• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection

    2016-12-09 08:00:18ChenXiongJunYoJuingChenHongMio

    Chen Xiong,Jun Yo,Juing Chen,Hong Mio,?

    aKey Laboratory of Mechanical Behavior and Design of Materials(CAS),Department of Modern Mechanics,University of Science and Technology of China, Hefei,230027,China

    bDepartment of Engineering Mechanics,Shanghai Jiao Tong University,Shanghai,200240,China

    Letter

    A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection

    Chen Xionga,Jun Yaob,Jubing Chenb,Hong Miaoa,?

    aKey Laboratory of Mechanical Behavior and Design of Materials(CAS),Department of Modern Mechanics,University of Science and Technology of China, Hefei,230027,China

    bDepartment of Engineering Mechanics,Shanghai Jiao Tong University,Shanghai,200240,China

    H I G H L I G H T S

    ?The theoretical analysis of the nonlinear errors in digital fringe projection is deduced.

    ?The LUT is made from measured phase map without extra calibration experiment.

    ?The process of algorithm is convenient to be applied in real-time digital fringe projection.

    A R T I C L EI N F O

    Article history:

    Accepted 25 December 2015

    Available online 28 January 2016

    Phase measurement

    Digital fringe projection

    Non-linear error compensation

    Digital image processing

    Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement,the measurement system is susceptible to non-linear error.In this work,we propose a convenient look-up-table-based(LUT-based)method to compensate for the non-linear error in captured fringe patterns.Without extra calibration,this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences.Then,a phase compensation map is established to revise the measured phase.Experimental results demonstrate that this method works effectively.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Advanced composite materials are becoming more and more widely used in the aerospace field in equipment such as radar antenna arrays and airfoils.Since these structures work in different types of specialized conditions,an increasing demand exists for their deformation details with respect to their location in large areas,on asmallscale,and withtheneedforhighprecision.Inrecent decades,these requirements have prompted the rapid developmentofopticalnon-contactthree-dimensional(3D)surfaceprofile methods[1–8].Of these methods,digital fringe projection(DFP), whichusesphaseextractionandimageprocessing,hasbeenextensivelyinvestigatedandisconsideredtobeoneofthemosteffective techniquesfor3Dshapemeasurement.Figure1showsaschematic diagram of a typical DFP-based measurement system[9–11].

    A digital projector is used to project a simulated fringe pattern on the measured surface;then,the reflected light,whose intensity is modulated by the shape of the measured surface,is captured by adigitalcharge-coupleddevice(CCD)camera.Inourmeasurement system,we employ a phase-shifting technique to calculate the phase as

    where Iiis the light intensity of the captured image,i denotes the image sequence number,and aiis the phase shift.Here,the nonlinear error plays a key role in affecting the DFP.Digital devices, such as complementary metal–oxide semiconductor(CMOS) cameras,CCD cameras,and digital projectors,are manufactured to be non-linear to achieve a better visual effect;thus,the phase error is often introduced during the deformation from the ideal sinusoidal to non-sinusoidal fringe patterns.In optical measurement,digitaldevicesarebecomingindispensable.Assuch, the non-linear error is inevitable in most measurement results.

    Various efforts have been made to diminish this non-linear error.Pan et al.reported that the phase error originated from the non-sinusoidal waveforms and suggested that a Fourier series could be used to decompose the captured images in different-order harmonics,and then,an iterative phase compensation algorithm be applied to compensate for the non-linear error[5].Hoang et al.first used a universal phase-shifting techniqueto detect the gamma value and then pre-encoded the measurement setup.Using the new light intensity,an accurate measurement result could be achieved[7].Other researchers have also conducted work related to the calibration of gamma nonlinearity[12–14].Surrel believed the error could be alleviated by a number of phase-shifting fringe patterns[15].To diminish the phase error in DFP,Huang et al.proposed a new phase-shifting algorithm(double three-step algorithm)[16],and both the theoretical and experimental results showed that the algorithm could work effectively.A method based on amplitude modulation was proposed by Gai and Da[17],which can identify the fringe order by the fringe pattern’s amplitude,and reasonable results were obtained.Zhang and Huang proposed a method basedonthree-stepphaseshiftingtocompensateforthemeasured phase,and its key step was to establish an error compensation table called a look-up-table(LUT)[6].This method has proven to be generic for the arbitrary step phase-shifting technique,and an easier-operating LUT-based method in DFP measurement could be proposed,wherein a uniform flat surface board is used to calibrate thenon-linearerrorratherthanconductingapre-calibrationofthe monotonic gamma values of the projector[18].Some other related works may also be found in Refs.[19–23].For example,Schwider et al.mathematically discussed the historical development of different algorithms for error-compensating phase-shifting[22]. Zhou et al.claimed that errors arose from both non-linear gamma values and the ratio of the intensity modulation;thus,ambient light was considered in their compensation method[23].

