• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of multi-layered porous fibrous metals for optimal sound absorption in the low frequency range

    2016-12-09 08:00:16WenjiongChenShutinLiuLiyongTongShengLi

    Wenjiong Chen,Shutin Liu,?,Liyong Tong,Sheng Li

    aState Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116023,China

    bSchool of Aerospace,Mechanical and Mechatronic Engineering,The University of Sydney,NSW 2006,Australia

    Letter

    Design of multi-layered porous fibrous metals for optimal sound absorption in the low frequency range

    Wenjiong Chena,Shutian Liua,?,Liyong Tongb,Sheng Lia

    aState Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116023,China

    bSchool of Aerospace,Mechanical and Mechatronic Engineering,The University of Sydney,NSW 2006,Australia

    H I G H L I G H T S

    ?A method for enhancing sound absorption coefficient of fibrous metals is presented.

    ?A fibrous layout with given porosity of multi-layered fibrous metals is suggested.

    ?Appropriate surface porosity balances dissipation and reflection of acoustic energy.

    A R T I C L EI N F O

    Article history:

    Accepted 25 December 2015

    Available online 21 January 2016

    Porous fibrous metal

    Multi-layer

    Low frequency

    Acoustic model

    Design optimization

    We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals(PFM)in the low frequency range.PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns.We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap)on sound absorption performance.The sound absorption coefficient of multilayered PFMs is calculated using impedance translation theorem.To demonstrate the validity of the present model,we compare the predicted results with the experimental data.With the average sound absorption(low frequency range)as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed.A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the singlelayered fibrous metal,and a significant effect of the fibrous material on sound absorption is found due to the surface porosity of the multi-layered fibrous.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    As a new type of sound-absorbing materials,porous fibrous metal(PFM),e.g.stainless steel and FeCrAl,has been found to be effective in reducing noise.Compared with the conventional nonmetallic porous fibrous material,PFM becomes attractive due to its mechanical properties,e.g.large surface area,low density, excellent permeability and higher mechanical strength.Hence under extreme circumstances(such as acoustical liner of turbofan engine inlet)PFM may be suitable for applications[1,2].Therefore recently the study of the sound absorption performance of PFM is of considerable interest.

    PFM often has high porosity,as metal fibers cross over each other and there exist a lot of small air passages in the material.Due to these specific pore geometries,energy dissipation in the forms of damping and thermal loss leads to superior sound absorption performance of the PFM.Similar to most sound porous materials, uniform(homogeneous)PFM has excellent sound absorption properties in middle–high frequency range,however,in the low frequency range,the capability of sound absorption is relatively poor.The most common way to improve the performance in low frequencies is to increase the thickness of material[3].However, this approach may limit the development of PFM to control noise in microelectronics and precision instruments.An alternative way is to optimize the pore geometric parameters to influence the sound propagation in the fibrous material.It has also been found that the gradient porosity can improve PFM’s sound absorption performance[1,3–5].An analysis and design model is in need to be established for designing optimal pore geometric parameter distribution.

    Fig.1.A typical structural configuration of PFM[12].

    Many researchers have studied the acoustic model for predicting the sound absorption properties of uniform porous materials. These models generally fall into two types:empirical and phenomenological models.Bazley and Delany[6]have proposed one of the most representative empirical model.This model can be used to study the single parameter’s influence on sound absorption properties,such as state air-flow resistivity,and may not be directly used for studying microscopic structure of porous material.Apart from the empirical model,a number of phenomenological models have also been established,for example,the Biot model[7],Johnson–Champoux–Allard(JCA)model[8,9],Wilson model[10]Lafarge model[11],etc.Accuracy is improved by these models through introducing extra macroscopic acoustic parameters,which are usually obtained through solving the viscous boundaryvalueproblemsoftheporestructure.Relationshipofmaterial’s sound absorption properties and the pore structure can be established using the JCA model,since it is accurate in both high and low frequencies.Therefore,the JCA model is employed to determine the sound absorption characteristics of PFM in this study. In this paper,an optimization method of designing multilayeredPFMsisalsoproposedformaximizinglowfrequencysound absorption.We use the JCA model to investigate the effects of the pore structural parameters(fiber diameter D and gapw)on sound absorption coefficient.The impedance translation theorem is also introduced to calculate the sound absorption coefficient of multi-layered PFMs.To validate the present analytical model and designmethod,wecomparetheobtainedresultsofcomputationto experimental data available in literature.With the average sound absorption in low frequencies as the objective function and the fibergapsasthedesignvariables,anoptimizationmethodofmultilayered PFMs is established.By using the proposed optimization method,we identified an optimal fiber distribution pattern for optimalsoundabsorptionperformanceinthelowfrequencyrange. Figure1showsatypicalstructuralconfigurationofPFM[12].To simplify the calculation,PFM is idealized as a parallel fiber array with repetitive hexagonal distribution patterns of individual fiber having circular cross-section(Fig.2(a)).Therefore,the parameters of pore structure are only the fiber diameter D and fiber gapw. We perform numerical computations on the scale of the half unit cell(as shown in Fig.2(b)).The porosityφof the PFM can be conveniently calculated by:

