• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance enhancement of sandwich panels with honeycomb–corrugation hybrid core

    2016-12-09 08:00:19BinHanWeninWangZhijiaZhangQianchengZhangFengJinTianjianLu

    Bin Han,Wenin Wang,Zhijia Zhang,c,Qiancheng Zhang,c,Feng Jin,c, Tianjian Lu,c,?

    aSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    bMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    cState Key Laboratory for Mechanical Structure Strength and Vibration,Xi’an Jiaotong University,Xi’an 710049,China

    Letter

    Performance enhancement of sandwich panels with honeycomb–corrugation hybrid core

    Bin Hana,b,c,Wenbin Wangb,Zhijia Zhangb,c,Qiancheng Zhangb,c,Feng Jinb,c, Tianjian Lub,c,?

    aSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    bMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    cState Key Laboratory for Mechanical Structure Strength and Vibration,Xi’an Jiaotong University,Xi’an 710049,China

    H I G H L I G H T S

    ?Performance of a honeycomb–corrugated hybrid sandwich subjected to out-of-plane compression,transverse shear,and three-point bending is evaluated.

    ?The strength and energy absorption of the sandwich are dramatically enhanced.

    ?The enhancement is attributed to the positive interaction effects of corrugated plates and honeycomb cell walls on mutual deformation constraints.

    A R T I C L EI N F O

    Article history:

    Accepted 2 January 2016

    Available online 16 January 2016

    Honeycomb–corrugation

    Compression

    Shear

    Bending

    Performance enhancement

    The concept of combining metallic honeycomb with folded thin metallic sheets(corrugation)to construct a novel core type for lightweight sandwich structures is proposed.The honeycomb–corrugation hybrid core is manufactured by filling the interstices of aluminum corrugations with precision-cut trapezoidal aluminum honeycomb blocks,bonded together using epoxy glue.The performance of such hybrid-cored sandwich panels subjected to out-of-plane compression,transverse shear,and three-point bending is investigated,both experimentally and numerically.The strength and energy absorption of the sandwich aredramaticallyenhanced,comparedtothoseofasandwichwitheitheremptycorrugationorhoneycomb core.The enhancement is induced by the beneficial interaction effects of honeycomb blocks and folded panels on improved buckling resistance as well as altered crushing modes at large plastic deformation. The present approach provides an effective method to further improve the mechanical properties of conventional honeycomb-cored sandwich constructions with low relative densities.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Honeycombs are available in a wide range of base materials, from beeswax and propolis(a kind of plant resin),paper,metal, ceramic to composite[1].Especially,due to their high stiffness, strength,and energy absorption as well as great saving in weight, hexagonal honeycombs fabricated from aluminum(Al)alloys by an in-plane expansion process with two of the six cell walls having double thickness are widely employed in aerospace and other industries.Themechanicalresponseofhexagonalhoneycombsunderout-of-planecompressionandshearhasbeenextensivelystudied,both experimentally and theoretically[2–6].In out-of-plane compression,these honeycombs exhibit a stress peak followed by aseriesofstressoscillationsassociatedwithprogressiveformation of plastic folds in the cell walls.Most experimental studies about honeycombs are restricted to low relative density(ˉρ≤0.03), as debonding of honeycombs from the faceplates has been observed at higher relative densities.This deficiency limits the loadbearingandenergyabsorbingcapabilityoftraditionalhoneycombs for heavy-duty applications.

    Like honeycombs,corrugations(folded plates)also have fairly high specific stiffness and specific strength.Unlike honeycombs, however,the energy absorption capacity of corrugations is typically low.Under quasi-static compression,for instance,a metallic corrugated sandwich core deforms by stretching of its struts (core webs)and collapses by Euler or plastic buckling,with a sharp softening after the peak load.Metallic corrugations are thus lessattractive for energy absorption applications because large forces are transferred while limited amount of energy is absorbed[7].

    Fig.1.(a)Schematic of honeycomb–corrugation hybrid sandwich;(b)half unit cell;(c)representative volume element(RVE)model for out-of-plane compression; and(d)RVE model for transverse shear.SB:symmetric boundary.PB:periodic boundary.FB:fixed boundary.

    Recently,to increase further the specific strength and specific absorbed energy(SAE)of either honeycombs or corrugations, the concept of foam filling to construct hybrid-cellular materials has been exploited.The performance benefits of foam filling to sandwiches having honeycomb or corrugated cores derive mainly from the stabilizing effects of foam insertion on the buckling of constituent members(e.g.,cell walls).For sandwich plates with foam-filled Al honeycomb cores subjected to uniform out-of-plane compression[8–10],foam filling increases both the mean crushing strengthandenergyabsorptioncapabilityduetoincreasednumber and regularity of folds of honeycomb cell walls.Similarly,in the case of corrugated cores[11–14],foam filling stabilizes buckling and post-buckling of core webs,leading to synergistic benefits in strength and energy absorption.