    Fig.1.Schematic diagram of DFP measurement system.

    In this study,we developed a convenient way to realize the LUT-based phase compensation algorithm,which fully utilizes the data information in the measured phase map.The non-linear error is directly extracted from the phase map rather than calibrating a uniform flat surface board using a set of fringe images.Thus, we can easily realize this method through programming.The experimental results showed that errors were reduced by a factor of ten.This convenient method has good potential for real-time DFP measurement applications.We first describe our study of the characteristics in DFP images and then detail the procedure of constructing a phase compensation map.Next,we provide our experimental results,followed by a discussion of these results.

    We performed a simple experiment to analyze the non-linear error,and the obtained results are illustrated in Fig.2.

    Figure 2(a)is an experimental fringe pattern captured by a CCD camera.The grayscale distribution of the red line(including several fringe periods)in Fig.2(a)is shown in Fig.2(b),which indicates that the grayscale distribution of the fringe pattern has become non-sinusoidal.The red and blue lines in Fig.2(c)denote the ideal and real captured grayscales’responses to the projected grayscale of the red line in Fig.2(a),respectively.In Fig.2(d),the red and blue lines are the ideal linear and real measured phases calculated from the short green line(including one intact fringe period)in Fig.2(a),respectively.This shows that the distribution of the measured phase in one intact fringe period was not linear. Therefore,the projection and capture procedures directly lead to unwanted grayscale changes in the captured fringe pattern, resulting in a non-linear distribution in the acquired phase.In the following,we provide a theoretical analysis.

    Typically,we can express the captured image from a DFP as

    Then,we use a cosine power function to expand Eq.(3)as

    To accurately analyze the non-linear error,we only study the harmonic waves for k≤8,because the harmonic wave with a higher order is small enough to be ignored.Four-step phase shifting is used in our system,and then,the non-linear error can be derived from Eq.(4)as

    Since we have r? q and s? q,r and s can be ignored.The non-linear error can finally be described as

    We can conclude from Eq.(7)that the non-linear error depends only on the ratio q and measured phaseφ.

    TorealizetheproposedLUT,twotypesofphasesareintroduced. One is the measured phase containing the error(blue line in Fig.2(d))owing to the phase-shifting technique.The other is the true phase that is defined to describe the phase in the sinusoidal fringe.The true phase(red line in Fig.2(d))can be calculated from the intact fringe patterns(distributed linearly in the intact fringe)being projected.During the digital image processing,a true phase[?π,π]in each intact fringe is defined according to the number of pixels in the pitch.The true phase can be obtained only from the flat region where the phase is supposed to have a linear distribution,whereas the phase in the object region is not linear, since it contains shape information.The non-linear characteristicsof the fringe patterns are similar in a full field;thus,the nonlinear error in the object region can be eliminated by the phase compensation map obtained from the flat region.

    Fig.2.(a)Captured fringe pattern.(b)Grayscale distribution of the red line in plot(a).(c)Response of captured grayscale to projected grayscale.(d)Wrapped phase of the green line.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Fig.3.Distribution of wrapped phase(broken line)of the 100th row in Fig.2(a).A breakpointismarkedasaredellipseintheplot.(Forinterpretationofthereferences tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

    A breakpoint in the wrapped phase map is recommended to distinguish the edge of each fringe from the captured image and confirm the number of pixels in each intact fringe pitch.The wrapped phase of the 100th row in Fig.2(a)is shown in Fig.3. The small red ellipses in Fig.3 mark the edge point of each fringe pitch.The number of pixels in each fringe pitch can be obtained by counting the number of pixels between the two adjacent ellipses.

    Once the measured and true phases are both obtained,the LUT isusedtorecordthefull-fielddifferences.Thousandsofpixelsexist in one captured image;therefore,a number of arrays(intervals) are employed to classify this huge amount of data.We employ the average algorithm to calculate the recorded difference for each interval and consider the difference to be the error of the interval. Inourmeasurement,theLUTisdividedinto300intervals,andeach interval is denoted in order as In(n=1,2,3,...,300),as shown in Fig.4.