    In PFM,fibers’density and stiffness are much higher than those of the air in the fibrous material.Therefore,acoustic propagation and dissipation through a rigid frame of porous media can be macroscopically described as a layer of equivalent fluid having the bulk modulus Keq(thermal interaction dependent)and frequencydependenteffectivedensityρeq(whichismainlydependentonthe viscous interaction between the fluid and frame)[13,14].In this study,the JCA model[8,9]is employed to calculate the effective density and bulk modulus as

    whereρ0andα∞denote the fluid density and tortuosity,φ the open porosity,σthe static airflow resistivity,ωthe angular frequency,ηthe air viscosity,Λ andΛ′represent the viscous and thermal characteristic lengths respectively,γthe specific heat ratio,P0the atmospheric pressure,and Pr is the Prandtl number. The JCA model consists of five macroscopic acoustic parameters: φ,σ,α∞,ΛandΛ′.

    These macroscopic acoustic parameters are determined by the velocity field and property of fluid in fibrous material,which can be defined as

    where the following symbol designates a fluid-phase average:

    and the subscripts?xdenote the x component.

    The viscous boundary value problems were solved using finite element analysis at the micro-structure scale under both asymptotic low(f→0)and high(f→∞)frequencies,to deduce themacroscopicparametersintheequivalentfluidJCAmodel[15].

    Using the solution of steady state Navier–Stokes(NS)problem, we can deducethelow-frequency limit(f→0)leading parameter (i.e.the static airflow resistivityσ).The NS problem is defined as

    Here,? and? represent the local 2-d del and Laplacian differential operators,e is the unit vector,and?fand??denote fluid domain and fluid surface.In addition,w andπ represent a static velocity field and associated scalar pressure. As shown in Fig.3(a),we can numerically(including via the finite element method)solve the velocity field by imposing a noslip boundary condition at the fluid–solid interface and placing a periodic condition onπand w at the inlet/outlet surfaces.Once we get the solution for a given micro-structure,we can obtain the macroscopic static airflow resistivity by Eq.(4).

    Comparing to the pore size,the boundary layer is small under extreme high frequency(f→ ∞),so we can ignore its viscouseffect.Similar to the electric conditions,the governing equations of sound propagation are defined as follows

    Fig.2.(a)Cross-sections of parallel fibers array;(b)Periodic micro-structure.

    Fig.3.Velocity field at(a)low-frequency limit(f→0)and(b)high-frequency limit(f→∞).

    Fig.4.Sound propagation in a multi-layered PFMs backed by an impervious rigid wall.

    whereEandψdenotethevelocityfieldandpressure(similartothe electric field and electric potential)and n is the outward normal unit vector from the pore boundaries.Again,we can numerically solve the velocity field as shown in Fig.3(b).When the solution is obtained,we can use Eqs.(5)and(6)to determine the tortuosity α∞,viscous characteristic lengthΛ,and thermal characteristic lengthΛ′.

    Table 1 lists properties of the air used in the following simulations.

    Consider a multi-layered PFMs sample that is composed of n layers of PFM placed in series format as shown in Fig.4. In Fig.4,plane waves propagate in the opposite directionsparallel to the x-axis in the multi-layered PFMs sample backed by an impervious rigid wall.The sound propagation properties of the ith layer PFM are determined by ki(wave number),(characteristic impedance),and di(thickness).The wave number and characteristic impedance can be determined by the effective complex density and the bulk modulus of the ith layer PFM via[14]:

    Table 1 Properties of air used in all studies.

    The governing equation for harmonic plane wave propagation along the x-axis can be expressed as:

    where piis the sound pressure of the ith layer.Two boundary conditions have to be satisfied at each layer interface:(a) continuity of the sound pressure and(b)continuity of the effective velocity.The solution of Eq.(11)in the ith layer is assumed as a superposition of forward and backward traveling waves:

    Table 2 Some PFM samples[3].

    By employing Eqs.(11)and(12)for the pressure and velocity, the impedance Ziat Mi(i.e.left boundary of the ith layer)is known and can be written as follows:

    At Mi+1(i.e.right boundary of the ith layer),the impedance Zi+1 is given by

    From Eq.(15),it follows that

    Substitution of Eq.(16)into Eq.(14),the impedance translation theorem can be obtained.

    As the multi-layered PFMs sample backed by an impervious rigid wall,the impedance at the surface of thewall is infinite.Then, by using Eq.(17),the total impedance at the surface of the multilayeredfibrousmetalZ1canbecalculated.Therefore,thereflection coefficientofthemulti-layeredPFMs’surfacecanbedeterminedas follows:

    PFM’s sound absorption coefficient is calculated using an idealized and simplified hexagonal pore structure,and this pore structure and fibrous distribution are indeed different from the real PFM.In order to prove the validity of the proposed theoretical modelfor single-and multi-layeredPFMs,wecomparethepresent theoretical results with the experimental ones in Refs.[1,3].Four PFM samples and their geometric parameters are listed in Table 2. The samples all have the same diameter 50μm,but different thickness(10–25 mm)and porosities(73%–91%).As reported in Refs.[1,3],these four PFM samples were used in different assembling sequences to form four types of single-and multiplelayered porous structures as given in Table 3,which were tested for the measurement of sound absorption coefficient.The tested structures A and B are the single-layered PFM with PFM samples 1#and 2#respectively,structure C is composed of three layers of PFM in the order of PFM samples 2#,3#and 4#,and structure D is composed of two layers with PFM samples 4#and 2#.

