinGoggle 2.0; (c, d) graphical fragmentation map for H4 proteoforms with PTMs of S1AcK8AcK12AcK16AcK20dMe and S1AcK5AcK12AcK16AcK20dMe identified from MS/MS spectra 1439 by ProteinGoggle 2.0

    Fig. 4 (a) Graphical fragmentation map for H4 proteoforms with PTMs of R3MeK12AcK16Ac identified from MS/MS spectra 1810 by ProteinGoggle 2.0; (b) iEF map for the product ion b101+ identified for CID spectrum 1810 by ProteinGoggle 2.0; (c, d) iEF maps for the two precursor ions identified for ETD spectrum 2885 by ProSightPC 2.0 and ProteinGoggle 2.0; (e) iEF map for the same precursor ion identified for CID Spectrum 2919 by ProSightPC 2.0 and ProteinGoggle 2.0; (f) graphical fragmentation map for H4 proteoforms with PTMs of S1AcR3MeK8Ac identified from MS/MS spectrum 2919 by ProteinGoggle 2.0

    For ETD spectrum 1 439 with MS scan 1 431 (Table 1), the two search engines identified proteoforms with nominal mass difference of 2 Da, i. e. the theoretically highest isotopic peaks in the precursor ion isotopic envelopes are two peaks away from each other. ProSightPC 2.0 identified proteoform S1AcK8AcK12AcK20tMe with A77 mutated to P; whereas ProteinGoggle 2.0 identified two co-eluting proteoforms (S1AcK8AcK12AcK16AcK20dMe and S1AcK5AcK-12AcK16AcK20dMe) of the normal sequence with high confidence localization of all PTMs (Fig. 3c and 3d). The latter proteoforms have much better precursor ion fingerprinting between the experimental and theoretical isotopic envelopes (Fig. 3b) as well as many more matching product ions than the former proteoform (Fig. 3a).

    For CID spectrum 1 810 with MS scan 1 805 (Table 1), the same experimental isotopic envelope was matched for the same precursor ion by the two search engines to give two proteoforms with PTMs of S1AcR3MeK16Ac and R3MeK12AcK16Ac, respectively. The iEF map of the precursor ion is shown in Fig. 2f. For the H4 proteoform R3MeK12AcK16Ac identified by ProteinGoggle 2.0, matching product ion b101+(iEF map shown in Fig. 4b) containing only R3Me proves that S1 does not have acetylation; and all the three PTMs are uniquely localized with sufficient sit-determining product ions as illustrated in the graphical fragmentation map (Fig. 4a). When spectrum 1 810 is searched by ProteinGoggle 2.0 to fit the CID spectrum to the proteoform S1AcR3MeK16Ac as identified by ProSightPC 2.0, no matching product ion is found between S1 and K12 to unambiguously localize the acetylation on either of the two sites, which excludes co-elution possibility of this proteoform and also proves that identification by ProSightPC 2.0 is not right.

    For ETD spectrum 2 885 with MS Scan 2 883 (Table 1), ProSightPC 2.0 identified proteoform of S1AcY88p (also A77→P) with the correspondingprecursor ion iEF map shown in Fig. 4c; while ProteinGoggle 2.0 identified three candidate proteoforms (S1AcK20dMeY88P, S1AcK20dMeY51P, and S1AcK20dMeS47P) sharing the same precursor ion with the corresponding iEF map shown in Fig. 4d. The nominal mass difference between the two different precursor ions is 2 Da; the precursor ion identified by ProteinGoggle 2.0 clearly has a much better fingerprinting between the theoretical and the experimental isotopic envelopes.

    For CID spectrum 2 919 with MS Scan 2 916 (Table 1), the same experimental isotopic envelope was found for the same precursor ion by the two search engines, and the corresponding iEF map is shown in Fig. 4e. From the CID spectrum, ProSightPC 2.0 identified H4 proteoform with S1AcR3MeK8Ac exclusively; however, the graphical fragmentation map for this proteoform from ProteinGoggle 2.0 (Fig. 4f) clearly shows that location of methylation and acetylation (except the one on S1) could not be uniquely localized with the existing experimental data, and there should be as many as 20 putative proteoforms.

