• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent development of transient electronics

    2016-12-09 08:00:11HuanyuChengVikasVepachedu

    Huanyu Cheng,Vikas Vepachedu

    Department of Engineering Science and Mechanics,Materials Research Institute,The Pennsylvania State University,University Park,PA 16802,USA

    Review

    Recent development of transient electronics

    Huanyu Cheng?,Vikas Vepachedu

    Department of Engineering Science and Mechanics,Materials Research Institute,The Pennsylvania State University,University Park,PA 16802,USA

    H I G H L I G H T S

    ?A number of inorganic materials and their method of application were studied.

    ?Models of reactive diffusion were presented to predict the dissolution behavior.

    ?Various encapsulation approaches were explored as a way to extend the lifetime.

    ?The transient ECG sensor was configured in a stretchable layout.

    A R T I C L EI N F O

    Article history:

    Accepted 26 November 2015

    Available online 15 January 2016

    Transient electronics

    Model of reactive diffusion

    Encapsulation strategy

    Multilayer structures

    Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve withina programmed periodof time.Sincenoharmful byproducts arereleased,theseelectronics can be used in the human body as a diagnostic tool,for instance,or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water.Thus,the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research.In the past,only partial dissolution of transient electronics was possible, however,total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis.The use of single-and multi-layered structures has also been explored as a way to extend the lifetime of the electronics.Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/ licenses/by/4.0/).

    Contents

    1.Introduction........................................................................................................................................................................................................................21

    2.Hydrolysis of semiconducting materials..........................................................................................................................................................................22

    3.Model of reactive diffusion for transient materials.........................................................................................................................................................23

    4.Dissolution of the device with bi-layered structures......................................................................................................................................................25

    5.Conclusion..........................................................................................................................................................................................................................29

    Acknowledgments.............................................................................................................................................................................................................30

    References...........................................................................................................................................................................................................................30

    1.Introduction

    While the development of modern electronics has typically been concerned with durable devices that function stably over time,the advent of transient electronics takes an opposite approach;the destruction of the said devices is designed to provide unique opportunities.Upon exposure to water,transient electronics disintegrate at a predictable rate while releasing biologically and/or environmentally benign end products[1,2].This ability opensawiderangeofapplicationsfrombio-degradableelectronics to diagnostic/therapeutic implants[3,4].One can use an electronic component,for instance,as a temporary implant in a patient and allow it to safely dissolve on its own without the need for a second surgery[1,5].Ultimately,transient electronics can solve the problemofdisposingelectronicsinasafeandconvenientmanner[6–8].

    The defining quality of transient electronics is their ability to dissolve into non-toxic products upon exposure to water and,naturally,dissolution accounts for a significant amount of research in this field[1,2,9–12].Early research on this topic resulted in achieving the partial dissolution of components through the use of organic materials as substrates[13,14].For instance,organic thinfilmtransistorshavebeendevelopedusingcotton-madepaper[15] as substrate and silk was also shown to be useful as a soluble substrate for implants in the body[16].However,this type of research was limited to the substrate and the electronic devices remained insoluble.

    Fig.1.Proof-of-concept demonstration for transient electronics,with key materials and device structure layout.(a)Image of a device with all components deployed on a thin silk substrate.The device components include transistors,diodes,inductors,capacitors,and resistors,with interconnects and interlayer dielectrics.(b)Schematic illustration in an exploded view,with a top view in the lower right inset.(c)Images showing the time sequence at various dissolution stages in deionized(DI)water.

    More recently however,electronics which are completely soluble have been developed.This relies on a recent,important discovery that semiconductor grade monocrystalline silicon can undergo dissolution in bio-fluids or even water at physiological conditions with a programmed lifetime relevant to applications in biomedicine[1].As the reaction rate of silicon hydrolysis to form silicic acid(Si(OH)4)is exceptionally small,silicon devices were fabricated in extremely thin forms.A nanomembrane of silicon with lateral dimensions similar to conventional circuits but with a thickness of 70 nm has been shown to dissolve in~10 days[1].Via similar chemistry,thin silicon dioxide(SiO2)was selected as a gate dielectric.Taken together with the other dissolvable,inorganic materials such as magnesium(Mg)and magnesium oxide(MgO) for conductors and the interlayer dielectric,respectively,due to their spontaneous reaction with water to form biologically benign Mg(OH)2,silicon nanomembranes provide a basic means for the construction of a transient,electronic device.As a proofof-concept,Fig.1(a)and(b)present a schematic demonstration platform which utilizes silicon nanomembranes(Si NMs)for the semiconductors,magnesium for the conductors,magnesium oxide and silicon dioxide for the dielectrics,and silk for the substrate and packaging materials.The collectively configured devices dissolve and disintegrate when immersed in DI water(Fig.1(c)).

    Surface reactions typically dominate the dissolution behavior for sufficiently large reaction constants.The porosity of the materials(e.g.,Mg,MgO and SiO2)however,was found to be influential as it allows for the diffusion of water through the material,thereby increasing the dissolution rate through an increase in the effective surface area[12].In studying the dissolution of transient electronics,the factors to consider include physical and chemical properties of materials,and certain ambient factors of an aqueous environment.Given the research of these factors and others,analytical models have been developed to solidify the understanding of the dissolution behaviors in transient electronics[1,11,12].Such models can be of great assistance in the design of transient electronics.This review will first provide a comprehensive discussion on the hydrolysis of semiconducting materials with a focus on silicon nanomembranes,followed by the model of reactive diffusion to account for the dissolution behavior of porous materials.When combined with ideas from soft,tissuelike electronic devices,the class of transient electronics provides a viable means to monitor health or deliver care in a minimally obtrusive way.

    2.Hydrolysis of semiconducting materials

    To establish a realistic set of functional materials,knowledge regarding the chemical kinetics of each material is critical, especially that of the hydrolysis of semiconducting materials.At physiological pH levels and temperatures,the dissolution rates of semiconducting materials(e.g.,silicon,silicon–germanium,and germanium)are remarkably small[17].Therefore,in order to minimize the amount of semiconducting materials which must be dissolved,the nanomembrane structure is critical.Dissolution of monocrystalline silicon nanomembranes in phosphate buffered saline(PBS with pH=7.4)at biologically pertinent temperatures (e.g.,37°C)forms either an intermediate oxidation product SiO2or Si(OH)4through the equilibrium:Si+4H2O?Si(OH)4+2H2[18,19].Theratedependsonthecrystalstructure,morphology,and doping concentration of silicon[20,21],as well as the temperature and composition of solutions[2,19].

    Systematic characterization of the dissolution kinetics for siliconusedvariousbio-fluidsatmultiplepHlevelsandtemperatures. Patterned Si NMs(3μm×3μm×70 nm)were first created on a layer of thermal oxide on a silicon wafer,followed by immersion in aqueous buffer solutions(50 mL,in a petri dish with diameter of 7 cm).The dissolution rate of thermal oxide is negligible in comparison to that of silicon.Thicknesses of Si NMs were measured at a specific time(e.g.,every other day)after which the sample wasplaced into a fresh buffer solution.There was no significant change in the dissolution rate for a variety of time intervals(e.g.,for every 1,2,4,7 days),indicating accurate measurement in the dissolution rate.Studies of SiGe and Ge were given in a similar setup[17].Figure 2(a)presents atomic force microscope topographical images of a Si NM with an initial thickness of 70 nm collected at various stages of hydrolysis,demonstrating its transient behavior in biofluids(PBS with pH of 7.4;37°C).