    Comparisons between the obtained results of the proposed model and experimental measurements are shown in Figs.5 and 6 for single-and multi-layered PFMs,respectively.Figure 5 shows that the predicted sound absorption coefficients for structures A andB(e.g.single-layeredPFM)matchwellwiththemeasuredonesin the low frequency range.For structures C and D(e.g.multilayered PFMs),there exists a small deviation between the computations and measurements as shown in Fig.6.This small deviation may be due to the idealized and simplified hexagonal pore structure and the simplified treatment of the transmission between the layers in our theoretical model or the inevitable micro-defects in the test samples.

    Table 3 Four tested structures(the first layer is referred to the one that is closest to the incident sound resource(see Fig.4)).

    Fig.5.Sound absorption coefficient predicted and measured for single-layered PFM A and B.

    Fig.6.Sound absorption coefficient predicted and measured for multi-layered PFMs C and D.

    We consider the optimum design of the pore structures (i.e.fiber diameter and gap)of multi-layered PFMs for enhancing the performance of sound absorption in the low frequency range. From the previous work[16],we can know that variation of fibergap can easily affect the sound absorption but fiber diameter’s change cannot.Therefore we choose the fiber gaps in each layer are the design variables,and keep the fiber diameter fixed as 50μm.The optimization model for maximizing the average sound absorption in the low frequency range(<500 Hz)is formulated as follows:

    Table 4 The calculated macroscopic parameters and performance index of optimal four-layer PFMs(the first layer is referred to the one that is closest to the incident sound resource).

    where n is number of layers,I denotes the average sound absorption coefficient index,L0is the absorber thickness(in this paper,we choose the thickness of absorber is 50 mm),α(fi) denotes the normal sound absorption coefficient computed at the ith frequency,and N is the number of discrete frequencies in frequency range of interest(here,we choose N=50 and the frequency intervalWe can use the finite difference method to derive the sensitivity of the objective function I to the design variableswias

    Sequential linear programming(SLP)is used to solve the optimization problem(20).

    A single-layered PFM with thickness of 50 mm and diameter of 50μmbackedwitharigidwallisconsidered.Thesoundabsorption index I in the low frequency range as a function of fiber gapw is calculated by using parameter analysis and is shown in Fig.7. In Fig.7,it is found that there exists a specific value of fiber gap (i.e.w=52μm)where we can achieve the optimal sound absorption performance index(i.e.I=0.301).The corresponding sound absorption coefficient for optimal single-layered fibrous material(as a function of frequency)is shown in Fig.8.

    We aim to investigate the optimal fiber gaps of four-layer PFMs(Fig.9(a))for maximizing the sound absorption performance index I in the low frequency range.The thickness of material is 50 mm(same as single-layered PFM),and each layer has the same thickness 12.5 mm.The diameter is also chosen as 50μm. By solving the optimization problem(20),the optimal fiber gap distribution is achieved.The optimal fiber gaps from first layer to fourth layer arew1=40μm,w2=88μm,w3=75μm, andw4=64μm,respectively.The corresponding porosities are 81.3%,92.1%,90.3%,88.4%.Figure 9(b)shows the iteration history of the objective function and Fig.9(c)–(f)depict the sketches of pore structures of each layer.In this case,the optimal sound absorption performance index I is 0.358,which represents a 19.3% increasewhencomparedwithsingle-layeredfibrousmaterialwith the same diameter and thickness.The calculated macroscopic parameters and performance index are presented in Table 4. Figure 10 shows the sound absorption coefficient of optimal single and four-layer PFMs in the low frequency range(10–500 Hz).

    Fig.7.The sound absorption index I in the low frequency range as a function of fiber gapw.

    Fig.8.The sound absorption coefficient of optimal design of single-layered fibrous material.

    It can be seen from Table 4 that the fiber gaps(or porosities) decrease along the sound incident direction except for the first layer in the low frequency range.To understand the effects of the first layer(surface pore structure)on the sound absorption performance of multi-layered fibrous metals,we perform a parametric study by considering the same multi-layered materials in Table 4 but with four different fiber gaps in the first layer.The different fiber gap in the first layer is chosen as 40μm,20μm,80μm,100μm(i.e.porosities are 81.4%,69.1%, 91.1%,93.3%respectively)whiletheotherthreelayersarethesame as fibrous metals in Table 4.These four cases with different fiber gaps in the first layer are denoted as S1,S2,S3,S4 respectively.

    Fig.9.(a)Four-layer PFMs backed a rigid wall;(b)Iteration history of objective function;Optimal fiber gaps of each layer(c)first layer;(d)second layer;(c)third layer;(d) fourth layer.