    3 Conclusions

    Different deconvolution algorithms often report shifted monoisotopic masses, which compromise the confidence of identification. Protein database search with iMEF and ProteinGoggle 2.0 not only removes uncertainties in deisotoping, but also possesses unique intrinsic capabilities of efficient resolution of overlapping iEs and unambiguous separation of confident product ions with ideal experimental iEs from ambiguous product ions with non-ideal experimental iEs. Confidence of PTM location assignment is leveraged by enforcement of both PTM score and Proteoform score. With the inherent strengths of iMEF, ProteinGoggle 2.0 displays superior performance in the database search of challenging histone H4; 426 proteoforms with unique localization of each PTM were confidently identified. ProteinGoggle 2.0 could be adopted for qualitative identification of any intact protein or proteome without size limitation. ProteinGoggle 2.0 is currently freely available at http://proteingoggle.#edu.cn/.

    Supplementary Information Supplemental information including three figures and detailed tabular information for the identified proteoforms (20 pages in total) are provided at http://www.Chrom-china.com/UserFiles/File/1609012SupportingInfo(2).pdf.

    [1] Venkatesh S, Workman J L. Nat Rev Mol Cell Bio, 2015, 16(3): 178

    [2] Tessarz P, Kouzarides T. Nat Rev Mol Cell Bio, 2014, 15(11): 703

    [3] Falkenberg K J, Johnstone R W. Nat Rev Drug Discov, 2014, 13(9): 673

    [4] Hojfeldt J W, Agger K, Helin K. Nat Rev Drug Discov, 2013, 12(12): 917

    [5] Jenuwein T, Allis C D. Science, 2001, 293(5532): 1074

    [6] Zheng Y P, Fornelli L, Compton P D, et al. Mol Cell Proteomics, 2016, 15(3): 776

    [7] Kwak H G, Dohmae N. Biosci Trends, 2016, doi: 10.5582/bst.2016.01090

    [8] Moradian A, Kalli A, Sweredoski M J, et al. Proteomics, 2014, 14(4/5): 489

    [9] Tian Z X, Tolic N, Zhao R, et al. Genome Biol, 2012, 13(10): R86

    [10] Bonet-Costa C, Vilaseca M, Diema C, et al. J Proteomics, 2012, 75(13): 4124

    [11] Han J, Borchers C H. Proteomics, 2010, 10(20): 3621

    [12] Pesavento J J, Bullock C R, LeDuc R D, et al. J Biol Chem, 2008, 283(22): 14927

    [13] Pesavento J J, Kim Y B, Taylor G K, et al. J Am Chem Soc, 2004, 126(11): 3386

    [14] Garcia B A, Shabanowitz J, Hunt D F. Curr Opin Chem Biol, 2007, 11(1): 66

    [15] Britton L M, Gonzales-Cope M, Zee B M, et al. Expert Rev Proteomics, 2011, 8(5): 631

    [16] Sidoli S, Cheng L, Jensen O N. J Proteomics, 2012, 75(12): 3419

    [17] Bonaldi T, Noberini R. Expert Rev Proteomics, 2016, 13(3): 245

    [18] Onder O, Sidoli S, Carroll M, et al. Expert Rev Proteomics, 2015, 12(5): 499

    [19] Liu Z W, Zhu M R, Zhai L H, et al. Chinese Journal of Chromatography, 2016, 34(9): 825

    [20] Wang G J, Zhang K, He X W, et al. Chinese Journal of Chromatography, 2013, 31(6): 514

    [21] Li L, Tian Z X. Rapid Commun Mass Spectrom, 2013, 27(11): 1267

    [22] Xiao K J, Yu F, Fang H Q, et al. Sci Rep, 2015, 5: 14755

    [23] Fang H Q, Xiao K J, Li Y H, et al. Anal Chem, 2016, 88(14): 7198

    基于ProteinGoggle 2.0的組蛋白H4蛋白質(zhì)變體的自上而下表征

    肖開捷, 田志新*

    (同濟(jì)大學(xué)化學(xué)科學(xué)與工程學(xué)院, 上海市化學(xué)品分析、風(fēng)險(xiǎn)評估與控制重點(diǎn)實(shí)驗(yàn)室, 上海 200092)