    AsshowninFig.4,In(n=1,2,3,...,300)istheintervalandn istheindexnumberofeachintervalIn.Itisimportanttodetermine the sequence index(n)of the interval to which each pixel belongs. Specifically,if the measured phase of a pixel(?mp)belongs to the nth interval,it will satisfy the following

    After confirming the interval sequence index n,the difference is recorded in the interval In.By traversing the full-field pixels,each intervalwillhaveanumberofrecordeddifferences.Figure5shows the data distribution of the 150th interval.

    Fig.5.Data in the 150th interval.

    As shown in Fig.5,most of the differences are distributed between?0.05 and 0.05.The average algorithm is employed to process these differences.The procedure can be described as

    where errornis the error of the nth interval and average[In] represents the calculation process of the average algorithm imposed to the nth interval.Since each pixel’s interval sequence index is confirmed,building the phase compensation map by traversing the full-field measured phase is easy.Figure 6 shows an example of a phase compensation map.

    Finally,we subtract the phase compensation map from the measured phase map to obtain the full-field accurate phase map.

    To illustrate the effectiveness of the proposed LUT-based method,we carried out two experiments.We built a 3D measurement system,comprising a projector(Vivitek-D5158HD with a resolution of 1920×1280 pixels)and a CCD camera(Baslerace1600-20 g with resolution of 1600×1200 pixels).

    In the first experiment,the fringe pattern was generated by a computer,and the object to be measured was a wafer 1 mm thick, with a flatness of 10μm,and a diameter of 80 mm.To obtain a higher precision result,the projector was defocused to give the projected fringe pattern a high contrast[24].

    Fig.4.Intervals in the LUT.

    Fig.6.Phase compensation map.

    Fig.7.(a)Captured fringe pattern of background.(b)Captured fringe pattern of background with the wafer.(c)Wafer’s phase map before error compensation.(d)Wafer’s phase map after error compensation.(e)Measured phase of the 10th row data before error compensation.(f)Measured phase of the 10th row data after error compensation.

    The four phase-shifting fringe patterns captured without and with the measured object are illustrated in Fig.7(a)and(b), respectively.Figure 7(c)shows the raw measured result of the measured object whose surface was wrapped with periodic ripples such that the measured object no longer had its original appearance.The phase of the periodic ripples was evaluated to be approximately 0.2 rad,whereas the phase of the wafer’s thickness was approximately 2 rad.This indicates that the size of the ripple was 1/10 that of the measured object,thus resulting in the surface not being recognized.The phase error in Fig.7(c)has an RMS of 0.0104 rad,whereas that in Fig.7(d)has a root mean square(RMS) of 0.0009 rad.This indicates that the phase error declines by a factor of 11.5 following the application of the proposed method.In comparison to these results,we note that periodic ripples hardly exist in the full-field and a better visual effect is obtained.

    In the second experiment,we measured a more complex mask 165 mm in width,225 mm in length,and 65 mm in height,and Fig.8 shows the experimental results.

    Figure 8(b)indicates that the periodic ripples on the mask surface were well alleviated after phase compensation.The mask not only became smoother but also had better visual effects. As such,we have proven that this method is effective in object profilometry.

    In this study,we proposed a different method for realizing the LUT-based phase compensation algorithm,which fully utilizes the data information in the measured phase map.The advantage of this method is that it makes the realization of LUT-based measurement easier without affecting the error compensation result and also achieves the goal of automating DFP measurement. In our proposed method,the non-linear error is obtained directly from the flat area in the wrapped phase map,without needing to project a set of fringe patterns to calibrate a uniform flat surface board.The obtained experimental results show that our method greatly decreases measurement error by a factor of ten,which is similar in effectiveness to the results reported in[6,18–23], whereas our method is more conveniently implemented and has a better potential for application in real-time DFP systems.In addition,this method can be programmed with Visual C++and Matlab,making it capable of automated measurement.In addition tothe300intervalcasesanalyzed,weexperimentedwith100,200, 500,and 1000 intervals and obtained almost identical results,so it is easy to assign a given interval number.In addition,the LUT-based algorithm was derived to be suitable for the arbitrary step phase-shifting technique[18].

    In this study,the non-linear error common to DFP is introduced and deeply examined.We then proposed a convenient LUT-based method to compensate for the non-linear error in the captured fringe patterns,which fully utilizes information in the measured phase map and establishes a compensation map to revise the measured phase.We described in detail the principle of the algorithm and performed experiments to demonstrate its effectiveness.

    Fig.8.(a)Mask’s phase map before error compensation.(b)Mask’s phase map after error compensation.

    Acknowledgments

    The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China (11472267 and 11372182),and the National Basic Research Program of China(2012CB937504).

    References

    [1]S.S.Gorthi,P.Rastogi,Fringe projection techniques:Whither we are?Opt. Lasers Eng.48(2)(2010)133–140.

