• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent advances on thermal analysis of stretchable electronics

    2016-12-09 08:00:14YuhngLiYuynGoJizhouSong

    Yuhng Li,Yuyn Go,Jizhou Song,c,?

    aInstitute of Solid Mechanics,Beihang University(BUAA),Beijing 100191,China

    bDepartment of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China

    cSoft Matter Research Center,Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    Review

    Recent advances on thermal analysis of stretchable electronics

    Yuhang Lia,Yuyan Gaob,Jizhou Songb,c,?

    aInstitute of Solid Mechanics,Beihang University(BUAA),Beijing 100191,China

    bDepartment of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China

    cSoft Matter Research Center,Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    H I G H L I G H T S

    ?Recent advances on thermal analysis of stretchable electronics are overviewed.

    ?Scaling laws for the temperature increase in a constant and pulsed mode are established.

    ?Design guidelines for thermal management of stretchable electronics are provided.

    A R T I C L EI N F O

    Article history:

    Accepted 16 December 2015

    Available online 24 December 2015

    Stretchable electronics

    Thermal analysis

    Scaling law

    Stretchable electronics,which offers the performance of conventional wafer-based devices and mechanical properties of a rubber band,enables many novel applications that are not possible through conventional electronics due to its brittle nature.One effective strategy to realize stretchable electronics is to designtheinorganicsemiconductormaterialinastretchableformatonacompliantelastomericsubstrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1–2°C temperature increase is not allowed.This article reviews the recent advances inthermalmanagementofstretchableinorganicelectronicswithfocusesonthethermalmodelsandtheir comparisons to experiments and finite element simulations.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Contents

    1.Introduction........................................................................................................................................................................................................................32

    2.Thermal analysis ofμ-ILEDs under a constant power.....................................................................................................................................................33

    3.Thermal analysis ofμ-ILEDs in a pulsed operation.........................................................................................................................................................33

    4.Thermal analysis ofμ-ILEDs in optogenetics...................................................................................................................................................................36

    5.Summary............................................................................................................................................................................................................................37

    Acknowledgments.............................................................................................................................................................................................................37

    References...........................................................................................................................................................................................................................37

    1.Introduction

    Fast developments and substantial achievements have been made on various aspects of stretchable electronics[1–7],which hassuperiormechanicalpropertiesthatareinaccessibletoconventional wafer-based electronics such as stretched like a rubber band and twisted like a rope without any significant reduction in electronic performance.Two complementary approaches have been demonstratedtodevelopstretchableelectronics.Oneapproachinvolves the use of the intrinsically compliant semiconductor materials to replace the intrinsically brittle inorganic semiconductor materials[8–11]that are widely used in conventional electronics. The other approach designs conventional high-performance inorganic semiconductor materials(e.g.,Silicon)in a novel stretchable structure on a compliant substrate[12–15].One such design is the bridge-island design with functional components residing on the islandinterconnectedbythebridgestokeeptheislandsalmostun-deformed under stretching as shown in Fig.1(a)of inorganic lightemitting diodes stretched onto the sharp tip of a pencil.

    Fig.1.(a)Stretchable inorganic light-emitting diodes with serpentine bridges,tightly stretched onto the sharp tip of a pencil.Reproduced with permission from Ref.[15]. Copyright 2010 Nature Publishing Group.(b)Scanning electron microscope(SEM)image of an injectable array ofμ-ILEDs and the process of injection and release of the μ-ILEDs into the mouse brain for in vivo optogenetics.Reproduced with permission from Ref.[16].Copyright 2013 AAAS.

    Thermal management of stretchable electronics is critically important because excessive heating may induce adverse responses such as the reduction of device performance and tissue lesioning(even 1–2°C temperature increase)in applications(e.g.,optogenetics,see Fig.1(b))involving biological tissues.The low conductivity(~0.1 W·m?1·K?1)of elastomeric substrate for stretchable electronics,which is about 3 orders lower than that of typical substrate for conventional electronics,imposes more challenges on the thermal management.This review paper will focus on the latter approach based on inorganic semiconductor materials and take microscale,inorganic light-emitting diodes (μ-ILEDs),which serve as heat sources and the active device islands in the bridge-island design for stretchable electronics,as an example to overview the recent advances in heat management of stretchable electronics through discussions of analytic,finite element simulations and experimental results.