    Fig.2.Experiments of silicon dissolution with corresponding theoretical and numerical analyses.(a)Atomic force microscope topographical images of a Si NM with initial dimension of 3μm×3μm×70 nm at various stages of hydrolysis in PBS at 37°C.(b)Theoretical(lines)and experimental(symbols)dissolution of Si NMs from(a)in buffer solutions at different pH levels(pH 6,black;pH 7,red;pH 8,blue;pH 10,purple),at physiological temperature(37°C).(c)Atomic configurations for each ion adsorption event in density functional theory(DFT)simulation of the silicon dissolution process.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Given the dense arrangement of the silicon atoms in crystal structures,the hydrolysis of monocrystalline silicon nanomembranesislimitedtothesurfaceandthekineticscanbedescribedby a surface reaction with a constant dissolution rate[1,2].With the assumption that no solution molecules diffuse into the silicon,this modelyieldsalinearrelationshipbetweenthemeasuredthickness and the time,where the slopes represent the dissolution rates.A previously established empirical formula[19]suggests that an increase in the hydroxide ion concentration[OH?]results in an accelerated dissolution rate in high pH solutions of KOH.As shown in Fig.2(b),this formula can reproduce the experimental trends for solutions at the physiological pH levels if a different power law exponent is used for[OH?][2].

    3.Model of reactive diffusion for transient materials

    In addition to surface reactions,the diffusion in the porous materials cannot be ignored and the reaction between the diffused molecules and surrounding porous materials also needs to be considered.A model of reactive diffusion was proposed to analytically study the dissolution process of porous materials[23].Themodelconsidersthediffusionofwaterandhydroxideionsinto porous materials,which effectively increases the reactive surface. Here the key parameters are the diffusivity D of water in the porousmaterialandthereactionconstantkbetweenwaterandthe material.Becausetheinitialthicknessh0ismuchsmallerthanboth the width and length of the sample in the experiment,the onedimensional(1D)model can adequately capture the dissolution behaviors.Withy=0atthebottomofthemateriallayer(Fig.4(a)), the water concentrationw(y,t)at location y and time t satisfies the reactive diffusion equation[23]

    This equation reduces to the standard diffusion equation if the reaction constant k is negligible.The boundary conditions of Eq.(1) include a constant water concentration at the water/porous material interfaceand a zero water flux at the porous material/substrate interface?w/?y|y=0=0.The initial condition is zero water concentrationIn order to transform the inhomogeneous boundary conditionto a homogeneous one,a new variableis introduced[12],which results in an updated equation

    The boundary conditions and the initial condition becomeandrespectively.Eq.(2)is inhomogeneous,but the general solution can be represented by a sum of a homogeneous solutionθhand a particular solutionθp.The homogeneous solutionθhsatisfies the homogeneous equationwith homogeneous boundary conditionsand. Expressed in the form ofcan be solved by the method of separation of variables.The homogeneous equation leads towhereλis the eigenvalue to be determined from the boundary condition.The functions T(t)and Y(y)are then expressed as T=e?λtandwhere A and B are constants to be determined from initial and boundary conditions.Withandobtained from the homogeneous boundary conditions,A is solved to be A=0 and the trigonometric equationleads to the solution for eigenvaluesk(n=1,2,3,...),whichin turngivesthehomogeneous solution

    The solution given above indicates a clear scaling lawin which the normalized water concentrationw/w0depends on normalized position y/h0,normalized timeand a single non-dimensional parameterthat scales with the ratio of reaction constant k to diffusivity D.Experimental measurement of Mg with an initial thickness of 300 nm showsandwhich is within the range of reaction constants reported by Taub et al.[24].Figure 3(a)presents the distribution of water concentration for the normalized time0.2,0.4,0.8, 2 and∞,wherecorresponds to the steady-state limit of the water concentration in the Mg layerw(y,t→∞)=

    whereρis the mass density of the porous material.For parameters k and D relevant to applications of transient electronics in biomedicine,the summation on the right hand side of Eq.(5)is negligible in linear expression for the thickness as

    is the critical time of complete physical disappearance for the transient material.The rate of dissolutionalso known as the electrical dissolution rate used for conductors[25],can be determined from the linear approximation of the thickness asThe rate of dissolution is 0.044 nm/s, 0.13 nm/s,and 0.20 nm/s for 100 nm-,300 nm-and 500 nmthick Mglayers,respectively.Thesequantitieshavethe same order of magnitude as rates of dissolution reported in the prior experiments[26,27].

    The chemical reaction of Mg in phosphate buffered saline follows Mg+2H2O→Mg(OH)2+H2.Thus,two water molecules react with one Mg atom(i.e.,q=2).Because water molecules are the dominant molecule in phosphate buffered saline or the other bio-fluids,the water concentration is approximatelyw0= 1 g·cm?3.The critical time tcto dissolve Mg(molar mass M= 24 g·mol?1,mass densityρ=1.738 g·cm?3,and initial thickness h0=300 nm)is calculated as 38 min,which agrees reasonably well with the measurement of 40 min in the experiment.Via a similar chemistry,one silicon oxide atom reacts with two water molecules by SiO2+2H2O→Si(OH)4.Because the reactionbetween SiO2and water is much slower than between Mg and water(minutes to dissolve Mg versus days to dissolve SiO2),the reaction constant between water and SiO2(~10?6s?1)is much smaller than that between water and Mg(~10?3s?1).The rates of dissolution range from 0.11 to 0.47 nm/h for SiO2with an initialthicknessbetween35and100nmatatemperaturebetween room and physiological temperatures.These rates of dissolution for PECVD SiO2in water are consistent with the rates reported in priorexperiments[28],whicharehigherthanthoseforquartz[29].

    In comparison to the intermittent thickness measurement, electrical properties can potentially provide continuous measurements.Electrical measurements also allow for evaluation of the dissolution behavior of a conductive material below a nonconductive layer,as discussed in the next section.The relative changes in both the width and length directions are much smaller than in the thickness direction.Therefore,the electric resistance is inversely proportional to the remaining thickness as R=R0h0/h≈R0/(1?t/tc),where R0is the initial resistance.Changes of resistance approximately account for both changes in thickness and influences associated with porosity,pitting and other nonuniformitiesinducedbynon-uniformdissolution[25].ThenormalizedelectricresistanceR/R0ofMgisshowninFig.4(c)asafunction of the normalized time t/tc.In this figure,the same reaction constant k=1.2×10?3s?1and diffusivity D=6.0×10?12cm2/s arechosenforMgwithan initialthicknessof300nmandinitial resistance(per unit length)R0of 1.06Ω/mm.It is important to note that an initial layer of thin MgO may exist on top of the Mg layer. In the presence of water,this thin MgO layer quickly reacts to form a more stable,crystalline hydroxide[30],which is not as protective as non-crystalline films[31].Thus,the single-layer dissolution model can properly account for the hydrolysis of Mg.