    [2]S.Kishimoto,Electron moire method,Theoret.Appl.Mech.Lett.2(2012) 011001.

    [3]C.Yang,H.Miao,Vibrationparametermeasurementusingthetemporaldigital hologram sequence and windowed Fourier transform,Theoret.Appl.Mech. Lett.1(2011)051008.

    [4]X.Y.Sun,Y.Yuan,Z.K.Zhu,X.H.Zhang,Q.F.Yu,Videometric research on deformation measurement of large-scale wind turbine blades,Theoret.Appl. Mech.Lett.1(2011)011005.

    [5]B.Pan,K.M.Qian,L.Huang,A.Asundi,Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,Opt.Lett.34(4)(2009)416–418.

    [6]Z.Song,P.S.Huang,Phase error compensation for a 3-D shape measurement systembasedonthephase-shiftingmethod,Proc.ofSPIE6000(2005)60000E-1.

    [7]T.Hoang,B.Pan,D.Nguyen,Z.Y.Wang,Genericgammacorrectionforaccuracy enhancement in fringe-projection profilometry,Opt.Lett.35(12)(2010) 1992–1994.

    [8]Y.J.Ma,T.C.Xiong,X.F.Yao,Experimental investigation of interface curing stresses between PMMA and composite using digital speckle correlation method,Theoret.Appl.Mech.Lett.1(2011)051003.

    [9]Z.Y.Wang,H.Du,Out-of-plane shape determination in generalized fringe projection profilometry,Opt.Express 14(25)(2014)12122.

    [10]Y.J.Fu,Q.Luo,Fringe projection profilometry based on a novel phase shift method,Opt.Express 19(2011)21739.

    [11]Z.W.Li,Y.S.Shi,C.J.Wang,D.H.Qin,K.Huang,Complexobject3Dmeasurement based on phase-shifting and a neural network,Opt.Commun.282(2009) 2699–2706.

    [12]Y.Wang,Y.Feng,J.Y.Fan,Y.Fu,Gamma calibration and phase error compensation for phase shifting profilometry,Int.J.Multimed.Ubiquitous Eng.9(9)(2014)311–318.

    [13]K.Liu,Y.C.Wang,D.L.Lau,H.Qi,L.G.Hassebrook,Gamma model and its analysis for phase measuring profilometry,Appl.Opt.27(3)(2010)553.

    [14]Hongwei Guo,Haitao He,Mingyi Chen,Gamma correction for digital fringe projection profilometry,Appl.Opt.43(14)(2004)2096.

    [15]Yves Surrel,Design of algorithms for phase measurements by the use of phase stepping,Appl.Opt.35(1)(1996)51.

    [16]P.S.Huang,Q.Y.J.Hu,F.P.Chiang,Double three-step phase-shifting algorithm, Appl.Opt.41(22)(2002)4503.

    [17]S.Y.Gai,F.P.Da,Fringe image analysis based on the amplitude modulation method,Opt.Express 18(10)(2010)10704.

    [18]S.Zhang,S.T.Yau,Generic nonsinusoidal phase error correction for threedimensional shape measurement using a digital video projector,Appl.Opt.46 (1)(2007)36–43.

    [19]C.W.Zhang,H.Zhao,L.Zhang,X.Wang,Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry,Meas.Sci.Technol.26(2015)035201.

    [20]Y.J.Fu,Z.G.Wang,G.Y.Jiang,J.Yang,A novel three-dimensional shape measurementmethod based ona look-up-table,Optik125(2014)1804–1808.

    [21]P.S.Huang,Q.Y.Hu,F.P.Chiang,Error compensation for a three-dimensional shape measurement system,Opt.Eng.42(2)(2003)482–486.

    [22]J.Schwider,T.Dresel,B.Manzke,Some considerations of reduction of reference phase error in phase-stepping interferometry,Appl.Opt.38(4) (1999)655.

    [23]P.Zhou,X.R.Liu,Y.He,T.J.Zhu,Phase error analysis and compensation considering ambient light for phase measuring profilometry,Opt.Lasers Eng. 55(2014)99–104.

    [24]S.Y.Lei,S.Zhang,Flexible 3-D shape measurement using projector defocusing, Opt.Lett.34(20)(2009)3080.

    7 November 2015

    http://dx.doi.org/10.1016/j.taml.2015.12.005

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?.

    E-mail address:miaohong@ustc.edu.cn(H.Miao).