    由于大量可能蛋白質(zhì)變體以及每一個(gè)翻譯后修飾大量可能位點(diǎn)的存在,核心組蛋白上密集的組合式翻譯后修飾的自上而下表征一直是一個(gè)巨大的分析挑戰(zhàn)。結(jié)合高分辨串級質(zhì)譜,基于同位素質(zhì)荷比和輪廓指紋比對的整體蛋白質(zhì)數(shù)據(jù)庫搜索引擎ProteinGoggle 2.0在組蛋白翻譯后修飾的自上而下鑒定方面擁有諸多獨(dú)特的優(yōu)勢。該文報(bào)道ProteinGoggle 2.0對HeLa核心組蛋白H4的數(shù)據(jù)庫搜索及蛋白質(zhì)變體的鑒定結(jié)果?;趶腢niProt網(wǎng)站下載的人類核心組蛋白H4的純文本文件和“鳥槍法”注釋,ProteinGoggle 2.0首先創(chuàng)建包含所有可能蛋白質(zhì)變體的理論數(shù)據(jù)庫;從純文本文件中提取的信息主要是氨基酸序列、可能的翻譯后修飾(單甲基化、二甲基化、三甲基化、乙?;土姿峄?及氨基酸變異(A77→P)。在控制質(zhì)譜水平假陽性率低于1%的前提下,共鑒定到426個(gè)蛋白質(zhì)變體,這是目前為止H4蛋白質(zhì)變體的最全報(bào)道。這些ProteinGoggle 2.0鑒定到的H4蛋白質(zhì)變體也與之前報(bào)道的ProSightPC 2.0的鑒定結(jié)果進(jìn)行了肩并肩比較??偠灾?ProteinGoggle 2.0可以對具有復(fù)雜組合修飾及氨基酸變異的蛋白質(zhì)組進(jìn)行數(shù)據(jù)庫搜索和蛋白質(zhì)變體鑒定。

    ProteinGoggle 2.0;自上而下;組蛋白H4;蛋白質(zhì)變體

    10.3724/SP.J.1123.2016.09012

    Foundation item: National Natural Science Foundation of China (No. 21575104); China State Key Basic Research Program (No. 2013CB911203); Shanghai Science and Technology Commission (No. 14DZ2261100).

    O658 Document code: A Article IC:1000-8713(2016)12-1254-09

    Special issue for commemorating Professor ZOU Hanfa (Ⅰ)·Article

    * Received date: 2016-09-04

    * Corresponding author. Tel: +86-21-65986992, E-mail: zhixintian@#edu.cn.