    The potential of thin films made from other transient metals for use in transient electronics has also been explored and was found to be worth considering with the development of MOSFETs as an example[25].Analytical models discussed above are found to be applicable to other dissolvable metals,including Mg alloy, zinc(Zn),tungsten(W),and molybdenum(Mo).The prediction from the model can reproduce the observed dissolution behaviors inDIwaterandsimulatedbodyfluids(e.g.,Hanks’solutionwithpH from5to8)[25].Particularly,theelectricaldissolutionratesinthin films can be much different from traditionally reported corrosion rates in corresponding bulk materials.The model cannot,however, capture the dissolution behavior of iron(Fe),because Fe degrades in a spatially non-uniform manner,with certain reaction products (Fe2O3and Fe3O4)that have very low solubility[25].

    Silicon oxides and silicon nitrides are key materials for dielectrics and encapsulation layers in the class of silicon-based high performance electronics.The dissolution rates of these materials are affected by the physical and chemical properties of the films,which in turn depend on the deposition/growth methods and conditions.A key parameter that can approximately characterize these differences is density.The effects of density variation are two-fold.Reduced density increases the porosity in the porous materials,which results in an increased reactive surface to accelerate the dissolution.Secondly,it also reduces the amountofmaterialsthatneedtobedissolved.Theeffectivedensity ρeffof porous material is related to the densityρsof the fully dense materials asρeff= ρsVs/(Vs+Vair),where Vsand Vairare the volumes of the porous material and air cavity,respectively. A modified version of the reactive diffusion model provides a simple means to account for the density variation[11].In Eq.(1),the diffusivity D is replaced with an effective diffusivity De. The effective diffusivity of water in a porous medium is linearly proportional to the pore fraction in the porous medium:De∝Vair/(Vair+Vs)=(ρs?ρeff)/ρs.As densities of porous materials fromvariousdepositionmethods/conditionsaremeasureddirectly from the experiment,the effective diffusivity of water in each porous material can be determined.At time t=0,the air pores are filled with water,i.e.,w|t=0=w0(ρs?ρeff)/ρs(0≤y<h0). The boundary conditions remain the same as those for Eq.(1). Following the same approach discussed above,the normalized thickness is solved as[11]

    4.Dissolution of the device with bi-layered structures

    Applications in biomedicine require the transient electronics to function stably in a certain timeframe,followed by a complete physical disappearance.All of the transient materials however, start to dissolve immediately in the bio-fluids.The lifetime of the resulting devices is typically determined by Mg interconnects due totheirfastreactionwithwater.Althoughthesystemmayfunction before it completely breaks down,its performance is significantly compromised.Therefore,it is important to explore a mechanism that allows devices to function in a programmed lifetime.

    Adding encapsulation layers or packaging materials on top of the device can extend its lifetime in a controlled manner. For instance,MgO can serve as an encapsulation layer for Mg. In this bi-layered system(Fig.4(b)),zero initial condition at t=0 applies to both Mg and MgO layers.The reactive diffusion Eq.(1)together with zero water flux boundary condition at the bottom surface y=0 still holds for the Mg layer.As for the MgO encapsulation with an initial thickness ofthe reactive diffusion equation becomes[12]whereandare the diffusivity of water in MgO and reaction constant between MgO and water,respectively.The constant water concentration boundary condition at the MgO/water interface isIn addition,the continuity conditions of water concentration and flux across the MgO/Mg interface areandSimilar to the single-layer system,theinhomogeneous boundary condition leads to a representation of the water concentration as a sum of a homogeneous solutionwhand a particular solutionwp,i.e.,w=wh+wp.The homogeneous solutionwhsatisfies the homogeneous equationwhereandfor 0≤ y≤ h0in the Mg layer,andandfor h0≤in the MgO encapsulation.The boundary conditions become homogeneous as well,i.e.,

    and fn(y)is written as

    Satisfying the reactive diffusion equation,together with inhomogeneousboundarycondition,zerowaterfluxatthebottom of Mg layer,and continuity conditions,the particular solutionwpis solved aswp=w0g(y),where

    In the same manner as described in the previous section,the remaining thickness h of the Mg layer normalized by its initial thickness h0is obtained as

    whereGisgiveninEq.(10a).AsMgisbelowtheMgOencapsulation layer,itisdifficulttomeasurethethicknesschangeofMg.Noticing MgO is not conductive,the electric resistance of Mg(or this bilayered structure)is then measured,from which the thickness can be calculated h=R0h0/R.To understand the thickness effect of MgO encapsulation,both 400 nm-thick and 800 nm-thick MgO layers are studied on a 300 nm-thick Mg layer.As shown in Fig.4(c),the normalized electrical resistance R/R0versus the normalized timepredicted from the theory agrees well with the experimental measurements.A comparison between two Mg+MgO structure layouts indicates a substantial increase in the dissolution time as the thickness of encapsulation layer increases. ThiscomesfromthefactthatthediffusionofwaterinMgOismuch slowerthanthatinMg,whicheffectivelyextendsthelifetimeofMg in providing an effective way to control the dissolution time.

    The summation on the right hand side of Eq.(12)is negligible for devices relevant totransient implants.As a result,the thickness decreases linearly with time.The simple and approximate expression is given aswhere is the critical time for complete physical disappearance of the Mg conductor layer in the device and tcis the critical time in the single-layer system.From the remaining thickness h,the rate of dissolution can be solved as′.The rateofdissolutionisapproximatelylinearwiththeinitialthickness h0and it can be further simplified for a sufficiently thin Mg layer

    Fig.3.Distribution of water concentration predicted from models of reactive diffusion for the normalized timeand∞in(a)an Mg layerwithoutencapsulationlayer,and(b)bothanMgconductorlayerencapsulatedbyanMgOlayer

    Fig.4.Schematic illustrations for models of reactive diffusion and modeling predictions of the electrical resistance compared with experimental measurements.(a)Singlelayered structure and(b)bi-layered structure used in models of reactive diffusion for porous materials.(c)Experimental and modeling results of the electric resistance of Mg and Mg with different encapsulation strategies(e.g.,MgO encapsulation layers and/or silk overcoats).