    *This article belongs to the Solid Mechanics

    国产精品 欧美亚洲| 91成年电影在线观看| a在线观看视频网站| 欧美乱妇无乱码| 制服诱惑二区| 1024视频免费在线观看| 69av精品久久久久久 | 亚洲精品国产一区二区精华液| 日本wwww免费看| 欧美成人免费av一区二区三区 | 操出白浆在线播放| 亚洲一区二区三区欧美精品| tocl精华| 操美女的视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产精品1区2区在线观看. | 久久人人爽av亚洲精品天堂| 久久久久久亚洲精品国产蜜桃av| 可以免费在线观看a视频的电影网站| 多毛熟女@视频| svipshipincom国产片| 国产精品一区二区在线不卡| 久久国产亚洲av麻豆专区| 一本综合久久免费| 亚洲中文字幕日韩| 乱人伦中国视频| 免费少妇av软件| 一区二区日韩欧美中文字幕| 欧美黄色片欧美黄色片| 女人久久www免费人成看片| 国产福利在线免费观看视频| 十八禁人妻一区二区| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看 | 美女午夜性视频免费| 1024香蕉在线观看| 欧美日本中文国产一区发布| 亚洲性夜色夜夜综合| 一级,二级,三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久视频综合| 欧美大码av| 丰满少妇做爰视频| 亚洲精品成人av观看孕妇| 日韩欧美国产一区二区入口| av视频免费观看在线观看| 女性生殖器流出的白浆| 欧美精品一区二区大全| 欧美日韩视频精品一区| 国产精品亚洲av一区麻豆| 丰满迷人的少妇在线观看| 免费高清在线观看日韩| 91成年电影在线观看| 日韩人妻精品一区2区三区| 香蕉国产在线看| 两人在一起打扑克的视频| 国产片内射在线| 精品少妇久久久久久888优播| 亚洲自偷自拍图片 自拍| 久久久精品区二区三区| videos熟女内射| 国产91精品成人一区二区三区 | 无限看片的www在线观看| 亚洲五月色婷婷综合| 在线亚洲精品国产二区图片欧美| 搡老岳熟女国产| 国产一区二区三区综合在线观看| 少妇裸体淫交视频免费看高清 | 正在播放国产对白刺激| 亚洲成人手机| 亚洲欧美精品综合一区二区三区| 大型黄色视频在线免费观看| 午夜福利一区二区在线看| 亚洲精品粉嫩美女一区| 国产福利在线免费观看视频| 欧美成狂野欧美在线观看| 中文字幕色久视频| 高清在线国产一区| 国产成人免费无遮挡视频| 老司机在亚洲福利影院| 亚洲国产成人一精品久久久| 久久亚洲精品不卡| 久久久国产精品麻豆| 天天操日日干夜夜撸| tocl精华| 欧美成人免费av一区二区三区 | 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 精品国产亚洲在线| 欧美在线黄色| 天堂动漫精品| 51午夜福利影视在线观看| 69精品国产乱码久久久| 首页视频小说图片口味搜索| 免费在线观看日本一区| 777久久人妻少妇嫩草av网站| 12—13女人毛片做爰片一| 在线观看免费视频网站a站| 五月开心婷婷网| 99riav亚洲国产免费| 精品午夜福利视频在线观看一区 | 欧美av亚洲av综合av国产av| 国产在线视频一区二区| 久久久久久久久久久久大奶| 国产欧美日韩综合在线一区二区| 亚洲avbb在线观看| 国产成人精品久久二区二区免费| 变态另类成人亚洲欧美熟女 | 亚洲av欧美aⅴ国产| 精品久久久久久电影网| 人人澡人人妻人| 亚洲专区字幕在线| 欧美亚洲日本最大视频资源| 日韩视频在线欧美| 女性生殖器流出的白浆| 久久精品亚洲av国产电影网| 可以免费在线观看a视频的电影网站| 日日夜夜操网爽| 变态另类成人亚洲欧美熟女 | 日韩欧美国产一区二区入口| 国产精品国产av在线观看| 俄罗斯特黄特色一大片| 亚洲熟女精品中文字幕| www.精华液| 亚洲色图综合在线观看| 麻豆成人av在线观看| tube8黄色片| 国产欧美日韩精品亚洲av| 国产黄色免费在线视频| 老司机午夜福利在线观看视频 | 国产日韩欧美在线精品| 国产在线免费精品| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看 | 黄片大片在线免费观看| 精品欧美一区二区三区在线| 久久国产亚洲av麻豆专区| 另类精品久久| 国产又色又爽无遮挡免费看| 国产精品一区二区在线观看99| 成年人黄色毛片网站| 夫妻午夜视频| 国产精品久久久久成人av| 99久久人妻综合| 精品少妇黑人巨大在线播放| 久久天躁狠狠躁夜夜2o2o| 可以免费在线观看a视频的电影网站| 一区二区三区国产精品乱码| 久久久久久免费高清国产稀缺| 天天影视国产精品| 国产欧美日韩精品亚洲av| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 一区二区av电影网| 