    Tocomparethesoundperformancesofthesefourmulti-layered structures,the average sound absorption coefficient index defined in Eq.(20)will be used.Table 5 presents the average sound absorption coefficient indexes of the four multi-layered structures in both low and mid-high frequency ranges.For the case in the low frequency range(10–500 Hz),case S1 has the optimal sound absorption performance.For the mid-high frequency range (500–5000 Hz),cases S3 and S4 have better sound absorption performances than S1.The detail sound absorption coefficient curves of the four multi-layered structures are present in Fig.11. It is obvious that the sound absorption coefficient of the multilayered PFMs increases with the frequency generally.It can also be noted that:(a)the sound absorption coefficient for case S2 with the lowest surface porosity is higher than other cases when the frequency is below about 130 Hz;(b)case S1 has the largest sound absorption coefficient when the frequency is in the range of 130–500 Hz;and(c)the absorption coefficient increases monotonically with the surface porosity when frequency is above~1500 Hz.It is believed that the acoustic resistance plays a major role for sound absorption in the low frequency range due to that a smaller surface porosity yields a higher acoustic resistance[14]. Although more acoustic energy can be dissipated by a higher acoustic resistance in porous media,most of acoustic energy is reflected when the surface porosity is too small.Therefore,an appropriate surface porosity of multi-layered PFMs can balance the dissipation and reflection of acoustic energy to maximize the sound absorption.

    From Table 5 and Fig.11,it can be seen that the variation of the surface porosity has a significant effect on the soundabsorptionofmulti-layeredfibrousstructures.Generallyspeaking, an arrangement in the order of high porosity to low porosity along the sound incident direction is beneficial for improving the sound absorption in mid-high frequency range.However,this rule of porosity distribution cannot apply to low frequency range.

    Table 5 The average sound absorption coefficient indexes of S1–S4.

    Fig.10.The sound absorption coefficient of optimal single and four-layer PFMs.

    Fig.11.Sound absorption coefficient of four multi-layered PFMs with different fiber gaps of first layer.(a)10–500 Hz;(b)10–5000 Hz.

    In this paper,an analytical model and a design method for multi-layered PFMs are presented for improving low frequency sound absorption.In the analysis model,the PFM is idealized and simplified as a periodic hexagonal arrangement of fibers aligned in one direction,and the sound absorption coefficient is determined based on the JCA acoustic model and impedance translation theorem;In the optimization model,the average sound absorption coefficient at low frequencies is chosen as the objective function andthefibergapsasthedesignvariables.Comparingthepredicted results with experimental data in the literature verifies that the analytical model is valid and effective.Numerical examples demonstrate also that the optimization model is applicable and efficient.The average sound absorption coefficient of optimal four-layered PFMs is 20%higher than that of the single-layered PFM with the same diameter and thickness in the low frequency range.Furthermore,the surface porosity of the multi-layered PFMs has a significant influence on the fibrous material’s sound absorption.Generally,increasing the surface porosity can improve sound absorption in mid-high frequency range but does not work for the low frequency range.The work presented in this paper would provide the references and guides for the future studies and manufacture of multi-layered PFMs.

    Acknowledgments

    The authors acknowledge the support of the National Basic ResearchProgram(973Program)ofChina(GrantNo.2011CB610304), the National Natural Science Foundation of China(Grant Nos. 11332004 and 11402046),China Postdoctoral Science Foundation (No.2015M571296),the 111 Project(B14013)and the CATIC Industrial Production Projects(Grant No.CXY2013DLLG32).

    References

    [1]H.Meng,Q.Ao,H.Tang,F.Xin,T.Lu,Dynamic flow resistivity based model for sound absorption of multi-layer sintered fibrous metals,Sci.China Technol. Sci.57(2014)2096–2105.

    [2]Z.Bo,C.Tianning,Calculation of sound absorption characteristics of porous sintered fiber metal,Appl.Acoust.70(2009)337–346.

    [3]T.Huiping,Z.Jilei,G.Yuan,W.Jianyong,L.Cheng,Sound absorbing characteristics of fibrous porous materials gradient structure,Rare Metal Mater.Eng.36(2007)2220.

    [4]H.Ke,Y.Donghui,H.Siyuan,H.Deping,Acoustic absorption properties of open-cellAlalloyfoamswithgradedporesize,J.Phys.D:Appl.Phys.44(2011) 365405.

    [5]J.E.Lefebvre,V.Zhang,J.Gazalet,T.Gryba,V.Sadaune,Acoustic wave propagation in continuous functionally graded plates:an extension of the Legendrepolynomialapproach,IEEETrans.Ultrason.Ferroelectr.Freq.Control 48(2001)1332–1340.

    [6]M.Delany,E.Bazley,Acoustical properties of fibrous absorbent materials, Appl.Acoust.3(1970)105–116.

    [7]M.A.Biot,Theory of propagation of elastic waves in a fluid-saturated porous solid.I.Low-frequency range,J.Acoust.Soc.Am.28(1956)168–178.

    [8]D.L.Johnson,J.Koplik,R.Dashen,Theory of dynamic permeability and tortuosity in fluid-saturated porous media,J.Fluid Mech.176(1987)379–402.

    [9]Y.Champoux,J.F.Allard,Dynamictortuosityandbulkmodulusinair-saturated porous media,J.Appl.Phys.70(1991)1975–1979.

    [10]D.K.Wilson,Relaxation-matched modeling of propagation through porous media,including fractal pore structure,J.Acoust.Soc.Am.94(1993) 1136–1145.