    Inspired by the beneficial effect of foam filling,this study proposes to combine honeycombs and corrugations to construct a hybrid sandwich core as shown in Fig.1(a).The performance of the honeycomb–corrugation hybrid sandwich is investigated under out-of-plane compression,transverse shear and three-point bending,both experimentally and numerically.

    As shown in Fig.1(a),the honeycomb–corrugation hybrid core is composed of folded plates(corrugations)and trapezoidal honeycombblocks,whichismanufacturedbyfillingtheinterstices ofAlcorrugationswithprecision-cutAlhoneycombblocks,bonded together using epoxy glue.Folded plates made of Al-3003-H24 and honeycomb blocks made of Al-3003-H18 are employed.The geometric parameters of the hybrid-cored sandwich specimens are:honeycomb cell length lH=2 mm,single wall thickness tH=0.05 mm,corrugated plate length lC=17 mm,corrugation angleα=63.5°,width of corrugation platform d=4 mm,core height h=15.3 mm,corrugated plate thickness tC=0.2 mm,and faceplate thickness tf=1.1 mm.Thus,the relative densityˉρof the hybrid core is

    Fig.2.(a)Experimentally measured compressive stress versus strain curves of honeycomb,empty corrugation,and honeycomb–corrugation sandwiches,and typical deformation images of empty corrugation and hybrid cores captured atεn=0.25;(b)measured compressive response of hybrid core compared with numerical calculation; (c)numerically simulated deformation process in hybrid core atεn=0.25,with two different deformation mechanisms amplified.

    Firstly,quasi-static out-of-plane compression tests are performed for sandwich specimens having empty corrugated core, honeycomb core and hybrid core.The measured compressive stress versus strain curves are presented in Fig.2(a).The flow stress of the hybrid-cored sandwich is seen to be significantly higher than that obtained from summing the constituent contributions,i.e.,curve‘Sum’in Fig.2(a).The interaction effect between the curves of‘Honeycomb–corrugation hybrid’and‘Sum’, represented by the shaded area in Fig.2(a),is strong.This implies that the compressive stiffness,strength and energy absorption of both constituents(i.e.,honeycomb and corrugation)are significantly enhanced.It is further seen from Fig.2(a)that,different from the honeycomb core,the stress versus strain curve of the honeycomb–corrugation core beyond the initial peak strength exhibits little fluctuations.It then enters gradually a stress strengthening region atεn≈ 0.25,much smaller than the densification strain of honeycomb.From representative deformation images of both empty corrugation and hybrid cores atεn=0.25 acquired using a video camera that are also included in Fig.2(a), it is seen that the corrugated-core sandwich collapses by Euler buckling with asymmetric deformations,causing the formation of plastic hinges.In contrast,the hybrid-cored sandwich maintains approximately symmetric deformation during crushing,and the deformation mode is significantly different from that of either the emptycorrugation[7]orhoneycomb[15].However,asitisdifficult toclearlyidentifydetaileddeformationofhoneycombblocksinthe hybrid,finite element(FE)analysis is needed to complement the digital images of Fig.2(a)and to explore further the deformation mechanisms underlying the superior performance of the hybridcored sandwich.This is performed next.

    FE simulations are carried out using the explicit solver of commercial FE code ABAQUS(version 6.10).Under out-of-plane compression,due to deformation symmetry of both the honeycomb blocks and corrugated plates(see Fig.2(a)),only half of a unit cell with symmetric boundaries(SB)is considered,as shown in Fig.1(b).Further,in view of honeycomb periodicity along the 3-direction,the mechanical characteristics of interest may be simulated using a representative volume element(RVE)model (surrounded by dashed lines in Fig.1(b);also see Fig.1(c))with additional periodic boundaries(PB).This approach not only enables better visualization of deformation but also saves computational cost.The honeycomb blocks and corrugated plates are discretized using linear quadrilateral shell elements with reduced integration(S4R),with the top and bottom faceplates both taken as rigid.The bottom faceplate is fixed,while the top one is loaded with displacementδalong the 2-direction,with a sufficiently low loading rate to ensure quasi-static compression.Perfect bonding is assumed at all the interfaces,including honeycomb/faceplate,corrugation/faceplate and honeycomb/corrugation interfaces,with generalcontactemployedduringthecrushingprocess.Thepresent FE simulations are limited to the relatively early stage of deformation(compressive strain not exceeding 0.3),since at higher strains, debonding would occur at honeycomb/corrugation interfaces as observed experimentally.