久久久精品94久久精品| 日韩免费高清中文字幕av| 自线自在国产av| 日韩欧美一区二区三区在线观看 | 亚洲精品粉嫩美女一区| 欧美乱妇无乱码| 成人18禁高潮啪啪吃奶动态图| 超碰成人久久| 久久久久久人人人人人| 午夜福利乱码中文字幕| 成在线人永久免费视频| 久9热在线精品视频| 国产高清国产精品国产三级| 免费日韩欧美在线观看| 老熟女久久久| 女性生殖器流出的白浆| 操出白浆在线播放| 看免费av毛片| 女同久久另类99精品国产91| 国产不卡一卡二| 国产成人精品无人区| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片精品| 丝袜在线中文字幕| av视频免费观看在线观看| 亚洲黑人精品在线| 可以免费在线观看a视频的电影网站| 亚洲中文日韩欧美视频| 美女视频免费永久观看网站| 深夜精品福利| 免费看十八禁软件| 国产成人啪精品午夜网站| 热99国产精品久久久久久7| 一个人免费看片子| 91av网站免费观看| 成人国产av品久久久| 欧美午夜高清在线| 一级,二级,三级黄色视频| 欧美一级毛片孕妇| 亚洲va日本ⅴa欧美va伊人久久| 在线观看一区二区三区激情| 久久中文字幕人妻熟女| 99久久精品国产亚洲精品| 香蕉久久夜色| 免费黄频网站在线观看国产| 国产有黄有色有爽视频| 国产精品秋霞免费鲁丝片| 亚洲午夜理论影院| 91成人精品电影| 日韩视频一区二区在线观看| 午夜老司机福利片| 国产成人精品久久二区二区免费| 国产深夜福利视频在线观看| 日韩视频一区二区在线观看| 亚洲第一欧美日韩一区二区三区 | 男女无遮挡免费网站观看| 人成视频在线观看免费观看| 成人国产av品久久久| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区精品| 看免费av毛片| 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 99精品久久久久人妻精品| 国产免费视频播放在线视频| av线在线观看网站| 成在线人永久免费视频| 一本—道久久a久久精品蜜桃钙片| 一边摸一边抽搐一进一出视频| 久久亚洲精品不卡| a在线观看视频网站| 91老司机精品| 亚洲精品中文字幕在线视频| 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 老熟女久久久| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 夜夜骑夜夜射夜夜干| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 久久久精品94久久精品| 亚洲精品国产区一区二| 国产一区二区激情短视频| 久久这里只有精品19| 精品国产国语对白av| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久男人| 精品久久蜜臀av无| 老司机亚洲免费影院| 免费少妇av软件| 午夜福利在线观看吧| 两个人看的免费小视频| 超碰97精品在线观看| 国产一区二区激情短视频| 性少妇av在线| 大片免费播放器 马上看| 十八禁高潮呻吟视频| 叶爱在线成人免费视频播放| 国产一区二区在线观看av| 搡老熟女国产l中国老女人| 久久国产精品男人的天堂亚洲| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 超碰97精品在线观看| 色94色欧美一区二区| 精品一区二区三区四区五区乱码| 无限看片的www在线观看| 久久久精品免费免费高清| 欧美成狂野欧美在线观看| 亚洲国产欧美网| 久久久久久人人人人人| 久久精品人人爽人人爽视色| 性少妇av在线| 超碰成人久久| 国产又色又爽无遮挡免费看| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠躁躁| 性高湖久久久久久久久免费观看| 夜夜夜夜夜久久久久| 国产精品国产高清国产av | 国产一区二区三区在线臀色熟女 | 男女之事视频高清在线观看| 国产精品欧美亚洲77777| 国产一区二区激情短视频| 亚洲成国产人片在线观看| 老司机亚洲免费影院| 久热这里只有精品99| 欧美日韩视频精品一区| 9191精品国产免费久久| 丁香六月天网| 亚洲国产精品一区二区三区在线| 午夜激情久久久久久久| 动漫黄色视频在线观看| 成人亚洲精品一区在线观看| 国产97色在线日韩免费| 女性被躁到高潮视频| 1024香蕉在线观看| 久久午夜亚洲精品久久| 亚洲国产欧美网| 女人高潮潮喷娇喘18禁视频| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| 久久久精品区二区三区| av有码第一页| 一本—道久久a久久精品蜜桃钙片| 国产精品1区2区在线观看. | 久久久精品免费免费高清| 久久九九热精品免费| 丰满少妇做爰视频| 在线永久观看黄色视频| 99香蕉大伊视频| 