    [11]D.Lafarge,P.Lemarinier,J.F.Allard,V.Tarnow,Dynamic compressibility of air in porous structures at audible frequencies,J.Acoust.Soc.Am.102(1997) 1995–2006.

    [12]W.Zhou,Y.Tang,M.Pan,X.Wei,J.Xiang,Experimental investigation on uniaxial tensile properties of high-porosity metal fiber sintered sheet,Mater. Sci.Eng.A 525(2009)133–137.

    [13]R.F.Lambert,Propagation of sound in highly porous open-cell elastic foams, J.Acoust.Soc.Am.73(1983)1131–1138.

    [14]J.Allard,N.Atalla,Propagation of Sound in Porous Media:Modelling Sound Absorbing Materials 2e,John Wiley&Sons,2009.

    [15]C.Perrot,F.Chevillotte,R.Panneton,Dynamicviscouspermeabilityofanopencell aluminum foam:Computations versus experiments,J.Appl.Phys.103 (2008)024909.

    [16]S.Liu,W.Chen,Y.Zhang,Design optimization of porous fibrous material for maximizing absorption of sounds under set frequency bands,Appl.Acoust.76 (2014)319–328.

    28 September 2015

    in revised form 24 December 2015

    http://dx.doi.org/10.1016/j.taml.2015.12.002

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?.Tel.:+86 411 84706149;fax:+86 411 84706149.

    E-mail address:stliu@dlut.edu.cn(S.Liu).