    Fig.5.Encapsulation strategies with multilayer structures.(a)Schematic illustrations of encapsulation methods for transient electronic devices,with defects(e.g.,pinholes) covered by a bilayer of SiO2/Si3N4(left)or an ALD layer(right).(b)Measurements of changes in resistance of Mg traces with an initial thickness of 300 nm encapsulated with different encapsulation approaches(in deionized water at room temperature).Encapsulation strategies examined here include a single layer of PECVD SiO2(black, 1μm),PECVD-LF Si3N4(red,1μm)and ALD SiO2(orange,20 nm);a double layer of PECVD SiO2/PECVD-LF Si3N4(blue,500/500 nm),PECVD SiO2/ALD SiO2(magenta, 500/20 nm),PECVD-LF Si3N4/ALD SiO2(purple,500/20 nm);and a triple layer of PECVD SiO2/PECVD-LF Si3N4(Cyan,200/200/200/200/100/100 nm).(c)Fabrication strategy for the multilayer silk pocket.Crystallization of the outer layers renders them water insoluble,whereas the inner device substrate layer can remain crystallized.Sealing the outer edges around the device encapsulates it in a protective silk pocket.Multilayer fabrication is carried out by repeating the process with an inner pocket as the device layer.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    As an alternative,silicon oxides and nitrides can also be considered as encapsulation layers in addition to their use as gate and interlayer dielectrics,as they are typically known to be barrier materials for permeation of water[11].As a primary source of leakage for vapors or fluids,defects such as pinholes are commonly found in films of silicon oxides and nitrides.As a result,multilayer structures with different materials[11]have been developed to cooperatively eliminate defects[32]for use in transient electronics.In addition to a combination of multiple different layers,i.e.SiO2and Si3N4(Fig.5(a)left),atomic layer deposition(ALD)provides a complementary strategy to reduce defects and improve the performance of the encapsulation,even with thin layers(Fig.5(a),right)[33].As shown in Fig.5(b), measured changes in resistance of a serpentine-shaped Mg trace with an initial thickness of 300 nm demonstrate the effectiveness of several encapsulation approaches.

    To achieve an even longer desired lifetime for transient electronic devices,silk overcoats have also been used to provide an extra barrier for water to diffuse into MgO and Mg layers[1]. A well designed layout with both MgO encapsulation and silk overcoat can successfully increase the lifetime of devices over hundreds of times[12].To apply the idea of multilayer structures to silk overcoats,an encapsulation strategy of exploiting multiple air pockets has been demonstrated[34].A scheme of this strategy is shown in Fig.5(c).Transient electronics transferred to a silk substrate are enclosed by silk films with tunable crystalline and diffusion properties.Thermal sealing of the silk films creates a small air pocket,which provides additional protection for the device components.Iteration of this process can provide multiple silk pockets as needed.The onset of device degradation starts only when swelling of the silk protective layer collapses the air pocket in a wet environment[35].

    Fig.6.Transient electrophysiological sensors configured in a stretchable pattern for capacitive sensing.(a)Optical image of a device and(inset)magnified view of electrode structures in the filamentary serpentine mesh layout.(b)Schematic illustration in an exploded view for the corresponding device in(a).(c)Photograph of a device mounted onthe chestformeasurement ofelectrocardiograms(ECG).(d)ECGmeasurements collectedfrom transient(red)andstandardgel-based(blue)devices.(e)Aseries ofimages at various dissolution stages of a transient device in PBS(pH 10)at room temperature.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    These combined strategies in encapsulation lead to two-stage dissolution kinetics in transient electronics:(i)encapsulation layers define the first time period of stable operation with negligiblechangesinelectricalperformance,(ii)theMgdefinesthe second,where the device rapidly degrades.Efficient encapsulation strategies can remove the leakage pathways and significantly increase the time for stable operation.Realizing the full potential of transient electronics for implanted applications ultimately requires conformal contact with organs of the body.To this end, a recent development of transient medical devices exploits the conceptsofstretchableelectronics[36–40]byuseofbiodegradable elastomers[41].As shown in optical images and schematic illustrations(Fig.6(a)and(b)),a stretchable and transient electrophysiology sensor is constructed.Thin layers of Mg (300nm)andSiO2(100nm)aredesignedintheformoffilamentary serpentine meshes[42–44](Fig.6(a),inset)for measurement, ground and reference electrodes and connecting leads.Capacitive sensing leads to the use of a biodegradable polymer[45,46] between the Mg electrodes and the skin.The measurements show levelsoffidelitycomparabletothoseofconventionalgelelectrodes (Fig.6(d)),as demonstrated in the high quality ECG measurements on the chest(Fig.6(c)).Figure 6(e)presents a set of images of a transient electrophysiology sensor at various dissolution stages in PBS(pH 10)at room temperature.The dissolution behavior of each component is consistent with separate studies of these materials discussed in the previous section(complete dissolution within hours for Mg or days/weeks for SiO2).

    5.Conclusion

    When exposed to bio-fluids or water,the class of siliconbased high performance transient electronics disintegrates and dissolves to eliminate the need for recollection.A number of discoveries have been made in the effort to control how transient electronics dissolve.Firstly,a number of materials,including semiconductors,and their method of application in the design of transient electronics were studied.Secondly,a model of reactive diffusion was presented to predict the way in which a component would dissolve in bio-fluids or water.This model considered a variety of factors including the porosity of the material.Thirdly, this model was extended to study the reactive diffusion in a bilayered structure.The analytical results connect the key electricalproperty to models of reactive diffusion and provide the capability to use such analytics in conjunction with established circuit simulators as a comprehensive design approach.

    Since the nature of the materials used in transient electronics exhibits a decisive effect on the dissolution of resulting electronics,future material science research would be desirable. Other strategies besides encapsulation would also be worth future research to understand multiple ways of controlling the dissolution behavior of transient electronics.Active control of the transience in devices is of interest for the future development as well. Combining possibilities in transient electronics with ideas in soft,‘tissue-like’devices further expands opportunities for applications in biomedicine.Overall,however,the research performed thus far on the design of transient electronics has been extensive and the potential use of this technology in industry is evident.

    Acknowledgments

    H.C.was a Howard Hughes Medical Institute International Student Research fellow.The authors acknowledge the start-up fund provided by the Engineering Science and Mechanics Department, College of Engineering,and Materials Research Institute at the Pennsylvania State University(215-37 1001 cc:H.Cheng).

    References

    [1]S.-W.Hwang,H.Tao,D.-H.Kim,et al.,A physically transient form of silicon electronics,Science 337(2012)1640–1644. http://www.sciencemag.org/content/337/6102/1640.

    [2]S.W.Hwang,G.Park,H.Cheng,et al.,25th anniversary article:Materials for high-performance biodegradable semiconductor devices,Adv.Mater.26 (2014)1992–2000. http://onlinelibrary.wiley.com/doi/10.1002/adma.201470082/abstract.

    [3]R.O.Darouiche,Treatment of infections associated with surgical implants,N. Engl.J.Med.350(2004)1422–1429. http://www.nejm.org/doi/full/10.1056/NEJMra035415.

    [4]H.Tao,S.-W.Hwang,B.Marelli,et al.,Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement,Proc.Natl. Acad.Sci.111(2014)17385–17389. http://www.pnas.org/content/111/49/17385.abstract.

    [5]C.Dagdeviren,S.W.Hwang,Y.Su,et al.,Transient,biocompatible electronics and energy harvesters based on ZnO,Small 9(2013)3398–3404. http://onlinelibrary.wiley.com/doi/10.1002/smll.201300146/abstract.

    [6]H.L.Hernandez,S.K.Kang,O.P.Lee,et al.,Triggered transience of metastable poly(phthalaldehyde)for transient electronics,Adv.Mater.26(2014) 7637–7642. http://onlinelibrary.wiley.com/doi/10.1002/adma.201403045/abstract.

    [7]C.H.Lee,S.K.Kang,G.A.Salvatore,et al.,Wireless microfluidic systems for programmed,functional transformation of transient electronic devices,Adv. Funct.Mater.25(2015)5100–5106. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201502192/abstract.