99九九在线精品视频| 在线观看一区二区三区激情| 高清毛片免费观看视频网站 | 国产午夜精品久久久久久| 老司机午夜十八禁免费视频| 激情在线观看视频在线高清 | 满18在线观看网站| 成人影院久久| 亚洲精品在线观看二区| 中亚洲国语对白在线视频| 国产av国产精品国产| 国产真人三级小视频在线观看| 久久九九热精品免费| 无限看片的www在线观看| 国产一卡二卡三卡精品| 精品国产乱码久久久久久小说| 美女国产高潮福利片在线看| 91麻豆精品激情在线观看国产 | 国产亚洲欧美在线一区二区| 欧美日韩亚洲国产一区二区在线观看 | 免费久久久久久久精品成人欧美视频| 亚洲精品成人av观看孕妇| 视频区欧美日本亚洲| 欧美国产精品一级二级三级| 婷婷成人精品国产| 天天添夜夜摸| 国产高清国产精品国产三级| 国产欧美日韩一区二区三区在线| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 国产深夜福利视频在线观看| 中亚洲国语对白在线视频| 国产av国产精品国产| av欧美777| 女警被强在线播放| 午夜激情av网站| 啦啦啦 在线观看视频| 国产男女内射视频| 久久久久久久国产电影| 18禁美女被吸乳视频| 两个人看的免费小视频| 亚洲伊人色综图| 老鸭窝网址在线观看| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看| 久久天躁狠狠躁夜夜2o2o| 91九色精品人成在线观看| 久久中文看片网| 国产精品亚洲av一区麻豆| 激情视频va一区二区三区| 国产男女超爽视频在线观看| 制服人妻中文乱码| 亚洲av成人不卡在线观看播放网| 一级,二级,三级黄色视频| 啦啦啦在线免费观看视频4| 国产精品久久久av美女十八| 一区二区三区精品91| 在线观看舔阴道视频| 国产伦理片在线播放av一区| 中文字幕色久视频| 妹子高潮喷水视频| 亚洲七黄色美女视频| 国产99久久九九免费精品| 一区福利在线观看| 中文字幕人妻熟女乱码| 亚洲专区字幕在线| 亚洲精品粉嫩美女一区| 亚洲国产中文字幕在线视频| 老熟妇仑乱视频hdxx| 亚洲国产欧美一区二区综合| 一区二区三区乱码不卡18| 深夜精品福利| 成年女人毛片免费观看观看9 | 黄色成人免费大全| 99精国产麻豆久久婷婷| 色视频在线一区二区三区| 亚洲国产看品久久| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 午夜福利,免费看| 夜夜夜夜夜久久久久| 悠悠久久av| 视频在线观看一区二区三区| 色综合婷婷激情| 亚洲第一青青草原| 国产97色在线日韩免费| 日本黄色视频三级网站网址 | 如日韩欧美国产精品一区二区三区| 男男h啪啪无遮挡| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 男人舔女人的私密视频| 欧美精品人与动牲交sv欧美| 99久久99久久久精品蜜桃| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 久9热在线精品视频| 少妇 在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久午夜乱码| 日韩欧美一区二区三区在线观看 | 女警被强在线播放| 国产亚洲一区二区精品| 在线看a的网站| 午夜91福利影院| 久久中文看片网| 午夜成年电影在线免费观看| 日本五十路高清| 久久性视频一级片| 日本av免费视频播放| 在线 av 中文字幕| 大陆偷拍与自拍| 久久 成人 亚洲| 人妻一区二区av| 免费久久久久久久精品成人欧美视频| 老司机靠b影院| 亚洲精华国产精华精| 99国产精品一区二区三区| 国产男女超爽视频在线观看| xxxhd国产人妻xxx| 日韩欧美一区视频在线观看| 操美女的视频在线观看| 少妇粗大呻吟视频| 国产精品偷伦视频观看了| 老熟妇乱子伦视频在线观看| 黄频高清免费视频| 国产成人系列免费观看| 视频区欧美日本亚洲| 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 多毛熟女@视频| 国产高清激情床上av| 老司机午夜十八禁免费视频| 亚洲欧美精品综合一区二区三区| 少妇裸体淫交视频免费看高清 | 每晚都被弄得嗷嗷叫到高潮| 亚洲五月婷婷丁香| 变态另类成人亚洲欧美熟女 | 50天的宝宝边吃奶边哭怎么回事| 亚洲视频免费观看视频| 69精品国产乱码久久久| 国产亚洲av高清不卡| 久久天躁狠狠躁夜夜2o2o| 黄色视频在线播放观看不卡| 男女免费视频国产| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看 | 国产免费av片在线观看野外av| 亚洲国产中文字幕在线视频| 午夜福利欧美成人| 首页视频小说图片口味搜索| 女人高潮潮喷娇喘18禁视频| 最黄视频免费看| 欧美亚洲日本最大视频资源| 男女边摸边吃奶| 黄色视频在线播放观看不卡| 亚洲av日韩在线播放| 