    *This article belongs to the Solid Mechanics

    欧美日韩一级在线毛片| 日本在线视频免费播放| 亚洲精品美女久久久久99蜜臀| 国产午夜福利久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 成人亚洲精品av一区二区| 久久久久国内视频| 在线永久观看黄色视频| 免费av不卡在线播放| 99久久99久久久精品蜜桃| 亚洲色图 男人天堂 中文字幕| 亚洲中文av在线| 男人舔女人下体高潮全视频| 亚洲成人久久性| 激情在线观看视频在线高清| 亚洲av中文字字幕乱码综合| 久久伊人香网站| 国产成人欧美在线观看| 他把我摸到了高潮在线观看| ponron亚洲| 欧美一级a爱片免费观看看| 99riav亚洲国产免费| 成年女人永久免费观看视频| 999久久久国产精品视频| 国产精品爽爽va在线观看网站| 淫妇啪啪啪对白视频| 黄色丝袜av网址大全| 免费在线观看成人毛片| 亚洲av熟女| 一个人免费在线观看的高清视频| 香蕉av资源在线| 美女免费视频网站| 日本五十路高清| 神马国产精品三级电影在线观看| 亚洲精品在线美女| 在线a可以看的网站| 欧美日本视频| 久久久国产成人免费| 久久午夜亚洲精品久久| 国产成人一区二区三区免费视频网站| 1024手机看黄色片| 男人和女人高潮做爰伦理| 十八禁人妻一区二区| 亚洲九九香蕉| 男女做爰动态图高潮gif福利片| 日韩中文字幕欧美一区二区| 搡老熟女国产l中国老女人| 日本三级黄在线观看| 黄色片一级片一级黄色片| 中国美女看黄片| 亚洲av熟女| 18禁美女被吸乳视频| 亚洲欧美日韩卡通动漫| avwww免费| 久久久久久九九精品二区国产| 动漫黄色视频在线观看| 亚洲专区国产一区二区| 亚洲精品456在线播放app | 久久热在线av| 亚洲第一电影网av| 中亚洲国语对白在线视频| 88av欧美| 18禁黄网站禁片免费观看直播| 欧美绝顶高潮抽搐喷水| 韩国av一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 亚洲七黄色美女视频| 一二三四社区在线视频社区8| 国产精品乱码一区二三区的特点| 99热精品在线国产| 亚洲精品456在线播放app | 视频区欧美日本亚洲| 欧美+亚洲+日韩+国产| 精品国产亚洲在线| 国产aⅴ精品一区二区三区波| 成人av在线播放网站| 最好的美女福利视频网| 黑人操中国人逼视频| 在线观看免费午夜福利视频| 久久午夜亚洲精品久久| 久久久国产成人免费| 国产欧美日韩一区二区精品| 1024手机看黄色片| 最近最新中文字幕大全免费视频| 国产精品九九99| 午夜福利18| 久久精品91蜜桃| 免费看光身美女| 一级毛片女人18水好多| 亚洲一区高清亚洲精品| 很黄的视频免费| 亚洲国产色片| 1024手机看黄色片| 后天国语完整版免费观看| 一夜夜www| 亚洲av电影在线进入| 我要搜黄色片| avwww免费| av天堂在线播放| 国产精品一区二区精品视频观看| 久久伊人香网站| 成年人黄色毛片网站| 69av精品久久久久久| 黄色女人牲交| 国产一区二区三区视频了| 白带黄色成豆腐渣| 日韩精品中文字幕看吧| 久久热在线av| 99热这里只有是精品50| 成人无遮挡网站| 日本爱情动作片www.在线观看| 久久精品久久精品一区二区三区| 最近中文字幕高清免费大全6| 日本爱情动作片www.在线观看| 99在线人妻在线中文字幕| 九九在线视频观看精品| 国产欧美日韩精品一区二区| 在线播放国产精品三级| 日本三级黄在线观看| 热99re8久久精品国产| 国产精品久久视频播放| 免费大片18禁| 男的添女的下面高潮视频| 免费无遮挡裸体视频| av黄色大香蕉| 亚洲av电影在线观看一区二区三区 | 少妇裸体淫交视频免费看高清| 黄色日韩在线| 欧美高清性xxxxhd video| 能在线免费看毛片的网站| 男人舔女人下体高潮全视频| 91精品一卡2卡3卡4卡| 国产精品久久久久久精品电影小说 | 搞女人的毛片| 欧美极品一区二区三区四区| 天天躁日日操中文字幕| 纵有疾风起免费观看全集完整版 | 国产成人a∨麻豆精品| 岛国在线免费视频观看| av在线播放精品| 18禁在线播放成人免费| 超碰av人人做人人爽久久| 嫩草影院新地址| 国产免费视频播放在线视频 | 亚洲美女视频黄频| 日本午夜av视频| 男女下面进入的视频免费午夜| 日本色播在线视频| 九草在线视频观看| av在线老鸭窝| 亚洲人成网站在线播| 一本一本综合久久| 久久综合国产亚洲精品| 国产av不卡久久| 国产一区二区在线观看日韩| 亚洲中文字幕一区二区三区有码在线看| 国产白丝娇喘喷水9色精品| 联通29元200g的流量卡| 精品人妻一区二区三区麻豆| 国产成人精品一,二区| 可以在线观看毛片的网站| 国产精品不卡视频一区二区| 黄色配什么色好看| 精品国产一区二区三区久久久樱花 | 色播亚洲综合网| 亚洲美女视频黄频| 三级男女做爰猛烈吃奶摸视频| 免费av观看视频| 18+在线观看网站| 99久久精品一区二区三区| 联通29元200g的流量卡| 国产免费又黄又爽又色| 国产成人精品一,二区| 亚洲在线自拍视频| 中文在线观看免费www的网站| 老女人水多毛片| 久久精品熟女亚洲av麻豆精品 | 欧美性猛交╳xxx乱大交人| 九九热线精品视视频播放| 最近中文字幕高清免费大全6| 26uuu在线亚洲综合色| 波多野结衣巨乳人妻| 一级毛片我不卡| 国产亚洲午夜精品一区二区久久 | 男女国产视频网站| 97超视频在线观看视频| av天堂中文字幕网| 级片在线观看| 中文乱码字字幕精品一区二区三区 | 超碰av人人做人人爽久久| 日韩强制内射视频| 观看美女的网站| 国语对白做爰xxxⅹ性视频网站| 99久国产av精品国产电影| 成人二区视频| 观看免费一级毛片| 在线播放无遮挡| 午夜免费男女啪啪视频观看| 伦精品一区二区三区| 国产精品久久久久久久电影| 久久久午夜欧美精品| 日韩制服骚丝袜av| 最近最新中文字幕免费大全7| 国产精品av视频在线免费观看| 免费看a级黄色片| 亚洲美女视频黄频| 亚洲欧美日韩无卡精品| 国产亚洲5aaaaa淫片| 国产真实伦视频高清在线观看| 欧美一区二区精品小视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩人妻高清精品专区| 