    猜你喜歡
    變體乙?;?/a>甲基化
    抑癌蛋白p53乙酰化修飾的調(diào)控網(wǎng)絡(luò)
    基于DDPG算法的變體飛行器自主變形決策
    非仿射參數(shù)依賴LPV模型的變體飛行器H∞控制
    慢性支氣管哮喘小鼠肺組織中組蛋白H3乙?;揎椩鰪?qiáng)
    耀變體噴流高能電子譜的形成機(jī)制
    組蛋白去乙酰化酶抑制劑的研究進(jìn)展
    鼻咽癌組織中SYK基因啟動(dòng)子區(qū)的甲基化分析
    胃癌DNA甲基化研究進(jìn)展
    中國傳統(tǒng)文學(xué)的換形變體——論“詩化小說”的興起與傳承
    基因組DNA甲基化及組蛋白甲基化
    遺傳(2014年3期)2014-02-28 20:58:49
    22中文网久久字幕| 丰满迷人的少妇在线观看| 亚洲精品国产av成人精品| 九色亚洲精品在线播放| 国产精品麻豆人妻色哟哟久久| 免费大片黄手机在线观看| 美女大奶头黄色视频| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 久久久久久人人人人人| 九草在线视频观看| 国产精品成人在线| 色视频在线一区二区三区| a级毛片黄视频| 午夜精品国产一区二区电影| 成人亚洲精品一区在线观看| 日本wwww免费看| 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 日韩精品免费视频一区二区三区 | 制服人妻中文乱码| 久久久久精品性色| 久久毛片免费看一区二区三区| 大话2 男鬼变身卡| 久久久久久久久久久久大奶| 少妇被粗大猛烈的视频| 两个人看的免费小视频| 国产精品99久久99久久久不卡 | 999精品在线视频| 蜜桃国产av成人99| 久久99热6这里只有精品| 亚洲av免费高清在线观看| 卡戴珊不雅视频在线播放| 免费观看无遮挡的男女| 国产欧美日韩一区二区三区在线| 夫妻性生交免费视频一级片| 日韩大片免费观看网站| 久久精品国产综合久久久 | 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕| 久久精品国产亚洲av涩爱| 香蕉国产在线看| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| 久久精品aⅴ一区二区三区四区 | 午夜av观看不卡| 最黄视频免费看| 久久影院123| 91在线精品国自产拍蜜月| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| av在线app专区| 老司机影院毛片| 草草在线视频免费看| 免费观看无遮挡的男女| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 午夜激情久久久久久久| 一级黄片播放器| 国产精品国产av在线观看| 久久免费观看电影| www.熟女人妻精品国产 | 欧美bdsm另类| 亚洲成人手机| 国产深夜福利视频在线观看| 久久久久久久久久久免费av| 久久久久视频综合| 国产黄色视频一区二区在线观看| 久热这里只有精品99| 伊人亚洲综合成人网| 日本猛色少妇xxxxx猛交久久| 国产 精品1| 赤兔流量卡办理| 男女啪啪激烈高潮av片| 综合色丁香网| 亚洲国产精品国产精品| 99国产综合亚洲精品| 日日撸夜夜添| 午夜激情av网站| 久热这里只有精品99| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 99视频精品全部免费 在线| 少妇的丰满在线观看| 色婷婷久久久亚洲欧美| a级片在线免费高清观看视频| 免费人妻精品一区二区三区视频| 日日摸夜夜添夜夜爱| 免费黄网站久久成人精品| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 中文字幕另类日韩欧美亚洲嫩草| 自拍欧美九色日韩亚洲蝌蚪91| 国产老妇伦熟女老妇高清| 成年动漫av网址| 日韩一本色道免费dvd| 国产视频首页在线观看| 天天躁夜夜躁狠狠躁躁| 寂寞人妻少妇视频99o| 高清av免费在线| 国产成人aa在线观看| 18+在线观看网站| 91国产中文字幕| 啦啦啦中文免费视频观看日本| 国产爽快片一区二区三区| videosex国产| 免费久久久久久久精品成人欧美视频 | av不卡在线播放| 久久国产精品男人的天堂亚洲 | 丝袜在线中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 制服人妻中文乱码| 精品亚洲成a人片在线观看| 欧美xxⅹ黑人| 两个人看的免费小视频| videos熟女内射| 亚洲欧美精品自产自拍| 久久午夜综合久久蜜桃| 十八禁高潮呻吟视频| 肉色欧美久久久久久久蜜桃| 久久午夜综合久久蜜桃| 精品人妻一区二区三区麻豆| 亚洲一区二区三区欧美精品| 18禁在线无遮挡免费观看视频| 又黄又爽又刺激的免费视频.| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 久久精品国产鲁丝片午夜精品| 天堂中文最新版在线下载| 国产激情久久老熟女| 秋霞在线观看毛片| 免费高清在线观看日韩| 亚洲欧洲精品一区二区精品久久久 | 久久久久精品久久久久真实原创| 久久久久网色| 亚洲国产日韩一区二区| 五月玫瑰六月丁香| 久久久久久人人人人人| 男的添女的下面高潮视频| 久久ye,这里只有精品| 亚洲成人一二三区av| 久久女婷五月综合色啪小说| 国产亚洲午夜精品一区二区久久| 久久久久久人人人人人| 伊人亚洲综合成人网| 天堂8中文在线网| 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃| 久久人人爽av亚洲精品天堂| 精品亚洲成国产av| 大香蕉久久成人网| 午夜福利影视在线免费观看| 国产毛片在线视频| 黑人高潮一二区| 在现免费观看毛片| 捣出白浆h1v1| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽人人片av| 亚洲精品美女久久av网站| 我的女老师完整版在线观看| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| 有码 亚洲区| 另类精品久久| 亚洲av日韩在线播放| 久久午夜综合久久蜜桃| 老女人水多毛片| 日韩人妻精品一区2区三区| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 卡戴珊不雅视频在线播放| 免费少妇av软件| 交换朋友夫妻互换小说| 国产伦理片在线播放av一区| 欧美最新免费一区二区三区| 一区二区三区精品91| 成人国产麻豆网| 天堂8中文在线网| 免费黄色在线免费观看| av在线老鸭窝| 欧美xxⅹ黑人| 99香蕉大伊视频| 久久久久久久精品精品| 国产黄色视频一区二区在线观看| 考比视频在线观看| 汤姆久久久久久久影院中文字幕| 久久人人爽av亚洲精品天堂| 国产成人欧美| 深夜精品福利| 美女大奶头黄色视频| 91aial.com中文字幕在线观看| 欧美性感艳星| 久热久热在线精品观看| 黄色一级大片看看| 久久这里只有精品19| 日本爱情动作片www.在线观看| 在现免费观看毛片| 少妇 在线观看| 亚洲精品久久成人aⅴ小说| 亚洲美女黄色视频免费看| 久久精品国产综合久久久 | 久久久久人妻精品一区果冻| 国产精品久久久av美女十八| 美女主播在线视频| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 在线观看国产h片| 亚洲伊人色综图| 亚洲精品乱码久久久久久按摩| 日日爽夜夜爽网站| 蜜桃在线观看..| 日韩制服骚丝袜av| 晚上一个人看的免费电影| 亚洲国产精品一区二区三区在线| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 一本—道久久a久久精品蜜桃钙片| 99热这里只有是精品在线观看| 国产高清不卡午夜福利| 国产av国产精品国产| 精品一区二区三卡| 精品一区二区免费观看| 亚洲精品456在线播放app| 免费女性裸体啪啪无遮挡网站| 久久综合国产亚洲精品| 巨乳人妻的诱惑在线观看| 哪个播放器可以免费观看大片| 大香蕉97超碰在线| 在线天堂中文资源库| 久久久国产一区二区| 精品99又大又爽又粗少妇毛片| 精品福利永久在线观看| 一区二区三区乱码不卡18| 久久av网站| 亚洲国产欧美在线一区| 乱人伦中国视频| 婷婷色麻豆天堂久久| 欧美日韩国产mv在线观看视频| 国产不卡av网站在线观看| www.色视频.com| 国产乱来视频区| 欧美日韩一区二区视频在线观看视频在线| 91精品国产国语对白视频| 免费看不卡的av| 日本vs欧美在线观看视频| 性色av一级| 男女免费视频国产| 成人无遮挡网站| 人人妻人人爽人人添夜夜欢视频| 国产精品三级大全| 国产高清三级在线| av福利片在线| 999精品在线视频| 伊人亚洲综合成人网| 精品国产国语对白av| 亚洲,欧美精品.| 日韩中文字幕视频在线看片| 亚洲美女搞黄在线观看| 99精国产麻豆久久婷婷| 最黄视频免费看| 亚洲一级一片aⅴ在线观看| 午夜福利视频精品| 亚洲国产成人一精品久久久| 欧美人与善性xxx| 只有这里有精品99| 女性被躁到高潮视频| 大香蕉久久网| 久久青草综合色| 久久精品aⅴ一区二区三区四区 | 国产综合精华液| 男女无遮挡免费网站观看| 亚洲欧洲国产日韩| 午夜精品国产一区二区电影| 免费观看a级毛片全部| 免费日韩欧美在线观看| 99视频精品全部免费 在线| av国产精品久久久久影院| 日韩一区二区视频免费看| 久久久久久伊人网av| 飞空精品影院首页| 日本与韩国留学比较| 男人爽女人下面视频在线观看| 久久久国产精品麻豆| 免费大片18禁| 