    Figure 2(b)compares the FE simulated compressive response of the hybrid with that measured experimentally,while Fig.2(c) presents typical deformation simulated for the case ofεn= 0.25.The features calculated by the FE analysis appear to be in qualitative agreement with those observed from experiments, e.g.,Fig.2(a).From the simulation it is found that,at the early compressive stage,the empty corrugation core and the honeycomb core both collapse by elastic buckling.In contrast, the initial collapse of the hybrid core is dominated by material yieldingofcorrugatedplatesandbucklingofhoneycombcellwalls, but with much higher critical compressive stress than that of singlehoneycomb,resultinginsignificantlyenhancedcompressive strength(Fig.2(b)).The enhancement is attributed to the mutual deformation constraints of corrugation and honeycomb,which stabilize the corrugated plates and honeycomb cell walls against elastic buckling,and thus greatly increase the critical stresses of both constituent components.At large compressive strains, complicated and localized plastic deformation dominates the crushing of the hybrid core,as evidenced in Fig.2(c).Two distinctive deformation mechanisms are notable:(1)conventional progressive folding of honeycomb cell walls[2,15]in Region I;(2)a novel deformation mechanism of coupling interaction between twisted folding of honeycomb cell walls and rotation of multi-plastic hinges on corrugated plate in Region II,where the deformation is quite different from that in either empty corrugation or single honeycomb.Asεnexceeds 0.25,the interaction effects of corrugation and honeycomb in Region II play an increasingly important role,causing sustained strengthening of the hybrid structure as shown in Fig.2(a–b),which in turn leads to greatly enhanced energy absorption.

    Fig.3.Comparison of(a)compressive strength and(b)energy absorption.Exp.denotes the experimentally measured data in present study.

    Additionally,two more hybrid sandwich specimens having larger values of tc(i.e.tc=0.4 and 0.7)are also tested under outof-planecompression.Figure3comparesthecompressivestrength and energy absorption of the honeycomb–corrugation hybrid sandwich cores(HBC)with other competing cores,including 304 stainless steel square honeycomb(SH)[16],aluminum foam-filled 304 stainless steelcorrugations(FC)[12],304stainlesssteel empty corrugations(EC)[12],Al hexagonal honeycombs(HH)and Al EC.It is clear from Fig.3 that the proposed hybrid structure has structural preponderance in both compressive strength and energy absorption,especially in the low density regime(less than 0.5 g/cm3).

    For transverse shear of the hybrid core,only FE simulations are performed.Different from the case of out-of-plane compression, a RVE model with prescribed boundary conditions is employed, as illustrated in Fig.1(d).The bottom faceplate is fixed.While the rotation of the top faceplate is constrained,it can translate in direction 2,implying that the normal traction T2=0.To model pure transverse shear loading,a translational displacement δalongdirection1isprescribedonthetopfaceplate.Thegeometric parameters,meshingandbondingconditionsareidenticalasthose employed for out-of-plane compression.

    Figure 3 presents the simulated shear stress versus strain curves and the corresponding shear deformation modes for emptycorrugation,honeycombandhybridsandwichcores.Similar to out-of-plane compression,the shear stress of the hybrid structure is significantly larger than that obtained from summing constituent contributions,i.e.,curve‘Sum’in Fig.4(a).Also,the positiveinteractioneffectbetweenthecurvesof‘Hybrid’and‘Sum’is much stronger than that under out-of-plane compression.From Figs.4(b–d)it can be seen that,the empty corrugation collapses by Euler elastic buckling of its member in compression,and the crushing is dominated by the rotation of only three plastic hinges. The honeycomb under shear collapses first by local buckling and, subsequently,post-buckling induces progressive shear folding during crushing[3].As for the hybrid core,more plastic hinges form in the initially compressed corrugated member whereas shear buckling in honeycomb blocks dominates a much wider region,rather than a quite localized and narrow region.Again, themutualdeformationconstraintsofhoneycombandcorrugation improve the buckling resistance of constituent members.This is the main reason why the shear strength of the hybrid core is significantly enhanced.At large shear strains,compared to both empty corrugation and honeycomb,the hybrid core experiences more serious plastic deformation,including rotation of more plastic hinges in corrugated members and more shear bands in honeycomb blocks,due again to the interaction of its constituent components.Hence,the hybrid core dissipates much more plastic deformation energy in shear.