    2.Thermal analysis ofμ-ILEDs under a constant power

    The temperature increase in Eq.(1)is for the singleμ-ILED on a glass substrate and it can be easily extended to study otherμ-ILED system with similar layouts and materials.Figure 3(a)shows the μ-ILED temperature as a function ofμ-ILED size on a polyethylene terephthalate(PET)substrate at 160 mW ·mm2.The analytical prediction agrees very well with experiments.The temperature decreases with decreasing theμ-ILED size,which clearly indicates an effective route for thermal management:to divide a large LED to an array ofμ-ILEDs.To find the temperature increase forμ-ILED array,the method of superposition can be used,i.e.,∑whereΔTi(r,z)is the temperature increase due to ithμ-ILED.The temperature increases for a conventional, macro-size LED(i.e.,0.5×0.5 mm2),an array of 25μ-ILEDs(i.e., 100×100μm2)at different spacings are shown in Fig.3(b).The temperature ofμ-ILED array decreases with increasing spacing and becomes independent of spacing for the spacing larger than~200μm,which suggests a critical spacing to maximally reduce the temperature.

    3.Thermal analysis ofμ-ILEDs in a pulsed operation

    Fig.2.Thermal management ofμ-ILEDs on a glass substrate.(a)Three-dimensional illustrations of theμ-ILED structure.(b)A schematic illustration of the analytical model.(c)Surface temperature distribution given by experiments,analytical model and FEA for the input power Q=37.6 mW with L=100μm.(d)The normalized μ-ILED temperature increase as the function of the normalizedμ-ILED size for the approximate solution(solid line),accurate solution(circles),FEA(triangles)and experiments(squares).Reproduced with permission from Ref.[17].Copyright 2012 The Royal Society.

    Fig.3.Thermal management by controlling size and spatial distributions ofμ-ILEDs on a PET substrate.(a)Measured(black symbols)and analytical predicted(black line) temperature as a function ofμ-ILED size at 160 mW/mm2.(b)Measured and(black symbols)and analytical predicted(black line)temperature of(5×5)μ-ILED array (100×100μm2)as a function of spacing.Reproduced with permission from Ref.[18].Copyright 2012 Wiley-VCH Verlag GmbH&Co.KGaA,Weinheim.

    Fig.4.(a)Three-dimensional illustration of theμ-ILED on a hydrogel substrate.(b)A schematic illustration of the analytical model.(c)A unit pulsed power with duration timeτand period t0.(d)Temperature for the pulsed peak power 20 mW with D=50%and t0=1 ms with the inset as the temperature after saturation.(e)The maximum and minimumμ-ILED temperature increase as the function of the duty cycle for the peak power 30 mW with t0=1 ms.(f)The normalized maximumμ-ILED temperature increase at a pulsed power as the function of the duty cycle.Reproduced with permission from Ref.[19].Copyright 2013 American Institute of Physics.

    Fig.5.(a)Cross-sectional illustration of fourμ-ILEDs in biological tissue.(b)A schematic illustration of the analytical model.(c)Surface temperature increase determined by analytical model,FEA,and experiments as the function of duty cycle with the frequency 3 Hz,peak power Q0=2.5 mW,r0=60μm,rd=200μm,h0=0.3 mm,and h1=3.7 mm.(d)Maximum normalized temperature increase of centerμ-ILED as the function of the normalized parameter.Reproduced with permission from Ref.[20]. Copyright 2013 The Royal Society.

    4.Thermal analysis ofμ-ILEDs in optogenetics

    Li et al.[21]further extended the above model to perform thermal management ofμ-ILEDs in optogenetics.Kim et al.[21] developed injectable,wireless optoelectronic devices withμ-ILED arrays delivered into the mouse brain using a releasable microneedle for in vivo optogenetics.Figure 5(a)schematically shows the cross-section of fourμ-ILEDs coated with a thin(6μm) layer of benzocyclobutene(BCB)on a 2.5μm thick polyethylene terephthalate(PET)substrate in an explanted piece of tissue from the mouse brain with the dimension of 9×4×4 mm3held at T0= 37°C by a thermal stage.h0and h1denote the tissue thicknesses above and below theμ-ILEDs,respectively.The thermal properties of BCB and PET are similar to those of tissue,and therefore their effects on the temperature are neglected.Li et al.[21] developed an analytical model forμ-ILED arrays in a pulsed operation in biological tissues and established a simple scaling law for the maximum temperature increase in terms of material, geometric and loading parameters.An array of 4μ-ILEDs used in experiments[16]is taken as an example to illustrate the approach.