亚洲国产精品999| 高清av免费在线| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 大香蕉97超碰在线| 狠狠婷婷综合久久久久久88av| 久久97久久精品| 尾随美女入室| 欧美性感艳星| 午夜福利,免费看| 高清av免费在线| 久久久国产欧美日韩av| 精品一区二区免费观看| 亚洲图色成人| 久久久久精品久久久久真实原创| 中文字幕制服av| 亚洲精品久久久久久婷婷小说| 亚洲国产色片| 男女下面插进去视频免费观看 | 亚洲精品视频女| 热99国产精品久久久久久7| 老司机影院毛片| 高清不卡的av网站| 成年人免费黄色播放视频| 国产视频首页在线观看| kizo精华| 成人影院久久| 国产精品人妻久久久久久| 日本猛色少妇xxxxx猛交久久| 少妇精品久久久久久久| 99久久中文字幕三级久久日本| 中文字幕免费在线视频6| 亚洲精品,欧美精品| 国产精品一区www在线观看| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 免费av不卡在线播放| 久久 成人 亚洲| 亚洲久久久国产精品| 国产视频首页在线观看| a级片在线免费高清观看视频| 夫妻午夜视频| 80岁老熟妇乱子伦牲交| 国产精品三级大全| 亚洲人成网站在线观看播放| 成人影院久久| 熟女av电影| 久久ye,这里只有精品| 两个人免费观看高清视频| 国产探花极品一区二区| 国产精品一区二区在线不卡| kizo精华| 青青草视频在线视频观看| 日韩视频在线欧美| 欧美精品国产亚洲| 亚洲三级黄色毛片| 夫妻午夜视频| 另类亚洲欧美激情| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 高清av免费在线| 精品一区二区三卡| 色哟哟·www| 国产色婷婷99| 成人国产av品久久久| 国产精品久久久久成人av| 精品国产一区二区三区久久久樱花| 亚洲成人手机| 插逼视频在线观看| 又黄又粗又硬又大视频| 寂寞人妻少妇视频99o| 国产精品久久久久成人av| 国产精品久久久久久久电影| 色婷婷久久久亚洲欧美| 男女免费视频国产| 国产精品99久久99久久久不卡 | 日本免费在线观看一区| 老司机亚洲免费影院| 永久网站在线| 97人妻天天添夜夜摸| av网站免费在线观看视频| 9热在线视频观看99| 国产免费福利视频在线观看| 久久久久精品性色| freevideosex欧美| 亚洲精品中文字幕在线视频| 久久精品久久久久久噜噜老黄| 午夜精品国产一区二区电影| 亚洲伊人久久精品综合| 老女人水多毛片| 亚洲成国产人片在线观看| 久久久a久久爽久久v久久| 成人国语在线视频| 亚洲第一av免费看| 日本猛色少妇xxxxx猛交久久| 日韩欧美一区视频在线观看| av一本久久久久| 少妇的逼水好多| 高清av免费在线| 午夜福利乱码中文字幕| 国产高清国产精品国产三级| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜爱| 成人亚洲精品一区在线观看| 日韩免费高清中文字幕av| 日本免费在线观看一区| 9热在线视频观看99| 日韩av不卡免费在线播放| 一边摸一边做爽爽视频免费| 免费观看a级毛片全部| 三上悠亚av全集在线观看| 一区二区av电影网| tube8黄色片| 午夜激情久久久久久久| kizo精华| 亚洲精品av麻豆狂野| 90打野战视频偷拍视频| av电影中文网址| 免费观看在线日韩| 午夜激情av网站| 丝袜人妻中文字幕| 人妻系列 视频| 91国产中文字幕| 女人被躁到高潮嗷嗷叫费观| 美女国产视频在线观看| 一级爰片在线观看| 多毛熟女@视频| 蜜桃在线观看..| 日韩成人av中文字幕在线观看| 国产欧美亚洲国产| av电影中文网址| 高清黄色对白视频在线免费看| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| www日本在线高清视频| 亚洲中文av在线| 一二三四中文在线观看免费高清| 亚洲精品久久成人aⅴ小说| 搡女人真爽免费视频火全软件| 热re99久久精品国产66热6| 中文字幕人妻熟女乱码| 亚洲国产精品国产精品| 高清av免费在线| 国产不卡av网站在线观看| 午夜免费鲁丝| 色网站视频免费| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 国产日韩欧美视频二区| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡 | 亚洲成av片中文字幕在线观看 | 亚洲国产精品成人久久小说| 91国产中文字幕| 18禁观看日本| 免费不卡的大黄色大毛片视频在线观看| 亚洲三级黄色毛片| 9色porny在线观看| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 一级,二级,三级黄色视频| a级毛色黄片| 