    [8]C.W.Park,S.K.Kang,H.L.Hernandez,et al.,Thermally triggered degradation of transient electronic devices,Adv.Mater.27(2015)3783–3788. http://onlinelibrary.wiley.com/doi/10.1002/adma.201501180/abstract.

    [9]X.Huang,Y.Liu,S.W.Hwang,et al.,Biodegradable materials for multilayer transient printed circuit boards,Adv.Mater.26(2014)7371–7377. http://onlinelibrary.wiley.com/doi/10.1002/adma.201403164/abstract.

    [10]S.W.Hwang,S.K.Kang,X.Huang,et al.,Materials for programmed,functional transformation in transient electronic systems,Adv.Mater.27(2015)47–52. http://onlinelibrary.wiley.com/doi/10.1002/adma.201403051/abstract.

    [11]S.K.Kang,S.W.Hwang,H.Cheng,et al.,Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics,Adv.Funct.Mater.24 (2014)4427–4434. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201304293/abstract.

    [12]R.Li,H.Cheng,Y.Su,et al.,An analytical model of reactive diffusion for transient electronics,Adv.Funct.Mater.23(2013)3106–3114. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201203088/abstract.

    [13]C.J.Bettinger,Z.Bao,Organic thin-film transistors fabricated on resorbable biomaterial substrates,Adv.Mater.22(2010)651–655. http://onlinelibrary.wiley.com/doi/10.1002/adma.200902322/abstract.

    [14]M.Irimia-Vladu,P.A.Troshin,M.Reisinger,et al.,Biocompatible and biodegradable materials for organic field-effect transistors,Adv.Funct.Mater. 20(2010)4069–4076. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201001031/abstract.

    [15]F.Eder,H.Klauk,M.Halik,et al.,Organic electronics on paper,Appl.Phys.Lett. 84(2004)2673–2675. http://scitation.aip.org/content/aip/journal/apl/84/14/10.1063/1.1690870.

    [16]D.H.Kim,Y.S.Kim,J.Amsden,et al.,Silicon electronics on silk as a path to bioresorbable,implantable devices(vol 95,133701,2009),Appl.Phys.Lett.95 (2009). http://scitation.aip.org/content/aip/journal/apl/95/13/10.1063/1.3238552.

    [17]S.-K.Kang,G.Park,K.Kim,et al.,Dissolutionchemistryandbiocompatibilityof silicon-and Germanium-based semiconductors for transient electronics,ACS Appl.Mater.Interfaces 7(2015)9297–9305. http://pubs.acs.org/doi/abs/10.1021/acsami.5b02526.

    [18]J.D.Rimstidt,H.L.Barnes,The kinetics of silica–water reactions,Geochim. Cosmochim.Acta 44(1980)1683–1699. http://www.sciencedirect.com/science/article/pii/0016703780902203.

    [19]H.Seidel,L.Csepregi,A.Heuberger,et al.,Anisotropic etching of crystalline silicon in Alkaline-solutions.1.Orientation dependence and behavior of passivation layers,J.Electrochem.Soc.137(1990)3612–3626. http://jes.ecsdl.org/content/137/11/3612.

    [20]S.-W.Hwang,G.Park,C.Edwards,et al.,Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics,ACS Nano 8(2014)5843–5851. http://pubs.acs.org/doi/abs/10.1021/nn500847g.

    [21]H.Seidel,L.Csepregi,A.Heuberger,et al.,Anisotropic etching of crystalline silicon in Alkaline-solutions.2.Influence of dopants,J.Electrochem.Soc.137 (1990)3626–3632.http://jes.ecsdl.org/content/137/11/3612.

    [22]L.Yin,A.B.Farimani,K.Min,et al.,Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics,Adv.Mater.27(2015) 1857–1864. http://onlinelibrary.wiley.com/doi/10.1002/adma.201404579/abstract.

    [23]P.V.Danckwerts,Absorption by simultaneous diffusion and chemical reaction,Trans.Faraday Soc.46(1950)300.http://pubs.rsc.org/en/Content/ ArticleLanding/1950/TF/TF9504600300#!divAbstract.

    [24]I.A.Taub,W.Roberts,S.LaGambina,etal.,Mechanismofdihydrogenformation in the magnesium–water reaction?J.Phys.Chem.A 106(2002)8070–8078. http://pubs.acs.org/doi/abs/10.1021/jp0143847.

    [25]L.Yin,H.Cheng,S.Mao,et al.,Dissolvablemetalsfor transientelectronics,Adv. Funct.Mater.24(2014)645–658. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201301847/abstract.

    [26]H.Inoue,K.Sugahara,A.Yamamoto,et al.,Corrosion rate of magnesium and its alloys in buffered chloride solutions,Corros.Sci.44(2002)603–610. http://www.sciencedirect.com/science/article/pii/S0010938X01000920.

    [27]W.Ng,K.Chiu,F.Cheng,Effect of pH on the i in vitro/i corrosion rate of magnesium degradable implant material,Mater.Sci.Eng.C 30(2010)898–903. http://www.sciencedirect.com/science/article/pii/S0928493110000895.

    [28]G.Wirth,J.Gieskes,The initial kinetics of the dissolution of vitreous silica in aqueous media,J.Colloid Interface Sci.68(1979)492–500. http://www.sciencedirect.com/science/article/pii/0021979779903072.

    [29]W.G.Worley,DissolutionKineticsandMechanismsinQuartz-and Grainite-WaterSystems,MassachusettsInstituteofTechnology,1994, http://dspace.mit.edu/handle/1721.1/28068.

    [30]M.Pourbaix,Atlas of Electrochemical Equilibria in Aqueous Solutions,1974.

    [31]J.P.Hoare,Oxide film studies on iron in electrochemical machining electrolytes,J.Electrochem.Soc.117(1970)142–145. http://jes.ecsdl.org/content/117/1/142.abstract.

    [32]J.Rosink,H.Lifka,G.Rietjens,et al.,34.1:Ultra-thin encapsulation for largearea OLED displays.Paper Presented at:SID Symposium Digest of Technical Papers,Wiley Online Library,2005. http://onlinelibrary.wiley.com/doi/10.1889/1.2036236/abstract.

    [33]J.Meyer,P.G?rrn,F.Bertram,et al.,Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics,Adv.Mater.21(2009)1845–1849. http://onlinelibrary.wiley.com/doi/10.1002/adma.200803440/abstract.

    [34]M.A.Brenckle,H.Cheng,S.Hwang,et al.,Modulated degradation of transient electronic devices through multilayer silk fibroin pockets,ACS Appl.Mater. Interfaces(2015). http://pubs.acs.org/doi/abs/10.1021/acsami.5b06059?journalCode=aamick.

    [35]B.D.Lawrence,S.Wharram,J.A.Kluge,et al.,Effect of hydration on silk film material properties,Macromol.Biosci.10(2010)393–403. http://www.ncbi.nlm.nih.gov/pubmed/20112237.

    [36]H.Cheng,Y.Zhang,K.-C.Hwang,et al.,Buckling of a stiff thin film on a prestrained bi-layer substrate,Int.J.Solids Struct.51(2014)3113–3118. http://www.sciencedirect.com/science/article/pii/S002076831400198X.