    Figure 5(b)shows a schematic illustration of the analytical model for 4μ-ILEDs in the tissue with a pulsed power Q(t)= Q0U(t)applied to a singleμ-ILED.Let rddenote the distance between the centers of two adjacentμ-ILEDs.With the origin at the center of arrays,the coordinates ofμ-ILED centers are (±3rd/2,0)and(±rd/2,0),respectively.Following the similar approach as the one forμ-ILED on a hydrogel substrate[20],the temperature increase for a singleμ-ILED in biological tissue is obtained first and then the method of superposition is used to obtain the temperature increase for theμ-ILED array.Letθ(r,z;ω) denote the temperature increase for a singleμ-ILED due to a sinusoidal power Q0cos(ωt)[or Q0sin(ωt)].The temperature increase at the center point P1of the top surface due to a sinusoidal power is obtained as.The temperature increase at the center point P1of the top surface due to the pulsed power is then obtained as

    whereζnis the phase angle ofwith the expression that canfoundinRef.[21].Figure5(c)comparesthemaximumandminimum temperature increase after saturation from Eq.(4),3D FEA andexperimentsforthefrequency3Hz,peakpowerQ0=2.5mW, r0=60μm,rd=200μm,h0=0.3 mm,and h1=3.7 mm.The good agreement indicates that the analytical model could predict the temperature distributions accurately.

    The maximum temperature increase in the array of four μ-ILEDs occurs at the centerμ-ILED.For large ratios of h0/r0and h1/r0as in experiments[21],the analytical model gives the normalized temperature increase of the centerμ-ILED as in Box II, where E is the complete elliptic integral of the second kind,β= A/(αt0)withas the total surface area ofμ-ILED,J0is 0th-order Bessel function of the first kind,andηnis the phase angle ofdξ. Eq.(5)shows a simple scaling law for the normalized maximum temperature increaseas shown in Fig.5(d),which only depends on three non-dimensional parameters:βand D.The normalized maximum temperature increase of the centerμ-ILED drops significantly for 0<β<40 and then remains almost unchanged forβ>40.The results show that largesmallβand D help to reduce the maximum temperature increase.The above results forμ-ILEDs in a constant or pulsed operation are applied to optimize the injectable optoelectronics tomaintain the temperature low enough to avoid tissue lesioning for in vivo optoelectronics[16].

    5.Summary

    In summary,with fast developments and substantial achievements made on various aspects of stretchable electronics,thermal management of stretchable electronics becomes more and more important due to its adverse effects on its performance as well as in applications involving human body,where even a small temperature increase(1–2°C)is not allowed.This paper overviews the recent advances on thermal analysis of stretchable inorganic electronics and provides design guidelines for thermal management(e.g.,to use small functional components in a pulsed mode). Whileseveraleffortshavebeendevotedtodevelopanalyticalmodels with certain assumptions,there are still many open challenges and opportunities for future research.For example,a biophysically realistic model,which accounts for the effects of blood perfusion and metabolic heat generation,is needed and remain an attracting area of research.Such a model will help researchers to optimally design experiment and offer the possibility of direct integration of stretchable electronics and optoelectronics with biological tissues for emerging applications.

    Acknowledgments

    This work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR15A020001),the National Natural Science Foundation of China(Grant Nos.11502009, 11372272 and 11321202),and the National Basic Research Program of China(Grant No.2015CB351900).

    References

    [1]D.H.Kim,J.H.Ahn,W.M.Choi,et al.,Stretchable and foldable silicon integrated circuits,Science 320(2008)507–511.

    [2]J.Viventi,D.H.Kim,L.Vigeland,et al.,Flexible,foldable,actively multiplexed, high-density electrode array for mapping brain activity in vivo,Nature Neurosci.14(2011)1599–1605.

    [3]D.H.Kim,R.Ghaffari,N.Lu,et al.,Flexible and stretchable electronics for biointegrated devices,Annu.Rev.Biomed.Eng.14(2012)113–128.

    [4]H.C.Ko,M.P.Stoykovich,J.Song,et al.,A hemispherical electronic eye camera based on compressible silicon optoelectronics,Nature 454(2008)748–753.

    [5]R.C.Webb,A.P.Bonifas,A.Behnaz,et al.,Ultrathin conformal devices for preciseandcontinuousthermalcharacterizationofhumanskin,NatureMater. 12(2013)938–944.

    [6]S.Xu,Y.Zhang,L.Jia,et al.,Soft microfluidic assemblies of sensors,circuits, and radios for the skin,Science 344(2014)70–74.

    [7]C.Dagdeviren,B.D.Yang,Y.Su,et al.,Conformal piezoelectric energy harvesting and storage from motions of the heart,lung,and diaphragm,Proc. Natl.Acad.Sci.USA 111(2014)1927–1932.