欧美人与性动交α欧美精品济南到 | 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| 成人国产av品久久久| 国产精品一二三区在线看| 久久精品国产自在天天线| 丁香六月天网| 激情五月婷婷亚洲| 黄色一级大片看看| 国产精品熟女久久久久浪| 国产免费一级a男人的天堂| 大香蕉97超碰在线| 黑丝袜美女国产一区| 色视频在线一区二区三区| 国产免费又黄又爽又色| 哪个播放器可以免费观看大片| 国产成人aa在线观看| 欧美xxⅹ黑人| 丝袜美足系列| 人妻一区二区av| 在线观看国产h片| 午夜福利,免费看| 伦理电影免费视频| 青春草视频在线免费观看| 婷婷色综合大香蕉| 亚洲欧洲日产国产| 亚洲四区av| 亚洲精品aⅴ在线观看| 亚洲av免费高清在线观看| 国产精品国产av在线观看| 成人18禁高潮啪啪吃奶动态图| 考比视频在线观看| 激情五月婷婷亚洲| 亚洲精品久久成人aⅴ小说| 久久久国产一区二区| 免费黄频网站在线观看国产| 国产成人精品婷婷| 国产免费又黄又爽又色| 国产男女内射视频| 宅男免费午夜| 欧美日韩视频高清一区二区三区二| 欧美日本中文国产一区发布| 久久国产亚洲av麻豆专区| www.av在线官网国产| 男男h啪啪无遮挡| 看十八女毛片水多多多| 黄色怎么调成土黄色| 少妇的逼水好多| 丰满迷人的少妇在线观看| 久久精品国产亚洲av涩爱| 国产av国产精品国产| 夫妻性生交免费视频一级片| 美女福利国产在线| 人体艺术视频欧美日本| 2021少妇久久久久久久久久久| 久久99一区二区三区| 狂野欧美激情性bbbbbb| freevideosex欧美| 美女视频免费永久观看网站| 草草在线视频免费看| av黄色大香蕉| 精品久久蜜臀av无| 国产av一区二区精品久久| 成人漫画全彩无遮挡| 男的添女的下面高潮视频| 国产精品久久久久久精品电影小说| 国产免费福利视频在线观看| 好男人视频免费观看在线| 免费女性裸体啪啪无遮挡网站| 亚洲四区av| 久久久亚洲精品成人影院| 欧美3d第一页| 成人国产麻豆网| videos熟女内射| 精品午夜福利在线看| h视频一区二区三区| 在线观看国产h片| 看免费成人av毛片| 精品少妇内射三级| 免费女性裸体啪啪无遮挡网站| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 国产一级毛片在线| 国产一区二区在线观看av| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| 亚洲人成网站在线观看播放| 亚洲精品久久午夜乱码| 90打野战视频偷拍视频| 我要看黄色一级片免费的| 人成视频在线观看免费观看| 亚洲人与动物交配视频| 国产黄频视频在线观看| 国产欧美日韩一区二区三区在线| 中国三级夫妇交换| 久热这里只有精品99| 综合色丁香网| 国产在线视频一区二区| 美女内射精品一级片tv| 大话2 男鬼变身卡| 亚洲精品成人av观看孕妇| 欧美人与性动交α欧美精品济南到 | 国产一区二区激情短视频 | 日本av免费视频播放| 国产成人欧美| 日本av免费视频播放| 美女视频免费永久观看网站| 亚洲欧洲国产日韩| 亚洲国产毛片av蜜桃av| 中文精品一卡2卡3卡4更新| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 午夜福利,免费看| av在线播放精品| 色网站视频免费| 久久久久网色| 亚洲精品自拍成人| 欧美xxxx性猛交bbbb| 亚洲av国产av综合av卡| 熟女人妻精品中文字幕| 天天操日日干夜夜撸| a级毛片黄视频| 大话2 男鬼变身卡| av女优亚洲男人天堂| 99国产综合亚洲精品| 国产免费一区二区三区四区乱码| 成人亚洲精品一区在线观看| 高清不卡的av网站| 久久久久国产网址| 久久国产亚洲av麻豆专区| 国产白丝娇喘喷水9色精品| 高清不卡的av网站| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 亚洲精品美女久久久久99蜜臀 | 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| 亚洲国产成人一精品久久久| 女人精品久久久久毛片| 午夜视频国产福利| 久久精品久久精品一区二区三区| 全区人妻精品视频| 久久精品夜色国产| 美女主播在线视频| tube8黄色片| 成人18禁高潮啪啪吃奶动态图| 久久久国产精品麻豆| 亚洲国产最新在线播放| 精品人妻偷拍中文字幕| 亚洲国产欧美日韩在线播放| 色婷婷av一区二区三区视频| 国产一区有黄有色的免费视频| 精品久久国产蜜桃| 亚洲性久久影院| 国产精品久久久久久av不卡| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 只有这里有精品99| 国产精品蜜桃在线观看| 亚洲一级一片aⅴ在线观看|