    [37]H.Cheng,J.Wu,M.Li,et al.,An analytical model of strain isolation for stretchable and flexible electronics,Appl.Phys.Lett.98(2011)061902. http://scitation.aip.org/content/aip/journal/apl/98/6/10.1063/1.3553020.

    [38]D.-H.Kim,N.Lu,R.Ma,et al.,Epidermal electronics,Science 333(2011) 838–843.https://www.sciencemag.org/content/333/6044/838.abstract.

    [39]J.A.Rogers,T.Someya,Y.G.Huang,Materials and mechanics for stretchable electronics,Science 327(2010)1603–1607. http://www.sciencemag.org/content/327/5973/1603.abstract.

    [40]J.Viventi,D.H.Kim,J.D.Moss,et al.,A conformal,bio-interfaced class of silicon electronics for mapping cardiac electrophysiology,Sci.Transl.Med.2(2010) http://pubs.acs.org/doi/abs/10.1021/jp0143847.

    [41]S.-W.Hwang,C.H.Lee,H.Cheng,et al.,Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable,transient electronics, and biosensors,Nano Lett.15(2015)2801–2808. http://pubs.acs.org/doi/abs/10.1021/nl503997m.

    [42]D.H.Kim,J.L.Xiao,J.Z.Song,et al.,Stretchable,curvilinear electronics based on inorganic materials,Adv.Mater.22(2010)2108–2124. http://onlinelibrary.wiley.com/doi/10.1002/adma.200902927/abstract.

    [43]D.H.Kim,J.H.Ahn,W.M.Choi,et al.,Stretchable and foldable silicon integrated circuits,Science 320(2008)507–511. http://www.sciencemag.org/content/320/5875/507.

    [44]R.H.Kim,M.H.Bae,D.G.Kim,et al.,Stretchable,transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,Nano Lett.11(2011)3381–3886. http://pubs.acs.org/doi/abs/10.1021/nl202000u.

    [45]S.W.Hwang,J.K.Song,X.Huang,et al.,High-performance biodegradable/transient electronics on biodegradable polymers,Adv.Mater.26(2014) 3905–3911. http://onlinelibrary.wiley.com/doi/10.1002/adma.201306050/abstract.

    [46]J.Yang,A.R.Webb,G.A.Ameer,Novel citric acid–based biodegradable elastomers for tissue engineering,Adv.Mater.16(2004)511–516. http://onlinelibrary.wiley.com/doi/10.1002/adma.200306264/abstract.

    10 October 2015

    http://dx.doi.org/10.1016/j.taml.2015.11.012

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    ?.

    E-mail address:huanyu.cheng@psu.edu(H.Cheng).