    [8]B.Crone,A.Dodabalapur,Y.Y.Lin,etal.,Large-scalecomplementaryintegrated circuits based on organic transistors,Nature 403(2000)521–523.

    [9]Y.L.Loo,T.Someya,K.W.Baldwin,et al.,Soft,conformable electrical contacts for organic semiconductors:high-resolution plastic circuits by lamination, Proc.Natl.Acad.Sci.USA 99(2002)10252–10256.

    [10]T.Sekitani,T.Yokota,U.Zschieschang,et al.,Organic nonvolatile memory transistors for flexible sensor arrays,Science 326(2009)1516–1519.

    [11]M.Kaltenbrunner,T.Sekitani,J.Reeder,et al.,An ultra-lightweight design for imperceptible plastic electronics,Nature 499(2013)458–463.

    [12]H.Jiang,D.Y.Khang,J.Song,et al.,Finite deformation mechanics in buckled thin films on compliant supports,Proc.Natl.Acad.Sci.USA 104(2007) 15607–15612.

    [13]D.H.Kim,J.Song,W.M.Choi,et al.,Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations,Proc.Natl.Acad.Sci.USA 105(2008)18675–18680.

    [14]S.Xu,Y.Zhang,J.Cho,et al.,Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems,Nature Commun.4 (2013)1543.

    [15]R.H.Kim,D.H.Kim,J.Xiao,et al.,Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,Nature Mater.9(2010)929–937.

    [16]T.Kim,J.G.McCall,Y.H.Jung,et al.,Injectable,cellular-scale optoelectronics with applications for wireless optogenetics,Science 340(2013)211–216.

    [17]H.S.Kim,E.Brueckner,J.Song,et al.,Unusual strategies for using indium gallium nitride grown on silicon(111)for solid-state lighting,Proc.Natl.Acad. Sci.USA 108(2011)10072–10077.

    [18]C.Lu,Y.Li,J.Song,et al.,A thermal analysis of the operation of microscale, inorganic light-emitting diodes,Proc.R.Soc.Lond.Ser.A Math.Phys.Eng.Sci. 468(2012)3215–3223.

    [19]T.Kim,Y.H.Jung,J.Song,et al.,High-efficiency,microscale GaN light-emitting diodes and their thermal properties on unusual substrates,Small 8(2012) 1643–1649.

    [20]Y.Li,Y.Shi,J.Song,et al.,Thermal properties of microscale inorganic lightemitting diodes in a pulsed operation,J.Appl.Phys.113(2013)144505.

    [21]Y.Li,X.Shi,J.Song,et al.,Thermal analysis of injectable,cellular-scale optoelectronics with pulsed power,Proc.R.Soc.Lond.Ser.A Math.Phys.Eng. Sci.469(2013)20130142.

    16 October 2015

    in revised form 2 December 2015

    http://dx.doi.org/10.1016/j.taml.2015.12.001

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?at:Department of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China.

    E-mail address:jzsong@zju.edu.cn(J.Song).