日韩免费高清中文字幕av| 叶爱在线成人免费视频播放| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 丁香六月欧美| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 精品少妇黑人巨大在线播放| 人人澡人人妻人| 国产不卡av网站在线观看| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区四区第35| 亚洲伊人久久精品综合| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 日本五十路高清| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 亚洲成a人片在线一区二区| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 69精品国产乱码久久久| 激情在线观看视频在线高清 | 视频区图区小说| 久久人人97超碰香蕉20202| 国产av又大| 美女视频免费永久观看网站| 欧美人与性动交α欧美精品济南到| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 自线自在国产av| 麻豆国产av国片精品| 国产亚洲一区二区精品| 制服诱惑二区| 热re99久久精品国产66热6| 国产色视频综合| 欧美 日韩 精品 国产| 操出白浆在线播放| 99久久人妻综合| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| 大码成人一级视频| 日韩 欧美 亚洲 中文字幕| 国产男女内射视频| 考比视频在线观看| 国产精品免费大片| 精品人妻在线不人妻| 婷婷丁香在线五月| 成年动漫av网址| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 亚洲综合色网址| 一个人免费看片子| av网站在线播放免费| 在线观看人妻少妇| 成年女人毛片免费观看观看9 | 精品亚洲乱码少妇综合久久| 国产精品亚洲av一区麻豆| 美女午夜性视频免费| 大片电影免费在线观看免费| av欧美777| 在线播放国产精品三级| 亚洲av美国av| 国产av国产精品国产| 国产精品自产拍在线观看55亚洲 | 老汉色∧v一级毛片| 麻豆国产av国片精品| av线在线观看网站| 一本色道久久久久久精品综合| 天天影视国产精品| 老司机午夜福利在线观看视频 | 免费观看a级毛片全部| 中文字幕制服av| 在线av久久热| 久久亚洲精品不卡| 9色porny在线观看| 十八禁网站免费在线| 丝袜美足系列| 天天添夜夜摸| 免费在线观看视频国产中文字幕亚洲| av网站免费在线观看视频| 一区二区三区激情视频| 日韩人妻精品一区2区三区| 国产精品一区二区精品视频观看| 十八禁人妻一区二区| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 国产一区有黄有色的免费视频| 熟女少妇亚洲综合色aaa.| 久热这里只有精品99| 国产成人av激情在线播放| 欧美日本中文国产一区发布| 美女福利国产在线| 国产精品自产拍在线观看55亚洲 | 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看| 亚洲伊人色综图| 一本色道久久久久久精品综合| 久久久精品免费免费高清| 50天的宝宝边吃奶边哭怎么回事| 午夜福利免费观看在线| 99国产精品一区二区三区| 久久久久国内视频| 国产精品.久久久| 国产1区2区3区精品| 色94色欧美一区二区| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 国产精品免费视频内射| 国产色视频综合| 亚洲伊人色综图| 久久久久国产一级毛片高清牌| 一区福利在线观看| 国产aⅴ精品一区二区三区波| 性高湖久久久久久久久免费观看| 99国产精品一区二区三区| 99riav亚洲国产免费| 欧美+亚洲+日韩+国产| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区乱码不卡18| 一级片免费观看大全| 国产视频一区二区在线看| 黄色片一级片一级黄色片| 国产不卡一卡二| 亚洲精品久久午夜乱码| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 国产精品成人在线| 国产男靠女视频免费网站| 高清在线国产一区| 亚洲中文av在线| 热99国产精品久久久久久7| 一区二区三区精品91| av天堂在线播放| 高清在线国产一区| 日韩熟女老妇一区二区性免费视频| 国产亚洲精品一区二区www | 免费在线观看黄色视频的| 亚洲美女黄片视频| 久久影院123| 国产精品自产拍在线观看55亚洲 | 国产深夜福利视频在线观看| www.精华液| 免费在线观看完整版高清|