    在线观看美女被高潮喷水网站| 免费不卡的大黄色大毛片视频在线观看| 日韩国内少妇激情av| 91精品国产九色| 国产精品久久久久久精品电影小说 | 国产成人免费观看mmmm| 午夜老司机福利剧场| 青春草国产在线视频| 中文字幕久久专区| 午夜福利高清视频| 美女国产视频在线观看| 插阴视频在线观看视频| 亚洲国产精品国产精品| 网址你懂的国产日韩在线| 街头女战士在线观看网站| 欧美国产精品一级二级三级 | 91久久精品国产一区二区成人| 久久久久性生活片| kizo精华| 婷婷色综合大香蕉| 啦啦啦中文免费视频观看日本| 韩国av在线不卡| 久久精品熟女亚洲av麻豆精品| 一级毛片黄色毛片免费观看视频| 久久人人爽人人爽人人片va| 美女cb高潮喷水在线观看| 99热这里只有精品一区| 黄色一级大片看看| 国产精品久久久久久精品电影| 亚洲欧美日韩卡通动漫| av线在线观看网站| 色网站视频免费| 久久精品久久久久久噜噜老黄| 视频中文字幕在线观看| 午夜精品国产一区二区电影 | 久久99热这里只有精品18| 国精品久久久久久国模美| 99热这里只有是精品在线观看| 男女那种视频在线观看| 欧美最新免费一区二区三区| 99热网站在线观看| 久久久久九九精品影院| 日韩视频在线欧美| 国产爱豆传媒在线观看| 99九九线精品视频在线观看视频| 亚洲精品中文字幕在线视频 | 超碰97精品在线观看| 97超碰精品成人国产| 男女啪啪激烈高潮av片| 一级毛片久久久久久久久女| 国产视频内射| 亚洲欧美日韩东京热| 国产精品无大码| 欧美性猛交╳xxx乱大交人| 少妇 在线观看| 80岁老熟妇乱子伦牲交| 免费看a级黄色片| 中国国产av一级| 亚洲精品第二区| 久久久精品免费免费高清| 人妻夜夜爽99麻豆av| 国产亚洲91精品色在线| 日韩 亚洲 欧美在线| 美女被艹到高潮喷水动态| 边亲边吃奶的免费视频| 青春草亚洲视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产午夜精品一二区理论片| 亚洲精品自拍成人| 国产亚洲最大av| 国产黄色视频一区二区在线观看| 欧美高清成人免费视频www| 亚洲av国产av综合av卡| 超碰av人人做人人爽久久| 久久99热6这里只有精品| 尾随美女入室| 99热国产这里只有精品6| 国产高清有码在线观看视频| 久久精品国产鲁丝片午夜精品| 欧美日本视频| 欧美日本视频| 亚州av有码| 国产国拍精品亚洲av在线观看| 亚洲国产欧美人成| 国产综合精华液| 婷婷色综合www| 免费看日本二区| 夜夜爽夜夜爽视频| av天堂中文字幕网| 亚洲欧美精品专区久久| 中文精品一卡2卡3卡4更新| 天天躁日日操中文字幕| 麻豆成人午夜福利视频| 女的被弄到高潮叫床怎么办| 国产在线男女| 国产精品久久久久久久电影| 街头女战士在线观看网站| a级毛片免费高清观看在线播放| 欧美xxⅹ黑人| 亚洲人成网站在线观看播放| 99精国产麻豆久久婷婷| 国产黄频视频在线观看| 亚州av有码| 青春草亚洲视频在线观看| 亚洲最大成人手机在线| 干丝袜人妻中文字幕| 日韩电影二区| 国产一区二区三区综合在线观看 | 日本爱情动作片www.在线观看| 欧美激情在线99| 免费在线观看成人毛片| 欧美一级a爱片免费观看看| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 久久人人爽人人片av| 伦精品一区二区三区| 日韩伦理黄色片| videossex国产| 国产成人a区在线观看| 中文字幕av成人在线电影| 亚洲精品国产色婷婷电影| 国产视频内射| 色综合色国产| 我的女老师完整版在线观看| 国产中年淑女户外野战色| 欧美老熟妇乱子伦牲交| 欧美日韩视频精品一区| 插阴视频在线观看视频| a级一级毛片免费在线观看| 免费看a级黄色片| 欧美激情在线99| videos熟女内射| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 成人鲁丝片一二三区免费| 伦理电影大哥的女人| 亚洲综合色惰| 国产精品一区www在线观看| kizo精华| 久久精品久久久久久噜噜老黄| videossex国产| 亚洲精品乱码久久久v下载方式| 麻豆成人av视频| 大话2 男鬼变身卡| 午夜福利在线观看免费完整高清在| 亚洲国产高清在线一区二区三| 国产午夜精品久久久久久一区二区三区| 免费电影在线观看免费观看| 亚洲国产欧美人成| 久久久久九九精品影院| 精品久久久久久久人妻蜜臀av| 国产乱人视频| 日日摸夜夜添夜夜爱| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 深爱激情五月婷婷| 亚洲av成人精品一区久久| 欧美精品人与动牲交sv欧美| 一二三四中文在线观看免费高清| 午夜精品一区二区三区免费看| 22中文网久久字幕| 免费观看无遮挡的男女| 欧美97在线视频| 蜜臀久久99精品久久宅男| 最近中文字幕高清免费大全6| 高清毛片免费看| 一级毛片黄色毛片免费观看视频| 亚洲av一区综合| 国产久久久一区二区三区| 亚洲电影在线观看av| 有码 亚洲区| 建设人人有责人人尽责人人享有的 | 午夜精品一区二区三区免费看| 亚洲精品,欧美精品| 男男h啪啪无遮挡| 成人美女网站在线观看视频| 国产 一区精品| 王馨瑶露胸无遮挡在线观看| 欧美老熟妇乱子伦牲交| 高清日韩中文字幕在线| 人妻系列 视频| 亚洲色图av天堂| 国产亚洲91精品色在线| 中文字幕制服av| 制服丝袜香蕉在线| 色视频在线一区二区三区| 老女人水多毛片| 亚洲精品亚洲一区二区| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 草草在线视频免费看| 乱系列少妇在线播放| 黄色一级大片看看| 成人特级av手机在线观看| 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃 | 久久久久久久久久人人人人人人| 舔av片在线| av线在线观看网站| 国产一区二区三区av在线| 亚洲欧美清纯卡通| 岛国毛片在线播放| 亚洲精品国产色婷婷电影| 别揉我奶头 嗯啊视频| 男女啪啪激烈高潮av片| 久久国内精品自在自线图片| 免费大片黄手机在线观看| 黑人高潮一二区| 男人狂女人下面高潮的视频| 中文字幕av成人在线电影| 国产成人a∨麻豆精品| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 人体艺术视频欧美日本| av国产精品久久久久影院| 久久久久久久亚洲中文字幕| 少妇被粗大猛烈的视频| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 亚洲美女视频黄频| 一本久久精品| 大话2 男鬼变身卡| 男女下面进入的视频免费午夜| 3wmmmm亚洲av在线观看| 熟女电影av网| 国产一区二区在线观看日韩| 一级毛片久久久久久久久女| 欧美丝袜亚洲另类| 日韩欧美一区视频在线观看 | 美女视频免费永久观看网站| 大香蕉久久网| 22中文网久久字幕| videos熟女内射| 国产欧美日韩精品一区二区| 欧美精品人与动牲交sv欧美| 久久精品久久精品一区二区三区| 如何舔出高潮| 欧美激情久久久久久爽电影| 亚洲国产av新网站| 欧美一区二区亚洲| 国产成年人精品一区二区| 国产国拍精品亚洲av在线观看| 亚洲色图综合在线观看| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频 | 岛国毛片在线播放| 欧美日韩视频精品一区| 国产精品精品国产色婷婷| 高清欧美精品videossex| 国产伦理片在线播放av一区| 国产精品三级大全| 乱系列少妇在线播放| 日韩欧美一区视频在线观看 | h日本视频在线播放| 国产高潮美女av| 欧美亚洲 丝袜 人妻 在线| 日韩av在线免费看完整版不卡| 色吧在线观看| 又粗又硬又长又爽又黄的视频| 性色avwww在线观看| av在线老鸭窝| 成年女人看的毛片在线观看| 2021天堂中文幕一二区在线观| 国产成人精品婷婷| 国产成人a∨麻豆精品| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久免费av| 成人国产麻豆网| 国模一区二区三区四区视频| 国产 一区 欧美 日韩| 亚洲精品aⅴ在线观看| 亚洲美女视频黄频| 亚洲国产最新在线播放| av在线老鸭窝| 欧美区成人在线视频| 99久久精品热视频| 国产男人的电影天堂91| 久久久精品欧美日韩精品| 欧美另类一区| 卡戴珊不雅视频在线播放| 亚洲最大成人手机在线| 久久久久网色| 干丝袜人妻中文字幕| 在线精品无人区一区二区三 | 国产精品国产三级国产av玫瑰| 在现免费观看毛片| 在线精品无人区一区二区三 | 成人黄色视频免费在线看| 欧美zozozo另类| 欧美高清性xxxxhd video| 少妇高潮的动态图| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大香蕉97超碰在线| 男女那种视频在线观看| 国产精品蜜桃在线观看| 国产视频内射| 欧美激情国产日韩精品一区| 婷婷色综合大香蕉| 国产黄片视频在线免费观看| 春色校园在线视频观看| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久免费av| 精品人妻视频免费看| 