    日本黄大片高清| 美女免费视频网站| 亚洲色图av天堂| 婷婷丁香在线五月| 精品免费久久久久久久清纯| 深夜精品福利| 国产一区二区在线观看日韩 | 哪里可以看免费的av片| 伊人久久大香线蕉亚洲五| 黄色日韩在线| 99精品在免费线老司机午夜| 99久久精品国产亚洲精品| 日韩av在线大香蕉| 美女高潮喷水抽搐中文字幕| 一级a爱片免费观看的视频| 一区二区三区激情视频| 亚洲专区字幕在线| 看片在线看免费视频| 18禁黄网站禁片免费观看直播| 国产精品99久久久久久久久| 无限看片的www在线观看| av福利片在线观看| 国产精品久久久久久亚洲av鲁大| 91av网一区二区| 欧美在线黄色| 国产欧美日韩一区二区三| 国产野战对白在线观看| 午夜福利高清视频| 男人舔女人的私密视频| 老熟妇仑乱视频hdxx| 精品国产亚洲在线| 成人国产综合亚洲| 视频区欧美日本亚洲| 亚洲18禁久久av| 色吧在线观看| 色吧在线观看| 午夜免费观看网址| 精品国产美女av久久久久小说| 亚洲av成人不卡在线观看播放网| 国产一级毛片七仙女欲春2| 久久久久国产精品人妻aⅴ院| 91九色精品人成在线观看| 91在线观看av| 免费在线观看日本一区| 欧美最黄视频在线播放免费| 亚洲av成人精品一区久久| 久久人妻av系列| 日日夜夜操网爽| 国产精品亚洲美女久久久| 不卡av一区二区三区| 丁香六月欧美| 天天躁日日操中文字幕| 最近在线观看免费完整版| 可以在线观看的亚洲视频| 久久久精品欧美日韩精品| 亚洲av免费在线观看| 午夜福利18| 国产爱豆传媒在线观看| 亚洲精品一卡2卡三卡4卡5卡| 搞女人的毛片| 免费一级毛片在线播放高清视频| 久久热在线av| 国产单亲对白刺激| 免费人成视频x8x8入口观看| 亚洲精品粉嫩美女一区| 国内揄拍国产精品人妻在线| 嫩草影视91久久| 中文亚洲av片在线观看爽| www日本在线高清视频| 欧美一级毛片孕妇| 在线观看午夜福利视频| 国产精品一及| 曰老女人黄片| 黄频高清免费视频| 国内毛片毛片毛片毛片毛片| 亚洲av日韩精品久久久久久密| 欧美性猛交黑人性爽| 叶爱在线成人免费视频播放| 精华霜和精华液先用哪个| 久久香蕉国产精品| 国产高清视频在线观看网站| av黄色大香蕉| 女人被狂操c到高潮| 国产成人啪精品午夜网站| 亚洲天堂国产精品一区在线| 欧洲精品卡2卡3卡4卡5卡区| 搡老岳熟女国产| 国产成人av激情在线播放| 91老司机精品| 俺也久久电影网| 91久久精品国产一区二区成人 | 黑人欧美特级aaaaaa片| netflix在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 中文资源天堂在线| 国产亚洲精品综合一区在线观看| 国产探花在线观看一区二区| 国产又黄又爽又无遮挡在线| 九色国产91popny在线| 久久久精品大字幕| 午夜福利成人在线免费观看| 国产人伦9x9x在线观看| 成人一区二区视频在线观看| 亚洲在线自拍视频| 欧美3d第一页| 精品久久久久久久毛片微露脸| 久久精品人妻少妇| 欧美日本视频| 国产单亲对白刺激| 成人午夜高清在线视频| 久久精品国产亚洲av香蕉五月| 国产精品一区二区精品视频观看| 黄色丝袜av网址大全| 99久久无色码亚洲精品果冻| 天堂动漫精品| 精品一区二区三区视频在线观看免费| 很黄的视频免费| 国产伦人伦偷精品视频| 国产一区在线观看成人免费| 又紧又爽又黄一区二区| 国产精品永久免费网站| 给我免费播放毛片高清在线观看| 亚洲七黄色美女视频| 母亲3免费完整高清在线观看| 久久天躁狠狠躁夜夜2o2o| 69av精品久久久久久| 国产精品久久久久久人妻精品电影| 亚洲七黄色美女视频| 禁无遮挡网站| 桃红色精品国产亚洲av| 午夜精品久久久久久毛片777| 欧美色视频一区免费| 日韩有码中文字幕| 成年免费大片在线观看| 精品久久久久久成人av| 亚洲欧洲精品一区二区精品久久久| 国产成人av激情在线播放| 法律面前人人平等表现在哪些方面| 桃红色精品国产亚洲av| 国产美女午夜福利| 亚洲色图 男人天堂 中文字幕| 国模一区二区三区四区视频 | 精品国内亚洲2022精品成人| 国产av麻豆久久久久久久| 久久久久久久久中文| 搡老熟女国产l中国老女人| 免费在线观看视频国产中文字幕亚洲| 一本综合久久免费| 久久国产精品影院| 久久精品91蜜桃| 久久欧美精品欧美久久欧美| 美女午夜性视频免费| 色噜噜av男人的天堂激情| 97超视频在线观看视频| 亚洲av日韩精品久久久久久密| 免费大片18禁| 免费看十八禁软件| 欧美乱妇无乱码| 最新在线观看一区二区三区| 国产激情久久老熟女| 国产人伦9x9x在线观看| 99热这里只有是精品50| 国产伦精品一区二区三区四那| 国产伦一二天堂av在线观看| 一级黄色大片毛片| 国产精品综合久久久久久久免费| 免费看a级黄色片| 国产不卡一卡二| 亚洲,欧美精品.