日韩av在线免费看完整版不卡| 久久久久精品久久久久真实原创| 亚洲av成人av| 少妇猛男粗大的猛烈进出视频 | 国语自产精品视频在线第100页| 夜夜看夜夜爽夜夜摸| 精品人妻偷拍中文字幕| 久久久久久伊人网av| av国产免费在线观看| 色网站视频免费| 国产精品久久久久久久电影| 午夜福利高清视频| 久久热精品热| 亚洲精品日韩av片在线观看| 久久久成人免费电影| 国产av不卡久久| 我要搜黄色片| 一区二区三区乱码不卡18| 亚洲成人久久爱视频| 色视频www国产| 国产乱人偷精品视频| 成人欧美大片| 在线观看66精品国产| 日韩av在线免费看完整版不卡| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影| 国产成人精品婷婷| 国产黄片视频在线免费观看| 国产黄片视频在线免费观看| av免费在线看不卡| 综合色av麻豆| 日韩欧美精品免费久久| 成人二区视频| 国产又色又爽无遮挡免| 亚洲中文字幕日韩| 日日撸夜夜添| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久v下载方式| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 偷拍熟女少妇极品色| 亚洲人成网站在线播| 精品熟女少妇av免费看| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| 精品少妇黑人巨大在线播放 | 免费看美女性在线毛片视频| 国产精品久久视频播放| 国产人妻一区二区三区在| 中文字幕免费在线视频6| 久久久久免费精品人妻一区二区| .国产精品久久| 亚洲精品亚洲一区二区| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 一区二区三区免费毛片| 国产美女午夜福利| 色尼玛亚洲综合影院| 免费av观看视频| 午夜福利高清视频| a级毛片免费高清观看在线播放| 久久国内精品自在自线图片| 在线播放国产精品三级| 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 只有这里有精品99| АⅤ资源中文在线天堂| 最近手机中文字幕大全| 国产精品永久免费网站| 国产成人freesex在线| 亚洲精品乱码久久久久久按摩| 三级国产精品欧美在线观看| 国产午夜精品论理片| 午夜激情福利司机影院| 国产91av在线免费观看| 国产成人一区二区在线| 亚洲精品aⅴ在线观看| 免费电影在线观看免费观看| 卡戴珊不雅视频在线播放| 成人鲁丝片一二三区免费| 国产又色又爽无遮挡免| 人人妻人人澡欧美一区二区| 成年女人永久免费观看视频| 91久久精品国产一区二区成人| 2021少妇久久久久久久久久久| 欧美成人免费av一区二区三区| 亚洲在线自拍视频| 国产精品一区二区在线观看99 | 国产精品伦人一区二区| 久久久久久久久中文| 国产极品精品免费视频能看的| 亚洲自拍偷在线| 淫秽高清视频在线观看| 午夜精品在线福利| 亚洲国产精品国产精品| 精品酒店卫生间| 欧美日韩精品成人综合77777| 午夜亚洲福利在线播放| 久久人人爽人人片av| 精品久久久久久久人妻蜜臀av| 国产午夜福利久久久久久| 国产av不卡久久| 91久久精品国产一区二区成人| 午夜福利视频1000在线观看| 又黄又爽又刺激的免费视频.| 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| 午夜福利网站1000一区二区三区| 亚洲国产欧洲综合997久久,| 我要看日韩黄色一级片| 嘟嘟电影网在线观看| 久久久久久久亚洲中文字幕| 黄色一级大片看看| 成人毛片60女人毛片免费| 日韩精品有码人妻一区| 青青草视频在线视频观看| 在现免费观看毛片| 久久精品国产亚洲av天美| 欧美+日韩+精品| 欧美又色又爽又黄视频| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久av不卡| 国产大屁股一区二区在线视频| 九色成人免费人妻av| 一区二区三区四区激情视频| 亚洲人与动物交配视频| 亚洲在线观看片| 麻豆成人av视频| 神马国产精品三级电影在线观看| 亚洲国产欧洲综合997久久,| 久久午夜福利片| 特大巨黑吊av在线直播| 高清视频免费观看一区二区 | kizo精华| 久久精品人妻少妇| 国产黄a三级三级三级人| 三级毛片av免费| 啦啦啦观看免费观看视频高清| ponron亚洲| 亚洲18禁久久av| 2021少妇久久久久久久久久久| 国产精品人妻久久久久久| 波多野结衣高清无吗| 成人漫画全彩无遮挡| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影| 日本免费一区二区三区高清不卡| 国产精品三级大全| 狂野欧美白嫩少妇大欣赏| av在线老鸭窝| 边亲边吃奶的免费视频| 久久久精品94久久精品| 午夜激情福利司机影院| 伦精品一区二区三区| 欧美日韩精品成人综合77777| 日本一二三区视频观看| 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 国产精品无大码| 一级毛片电影观看 | 国产精品久久久久久久久免| 亚洲国产精品合色在线| 精品人妻视频免费看| 丝袜美腿在线中文| 级片在线观看| 国产免费一级a男人的天堂| 国国产精品蜜臀av免费| 久久精品久久久久久久性| 伊人久久精品亚洲午夜| av国产免费在线观看| 性插视频无遮挡在线免费观看| 精品人妻一区二区三区麻豆| av福利片在线观看| av又黄又爽大尺度在线免费看 | 99久久人妻综合| 麻豆成人av视频| 国产乱人视频| 中国国产av一级| 日本欧美国产在线视频| 国产精品不卡视频一区二区| 少妇猛男粗大的猛烈进出视频 | av黄色大香蕉| 亚洲欧美精品自产自拍| 在线免费观看的www视频| 99热全是精品| 成人欧美大片| 国产真实伦视频高清在线观看| 女人十人毛片免费观看3o分钟| 99久久成人亚洲精品观看| 身体一侧抽搐| 97在线视频观看| 嘟嘟电影网在线观看| 亚洲成人av在线免费| 国产男人的电影天堂91| 狂野欧美白嫩少妇大欣赏| 