我要看日韩黄色一级片| 欧美xxxx性猛交bbbb| 人妻系列 视频| 嘟嘟电影网在线观看| 久久精品国产a三级三级三级| 中文资源天堂在线| 免费av不卡在线播放| 亚洲一区二区三区欧美精品 | 丝袜美腿在线中文| 丝袜美腿在线中文| 大香蕉97超碰在线| 国产日韩欧美亚洲二区| 亚洲色图av天堂| 国产爱豆传媒在线观看| 欧美性感艳星| 日本三级黄在线观看| 国产高潮美女av| 天美传媒精品一区二区| 直男gayav资源| 永久免费av网站大全| 国产欧美另类精品又又久久亚洲欧美| 舔av片在线| 国产老妇伦熟女老妇高清| 午夜免费观看性视频| 黄色一级大片看看| 在线天堂最新版资源| 亚洲av免费在线观看| 欧美成人a在线观看| 亚洲天堂国产精品一区在线| 亚洲欧美精品自产自拍| 精品久久久久久久久av| tube8黄色片| 国产成人91sexporn| 久热久热在线精品观看| eeuss影院久久| 热re99久久精品国产66热6| 婷婷色麻豆天堂久久| 水蜜桃什么品种好| 永久免费av网站大全| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 色播亚洲综合网| 久久精品国产亚洲av涩爱| 亚洲最大成人av| 人妻 亚洲 视频| 国产男人的电影天堂91| 成年女人在线观看亚洲视频 | 日韩在线高清观看一区二区三区| 在线观看国产h片| 日韩一区二区视频免费看| 国产成人精品婷婷| 成人欧美大片| 国产亚洲最大av| 可以在线观看毛片的网站| 久久精品久久久久久噜噜老黄| 2021少妇久久久久久久久久久| 蜜桃亚洲精品一区二区三区| 国产一区有黄有色的免费视频| 三级男女做爰猛烈吃奶摸视频| 黄片无遮挡物在线观看| 亚洲av免费在线观看| 综合色丁香网| 久久久久国产精品人妻一区二区| 国产综合懂色| 不卡视频在线观看欧美| 三级国产精品欧美在线观看| 成年女人看的毛片在线观看| 午夜福利高清视频| xxx大片免费视频| 韩国高清视频一区二区三区| 伦理电影大哥的女人| 一级毛片电影观看| 日日啪夜夜爽| 亚洲av欧美aⅴ国产| 观看美女的网站| 蜜桃久久精品国产亚洲av| 亚洲色图av天堂| 久久久久久久午夜电影| 又爽又黄无遮挡网站| 在线精品无人区一区二区三 | 午夜福利高清视频| 七月丁香在线播放| 搡老乐熟女国产| 水蜜桃什么品种好| 成人美女网站在线观看视频| 波野结衣二区三区在线| 国产精品偷伦视频观看了| 亚洲国产精品专区欧美| 性色avwww在线观看| 国产伦精品一区二区三区四那| 一级毛片黄色毛片免费观看视频| 男女国产视频网站| 久久久a久久爽久久v久久| 亚洲熟女精品中文字幕| 国产高清有码在线观看视频| 成年免费大片在线观看| 秋霞伦理黄片| 亚洲怡红院男人天堂| 国产综合精华液| 久久精品夜色国产| 日本黄大片高清| 99久国产av精品国产电影| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩另类电影网站 | 日韩中字成人| 99久久人妻综合| 国产精品一及| 一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 国产毛片在线视频| 久久97久久精品| 亚洲成色77777| 欧美xxxx黑人xx丫x性爽| 欧美日韩综合久久久久久| 2021少妇久久久久久久久久久| 人妻夜夜爽99麻豆av| 国产美女午夜福利| 亚洲激情五月婷婷啪啪| 久热久热在线精品观看| 国产精品久久久久久精品电影| 国产高清三级在线| 一级a做视频免费观看| 欧美高清成人免费视频www| 国产综合精华液| 黄色一级大片看看| 春色校园在线视频观看| 日韩av不卡免费在线播放| 亚洲精品第二区| 亚洲精品,欧美精品| 欧美日韩亚洲高清精品| 99久久中文字幕三级久久日本| 国产高清三级在线| a级毛片免费高清观看在线播放| 免费av观看视频| 日本爱情动作片www.在线观看| 伦精品一区二区三区| 亚州av有码| 国产乱来视频区| 成年版毛片免费区| 边亲边吃奶的免费视频| 偷拍熟女少妇极品色| 欧美丝袜亚洲另类| 成人午夜精彩视频在线观看| 成人毛片a级毛片在线播放| 日本猛色少妇xxxxx猛交久久| 人妻少妇偷人精品九色| 欧美老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 美女内射精品一级片tv| 国产一区有黄有色的免费视频| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 在线观看国产h片| 日韩免费高清中文字幕av| 亚洲性久久影院| 亚洲av.av天堂| 久久精品夜色国产| 不卡视频在线观看欧美| 777米奇影视久久| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 日日撸夜夜添| 99热6这里只有精品| 精品酒店卫生间| av免费在线看不卡| 美女高潮的动态| 国产熟女欧美一区二区| 男女国产视频网站| 天堂网av新在线| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有精品一区| 永久免费av网站大全| 午夜免费鲁丝| av在线老鸭窝| 少妇人妻久久综合中文| 亚洲欧美日韩另类电影网站 | 香蕉精品网在线| 久久久久久九九精品二区国产| 六月丁香七月| 尾随美女入室| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 国产精品爽爽va在线观看网站| 日韩,欧美,国产一区二区三区| 国产在视频线精品| 男女边摸边吃奶| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 看黄色毛片网站| 国产免费视频播放在线视频| 国产高潮美女av| 一级av片app| 中国三级夫妇交换| 熟女av电影| 一个人观看的视频www高清免费观看| 大话2 男鬼变身卡| 国产一级毛片在线| 亚洲av免费在线观看| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 日日啪夜夜撸| 亚洲不卡免费看| 中文精品一卡2卡3卡4更新| 亚洲性久久影院| 亚洲综合精品二区| freevideosex欧美| 精品人妻一区二区三区麻豆| 亚洲最大成人av| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区国产| 成人国产麻豆网| 真实男女啪啪啪动态图| 各种免费的搞黄视频| 久久久久九九精品影院| 成人二区视频| 午夜日本视频在线| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 禁无遮挡网站| 色网站视频免费| 亚洲va在线va天堂va国产| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 国产精品一区二区在线观看99| 亚洲婷婷狠狠爱综合网| 国产精品一区二区在线观看99| 嫩草影院入口| 99视频精品全部免费 在线| 插阴视频在线观看视频| 亚洲欧美一区二区三区黑人 | 久久99热这里只频精品6学生| 亚洲欧美一区二区三区黑人 | 日韩一区二区三区影片| 七月丁香在线播放| 高清视频免费观看一区二区| 春色校园在线视频观看| 国产精品无大码| 男女那种视频在线观看| 校园人妻丝袜中文字幕| 1000部很黄的大片| 99热这里只有精品一区| 91久久精品国产一区二区三区| 三级经典国产精品| 最近2019中文字幕mv第一页| 亚洲国产精品专区欧美| 中国美白少妇内射xxxbb| 高清欧美精品videossex| 日韩欧美精品v在线| 免费少妇av软件| 国产高清有码在线观看视频| 男的添女的下面高潮视频| 免费黄网站久久成人精品| 91久久精品国产一区二区三区| 国产老妇女一区| 天堂俺去俺来也www色官网| 亚州av有码| 国产一区二区三区综合在线观看 | 久久久精品免费免费高清| 好男人视频免费观看在线| 国产亚洲5aaaaa淫片| 亚洲天堂国产精品一区在线| 亚洲国产欧美人成| 看十八女毛片水多多多| 人妻系列 视频| 各种免费的搞黄视频| 免费看光身美女| 国产淫片久久久久久久久| 亚洲av成人精品一二三区| 97超碰精品成人国产| 一本久久精品| 亚洲成人中文字幕在线播放| 日韩欧美一区视频在线观看 | 视频中文字幕在线观看| 1000部很黄的大片| av线在线观看网站| 在线观看国产h片| 欧美xxⅹ黑人| 午夜精品国产一区二区电影 | 男人添女人高潮全过程视频| 少妇猛男粗大的猛烈进出视频 | av线在线观看网站| 国产精品精品国产色婷婷| 日本黄大片高清| 欧美成人午夜免费资源| 欧美性猛交╳xxx乱大交人| 大话2 男鬼变身卡| 亚洲不卡免费看| 国产精品女同一区二区软件| 两个人的视频大全免费| 直男gayav资源| 视频中文字幕在线观看| 午夜福利高清视频| 乱码一卡2卡4卡精品| 亚洲精品久久午夜乱码| 日韩av不卡免费在线播放| 真实男女啪啪啪动态图| 一二三四中文在线观看免费高清| 汤姆久久久久久久影院中文字幕| 久久久a久久爽久久v久久| 欧美激情在线99| 亚洲av中文av极速乱| 国产成人精品一,二区| 男男h啪啪无遮挡| 日产精品乱码卡一卡2卡三| 亚洲av成人精品一区久久| 一区二区三区四区激情视频| 天堂中文最新版在线下载 | 久久女婷五月综合色啪小说 | 久久久久久久久久人人人人人人|