| 舔av片在线| 岛国在线免费视频观看| 高清毛片免费观看视频网站| 午夜精品久久久久久毛片777| 国产成人av教育| 亚洲欧美精品综合久久99| xxx96com| 欧美日韩国产亚洲二区| 精品不卡国产一区二区三区| 大型黄色视频在线免费观看| 色噜噜av男人的天堂激情| 国产精品香港三级国产av潘金莲| 久久这里只有精品中国| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美人成| 免费人成视频x8x8入口观看| 亚洲国产色片| 精品久久蜜臀av无| www.精华液| 亚洲中文日韩欧美视频| 国产精品亚洲一级av第二区| 日韩免费av在线播放| 天堂√8在线中文| 男女做爰动态图高潮gif福利片| 99在线人妻在线中文字幕| 成人午夜高清在线视频| 午夜精品久久久久久毛片777| 亚洲国产精品久久男人天堂| 少妇的逼水好多| 亚洲成人免费电影在线观看| 巨乳人妻的诱惑在线观看| 久久久国产精品麻豆| 亚洲五月天丁香| 老司机午夜十八禁免费视频| 亚洲在线观看片| 欧美激情久久久久久爽电影| 好男人电影高清在线观看| 色吧在线观看| 国产高清有码在线观看视频| x7x7x7水蜜桃| 久久午夜综合久久蜜桃| 国产午夜精品论理片| 日本黄色视频三级网站网址| 亚洲乱码一区二区免费版| 亚洲av免费在线观看| av视频在线观看入口| 黄色片一级片一级黄色片| av黄色大香蕉| 激情在线观看视频在线高清| 99国产极品粉嫩在线观看| 国产蜜桃级精品一区二区三区| 国产欧美日韩精品亚洲av| 夜夜爽天天搞| 国产日本99.免费观看| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| 亚洲专区字幕在线| 国产高潮美女av| 国产综合懂色| 国产伦一二天堂av在线观看| 色老头精品视频在线观看| 全区人妻精品视频| 亚洲专区字幕在线| 亚洲一区二区三区不卡视频| 精品福利观看| 亚洲成人免费电影在线观看| 国产一区二区三区视频了| 巨乳人妻的诱惑在线观看| 婷婷六月久久综合丁香| 久久久久久久久久黄片| 宅男免费午夜| 国产精品精品国产色婷婷| 免费看十八禁软件| 在线免费观看不下载黄p国产 | 大型黄色视频在线免费观看| 国内少妇人妻偷人精品xxx网站 | 欧美av亚洲av综合av国产av| 黄色日韩在线| 在线十欧美十亚洲十日本专区| 午夜精品一区二区三区免费看| 99久国产av精品| 日韩有码中文字幕| www.www免费av| av视频在线观看入口| 中文字幕熟女人妻在线| 日韩欧美三级三区| 国产三级在线视频| 不卡一级毛片| 变态另类成人亚洲欧美熟女| 欧美精品啪啪一区二区三区| 亚洲无线观看免费| 在线国产一区二区在线| 国产激情久久老熟女| 日本黄色片子视频| 欧美3d第一页| 国产aⅴ精品一区二区三区波| 国产亚洲精品一区二区www| 老司机在亚洲福利影院| 精品人妻1区二区| 国产精品免费一区二区三区在线| 欧美一区二区国产精品久久精品| 观看美女的网站| 日本a在线网址| 99久久无色码亚洲精品果冻| 狠狠狠狠99中文字幕| 欧美日韩乱码在线| 美女cb高潮喷水在线观看 | 国产精品永久免费网站| 日韩欧美在线乱码| 国产精品久久久久久久电影 | 成人永久免费在线观看视频| 天天一区二区日本电影三级| 99视频精品全部免费 在线 | 岛国视频午夜一区免费看| 欧美成人性av电影在线观看| 1024手机看黄色片| 中文字幕最新亚洲高清| 9191精品国产免费久久| 女同久久另类99精品国产91| 午夜福利在线在线| 香蕉av资源在线| 国产一区二区三区在线臀色熟女| 美女cb高潮喷水在线观看 | 哪里可以看免费的av片| 岛国在线免费视频观看| 日本撒尿小便嘘嘘汇集6| 欧美国产日韩亚洲一区| 亚洲中文日韩欧美视频| 999久久久精品免费观看国产| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| 欧美一区二区国产精品久久精品| 亚洲av免费在线观看| 美女cb高潮喷水在线观看 | 黄色日韩在线| 国产成+人综合+亚洲专区| 99热这里只有是精品50| 校园春色视频在线观看| svipshipincom国产片| 日韩成人在线观看一区二区三区| 国内精品美女久久久久久| 网址你懂的国产日韩在线| av天堂中文字幕网| 三级男女做爰猛烈吃奶摸视频| 国产伦在线观看视频一区| 天堂av国产一区二区熟女人妻| 精品久久久久久久人妻蜜臀av| 国产精品野战在线观看| 人妻丰满熟妇av一区二区三区| 久久久久精品国产欧美久久久| 成熟少妇高潮喷水视频| 99久久精品国产亚洲精品| 国产麻豆成人av免费视频| 久久热在线av| 亚洲欧美日韩东京热| 