亚洲成色77777| 国产精品日韩av在线免费观看| 国产精品国产三级国产专区5o | 中文字幕熟女人妻在线| 日本一本二区三区精品| 日韩精品有码人妻一区| 简卡轻食公司| 国产亚洲精品av在线| 深夜a级毛片| 一边摸一边抽搐一进一小说| 久久久a久久爽久久v久久| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 乱人视频在线观看| 天堂影院成人在线观看| 三级国产精品欧美在线观看| 国产一区二区亚洲精品在线观看| 免费在线观看成人毛片| 国产精品乱码一区二三区的特点| 亚洲av成人精品一二三区| 久久久久九九精品影院| 免费观看精品视频网站| 波多野结衣高清无吗| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影 | 午夜a级毛片| 在现免费观看毛片| 人人妻人人看人人澡| 亚洲精品日韩av片在线观看| 国产精品熟女久久久久浪| 麻豆一二三区av精品| 欧美bdsm另类| 欧美区成人在线视频| 在线天堂最新版资源| 日本色播在线视频| 性色avwww在线观看| 精品久久久久久久人妻蜜臀av| 2022亚洲国产成人精品| 好男人视频免费观看在线| 秋霞伦理黄片| eeuss影院久久| 1024手机看黄色片| 亚洲性久久影院| 亚洲国产欧洲综合997久久,| 亚洲精品乱码久久久v下载方式| 日韩欧美三级三区| 黑人高潮一二区| 熟女电影av网| 国产老妇女一区| 蜜臀久久99精品久久宅男| 国产精品三级大全| 成人二区视频| 久久精品91蜜桃| 免费观看人在逋| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 国模一区二区三区四区视频| 国产又色又爽无遮挡免| 九九久久精品国产亚洲av麻豆| 日韩 亚洲 欧美在线| av福利片在线观看| 国产av不卡久久| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 卡戴珊不雅视频在线播放| 亚洲人成网站在线观看播放| 日韩大片免费观看网站 | 在现免费观看毛片| 久久这里有精品视频免费| 久久99精品国语久久久| 69av精品久久久久久| 色尼玛亚洲综合影院| 3wmmmm亚洲av在线观看| 久久午夜福利片| 成人综合一区亚洲| 亚洲精品,欧美精品| 两个人视频免费观看高清| 看黄色毛片网站| 日韩欧美精品v在线| 99久久无色码亚洲精品果冻| 秋霞伦理黄片| 97超视频在线观看视频| 久久精品久久久久久久性| 国产午夜福利久久久久久| 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 热99在线观看视频| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 欧美性猛交╳xxx乱大交人| 国产一区有黄有色的免费视频 | 99久久精品一区二区三区| 日本午夜av视频| 久久草成人影院| 伦精品一区二区三区| 少妇的逼好多水| 免费看av在线观看网站| 国产一级毛片七仙女欲春2| 一个人免费在线观看电影| 国产成人精品一,二区| 婷婷色综合大香蕉| 精品人妻熟女av久视频| .国产精品久久| 成人漫画全彩无遮挡| 国产一区有黄有色的免费视频 | 精品久久久久久久久久久久久| 午夜日本视频在线| 春色校园在线视频观看| 日本熟妇午夜| 床上黄色一级片| 免费黄网站久久成人精品| 国产精品国产三级专区第一集| 禁无遮挡网站| 99久久九九国产精品国产免费| 舔av片在线| 中文字幕久久专区| 久久精品夜夜夜夜夜久久蜜豆| 午夜爱爱视频在线播放| 在线观看66精品国产| 深爱激情五月婷婷| 日韩一区二区视频免费看| 草草在线视频免费看| 三级国产精品片| 国产爱豆传媒在线观看| 美女内射精品一级片tv| 亚洲无线观看免费| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 精品久久久久久久久av| 久久精品国产亚洲av天美| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 久久精品91蜜桃| 国模一区二区三区四区视频| 九草在线视频观看| 91精品伊人久久大香线蕉| 欧美+日韩+精品| 综合色av麻豆| 久久这里有精品视频免费| 国产精品人妻久久久影院| 国产高清三级在线| 精品午夜福利在线看| 久久久久久久亚洲中文字幕| 九色成人免费人妻av| 看片在线看免费视频| 欧美性猛交黑人性爽| 国产精品99久久久久久久久| 国产黄色小视频在线观看| 欧美日本视频| 亚洲国产欧美人成| 国产精品麻豆人妻色哟哟久久 | 国产爱豆传媒在线观看| 午夜精品在线福利| 美女脱内裤让男人舔精品视频| 一二三四中文在线观看免费高清| 中文资源天堂在线| a级毛片免费高清观看在线播放| 欧美一级a爱片免费观看看| 国产成人免费观看mmmm| av线在线观看网站| 欧美bdsm另类| 特大巨黑吊av在线直播| 97人妻精品一区二区三区麻豆| 99热6这里只有精品| 我的老师免费观看完整版| 在现免费观看毛片| 三级国产精品欧美在线观看| 能在线免费看毛片的网站| av福利片在线观看| 春色校园在线视频观看| 久久久久久九九精品二区国产| 热99re8久久精品国产| 波多野结衣高清无吗| 狂野欧美白嫩少妇大欣赏| 免费观看在线日韩| 国产麻豆成人av免费视频| 中文欧美无线码| 免费黄网站久久成人精品| 亚洲国产精品专区欧美| 老女人水多毛片| 久久这里只有精品中国| 别揉我奶头 嗯啊视频| 国产精品av视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 免费观看a级毛片全部| 国产一级毛片在线| 美女大奶头视频| 亚洲av不卡在线观看| av播播在线观看一区| 晚上一个人看的免费电影| 日韩中字成人| 亚洲久久久久久中文字幕| 婷婷色综合大香蕉| 欧美另类亚洲清纯唯美| 国产伦精品一区二区三区视频9| 色播亚洲综合网| 亚洲在久久综合| 亚洲aⅴ乱码一区二区在线播放| 国产精品国产高清国产av| 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 美女脱内裤让男人舔精品视频| 久久国内精品自在自线图片|