国产午夜福利久久久久久| 亚洲国产精品999在线| 国产精品九九99| 男人的好看免费观看在线视频| 欧洲精品卡2卡3卡4卡5卡区| 中文资源天堂在线| 男人舔奶头视频| 国内揄拍国产精品人妻在线| 成在线人永久免费视频| 亚洲色图 男人天堂 中文字幕| 午夜成年电影在线免费观看| 亚洲国产日韩欧美精品在线观看 | 最新在线观看一区二区三区| 国产亚洲精品一区二区www| 精品久久久久久,| 国产精品av视频在线免费观看| 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av香蕉五月| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 不卡av一区二区三区| 少妇人妻一区二区三区视频| e午夜精品久久久久久久| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 国产v大片淫在线免费观看| netflix在线观看网站| 日韩欧美国产一区二区入口| 男女床上黄色一级片免费看| 母亲3免费完整高清在线观看| 亚洲精品456在线播放app | 久久久久久人人人人人| 国内揄拍国产精品人妻在线| 精品国产乱码久久久久久男人| 国产成人一区二区三区免费视频网站| 天堂影院成人在线观看| 久久午夜综合久久蜜桃| 在线观看免费视频日本深夜| 国产一区在线观看成人免费| 免费看美女性在线毛片视频| 在线观看免费午夜福利视频| 99久久精品一区二区三区| 国内精品美女久久久久久| 亚洲激情在线av| 男女之事视频高清在线观看| 桃色一区二区三区在线观看| 成人一区二区视频在线观看| 欧美日韩综合久久久久久 | 亚洲精品粉嫩美女一区| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区四区五区乱码| 99热精品在线国产| 亚洲熟女毛片儿| 国内揄拍国产精品人妻在线| 日本精品一区二区三区蜜桃| 国模一区二区三区四区视频 | 国产高清视频在线播放一区| www.999成人在线观看| 午夜免费激情av| 校园春色视频在线观看| 亚洲成av人片在线播放无| 18禁观看日本| 午夜福利免费观看在线| 十八禁人妻一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产成+人综合+亚洲专区| 欧美又色又爽又黄视频| 欧美成狂野欧美在线观看| 国产成人啪精品午夜网站| 精品电影一区二区在线| 国产精品,欧美在线| tocl精华| 中文字幕av在线有码专区| 国内少妇人妻偷人精品xxx网站 | 久久久色成人| 国产欧美日韩精品一区二区| 久久国产精品影院| 九色成人免费人妻av| 国产精华一区二区三区| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 十八禁网站免费在线| 亚洲欧美日韩高清专用| 国产探花在线观看一区二区| 少妇人妻一区二区三区视频| 一夜夜www| 精品久久蜜臀av无| 麻豆成人av在线观看| 久久久国产精品麻豆| 久久久久性生活片| 看黄色毛片网站| 97人妻精品一区二区三区麻豆| 九九热线精品视视频播放| 成年免费大片在线观看| 一区二区三区激情视频| 哪里可以看免费的av片| 在线观看日韩欧美| www.精华液| 黑人巨大精品欧美一区二区mp4| 久久久精品欧美日韩精品| 午夜激情欧美在线| 中文资源天堂在线| av欧美777| 欧美日韩福利视频一区二区| 亚洲在线自拍视频| 国产精品久久久久久亚洲av鲁大| 国产成人精品无人区| 欧美成人免费av一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产一区二区激情短视频| 亚洲人成伊人成综合网2020| 亚洲av片天天在线观看| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站 | 琪琪午夜伦伦电影理论片6080| 在线观看免费午夜福利视频| 黑人操中国人逼视频| 亚洲,欧美精品.| 午夜精品久久久久久毛片777| 久久久久精品国产欧美久久久| 激情在线观看视频在线高清| 国产毛片a区久久久久| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| www.精华液| 欧美又色又爽又黄视频| 国产成人精品无人区| 伦理电影免费视频| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久| 99精品久久久久人妻精品| 国产精品野战在线观看| 国产成人系列免费观看| 日韩高清综合在线| 午夜精品一区二区三区免费看| 国产精品影院久久| 最近最新中文字幕大全免费视频| 久久草成人影院| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 一本久久中文字幕| 真人做人爱边吃奶动态| av天堂在线播放| 欧美激情在线99| av黄色大香蕉| 精品一区二区三区视频在线观看免费| 变态另类丝袜制服| 国产成人欧美在线观看| 757午夜福利合集在线观看| 国产精品免费一区二区三区在线| 精品熟女少妇八av免费久了| 一区二区三区国产精品乱码| 男人舔奶头视频| 床上黄色一级片| 日本黄色片子视频| 网址你懂的国产日韩在线| 日韩欧美三级三区| 精品无人区乱码1区二区| 国内精品一区二区在线观看| 日韩欧美三级三区| av片东京热男人的天堂| 香蕉久久夜色| 久久精品夜夜夜夜夜久久蜜豆| 亚洲黑人精品在线| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 久久伊人香网站| 日本黄色视频三级网站网址| 亚洲无线在线观看| 色综合欧美亚洲国产小说| 小说图片视频综合网站| 国产一区二区激情短视频| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 亚洲黑人精品在线| 亚洲一区二区三区不卡视频| 欧美黄色片欧美黄色片| 久久久久性生活片| 黄色 视频免费看| 国产三级黄色录像| 亚洲国产色片| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 观看美女的网站| 天堂网av新在线| 国产私拍福利视频在线观看| bbb黄色大片| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| www国产在线视频色| 女同久久另类99精品国产91| 噜噜噜噜噜久久久久久91| 熟女少妇亚洲综合色aaa.| 我的老师免费观看完整版| 亚洲av第一区精品v没综合| 一级毛片女人18水好多| 国产精品一及| 国产亚洲欧美在线一区二区| 麻豆成人午夜福利视频| 午夜久久久久精精品| 老熟妇乱子伦视频在线观看| 人人妻人人澡欧美一区二区| 国产私拍福利视频在线观看| 亚洲精品中文字幕一二三四区| 亚洲成人久久爱视频| 免费看日本二区| 搞女人的毛片| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 成人永久免费在线观看视频| 久久精品影院6| 首页视频小说图片口味搜索| 神马国产精品三级电影在线观看| 久久天躁狠狠躁夜夜2o2o| 丁香六月欧美| 国产精品av视频在线免费观看| 精品久久蜜臀av无| 老熟妇仑乱视频hdxx| 久久性视频一级片| 亚洲最大成人中文| www.999成人在线观看| 校园春色视频在线观看| 亚洲真实伦在线观看| 精品无人区乱码1区二区| 女同久久另类99精品国产91| 免费大片18禁| 窝窝影院91人妻| 一级a爱片免费观看的视频| 欧美中文日本在线观看视频| 亚洲人成网站在线播放欧美日韩| 91av网站免费观看| 国产精品电影一区二区三区| 黄色女人牲交| 午夜成年电影在线免费观看| 人人妻,人人澡人人爽秒播| 18禁裸乳无遮挡免费网站照片| 久久精品国产综合久久久| 深夜精品福利| 亚洲avbb在线观看| 久久亚洲精品不卡| www国产在线视频色| www.自偷自拍.com| 1024手机看黄色片| 午夜福利在线观看免费完整高清在 | 成人高潮视频无遮挡免费网站| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产精品1区2区在线观看.| 两个人的视频大全免费| a级毛片在线看网站| 色老头精品视频在线观看| 99久久无色码亚洲精品果冻| 亚洲人成伊人成综合网2020| 人妻丰满熟妇av一区二区三区| 日韩欧美国产一区二区入口| 中文字幕精品亚洲无线码一区| 国产极品精品免费视频能看的| 夜夜爽天天搞| 韩国av一区二区三区四区| 亚洲精品美女久久av网站| 日本三级黄在线观看| 丁香欧美五月| 国产成人啪精品午夜网站| 丰满人妻一区二区三区视频av | 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边抽搐一进一小说| 国产99白浆流出| 午夜激情欧美在线| 亚洲 欧美 日韩 在线 免费| 欧美色视频一区免费| 老熟妇仑乱视频hdxx| tocl精华| 日本黄大片高清| av女优亚洲男人天堂 | 变态另类丝袜制服| 国产高清videossex| 1024香蕉在线观看| 精品99又大又爽又粗少妇毛片 | 夜夜躁狠狠躁天天躁| 国产蜜桃级精品一区二区三区| av黄色大香蕉| 草草在线视频免费看| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 老司机福利观看| 国产乱人视频| 99精品久久久久人妻精品| 亚洲一区二区三区色噜噜|