    In addition to FE simulation,three-point bending experiments are carried out on honeycomb,empty corrugation,and honeycomb–corrugationsandwichbeamswithspanlengthL=300mm, beam width b=60 mm,and maximum loading deflectionδ= 20 mm.For sandwich beams with empty corrugation and hybrid cores,the beam axis is perpendicular to the prismatic direction of corrugated plate.Figure 5 presents the experimentally measured load versus deflection curves and deformation processes. It can be seen that the peak force per mass(load capacity under bending)of the hybrid-cored sandwich is larger than that of empty corrugation or honeycomb cored sandwich,which is dominated by initial debonding at honeycomb/corrugation interfaces.Upon reaching the peak,the load decreases dramatically due to rapid expansion of debonding to honeycomb/faceplate and corrugation/faceplate interfaces.Differently,the corrugate-cored sandwich collapses by core shear failure with buckling of core webs[17],while the honeycomb-cored sandwich collapses by indentationfailurewithbuckingofhoneycombcellwallsunderneath the loading punch[18,19],both without obvious debonding.However,for the hybrid-cored sandwich,the measured loading capacity under bending is rather limited and below expectation,due mainly to premature debonding and little deformation in the hybrid core.This implies that,in the present experiments,the potential of the hybrid core is not effectively revealed.Consequently,to explore further the structural superiority of its bending resistance, FE simulations with perfect bonding assumed for all the interfaces are carried out.The results are presented in Fig.6.

    It can be seen from Fig.6(a–c)that,in terms of both load versus deflection curve and deformation mode,good agreement between FE calculations and experimental results is achieved for corrugated and honeycomb sandwiches,but not for the hybrid sandwich.As shown in Fig.6(c),with debonding excluded due to perfect interfacial bonding assumed,the hybrid sandwich collapses by indentation failure,resulting in a much higher peak load and greatly improved post-peak softening than that experimentally measured.For the three sandwich beams considered,Fig.6(d) compares the energy absorption per mass of constituent components up toδ=20 mm.It can be concluded that,the corrugated plates and honeycomb blocks in the hybrid core,together with its bottom and top faceplates,all dissipate greater energy than that ofthe empty corrugated or honeycomb sandwich.This implies that the hybrid sandwich possesses greater bending resistance so long as its interfaces are well bonded.In other words,there is room for improvement of the present hybrid-cored sandwich specimens for three-point bending testing.

    Fig.4.Comparisonofthenumericalresultsofhoneycomb,emptycorrugation,andhoneycomb–corrugationhybridsandwichessubjectedtotransverseshear:(a)shearstress versus strain responses of honeycomb,empty corrugation,and honeycomb–corrugation sandwiches,(b)–(d)refer to the shear deformations of the hybrid,honeycomb,and empty corrugation at the shear strain of 0.25,respectively.

    Fig.5.FE simulation results for honeycomb,empty corrugation,and honeycomb–corrugation sandwich beams subjected to three-point bending:(a)load versus deflection curves;(b)digital images of deformation history.

    Fig.6.(a)–(c)Measured and simulated bending responses of empty corrugation,honeycomb,and honeycomb–corrugation sandwich beams;(d)comparison of energy absorption of constituent components among the three sandwich beams subjected to three-point bending.

    The performance of honeycomb–corrugated hybrid sandwich subjected to out-of-plane compression,transverse shear,and three-point bending is experimentally and numerically evaluated.Under out-of-plane compression and transverse shear,the strength and energy absorption of the hybrid core are both greatly improved,attributed to the positive interaction effects of corrugatedplatesandhoneycombcellwallsonmutualdeformationconstraints against buckling as well as altered crushing modes at large plastic deformation.As for three-point bending,much improved peak load and post-peak softening can be achieved if good interfacial bonding in the hybrid-cored sandwich is ensured.Honeycomb–corrugation hybrid structures are promising candidates for ultralight load-bearing and energy absorbing applications.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11472208)and the National 111 Project of China(B06024).

    References

    [1]Q.C.Zhang,X.H.Yang,P.Li,et al.,Bioinspired engineering of honeycomb structure—using nature to inspire human innovation,Prog.Mater.Sci.74 (2015)332–400.

    [2]D.Mohr,M.Doyoyo,Nucleation and propagation of plastic collapse bands in aluminum honeycomb,J.Appl.Phys.94(2003)2262–2270.

    [3]D.Mohr,M.Doyoyo,Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb,Int.J.Solids Struct.41(2004) 3353–3377.

    [4]D.Mohr,M.Doyoyo,Experimental investigation on the plasticity of hexagonal aluminum honeycomb under multiaxial loading,J.Appl.Mech.71(2004) 375–385.

    [5]D.Mohr,Z.Y.Xue,A.Vaziri,Quasi-static punch indentation of a honeycomb sandwich plate:experiments and modelling,J.Mech.Mater.Struct.1(2006) 581–604.

    [6]M.Doyoyo,D.Mohr,Microstructural response of aluminum honeycomb to combined out-of-plane loading,Mech.Mater.35(2003)865–876.

    [7]F.Cote,V.S.Deshpande,N.A.Fleck,et al.,The compressive and shear responses of corrugated and diamond lattice materials,Int.J.Solids Struct.43(2006) 6220–6242.

    [8]A.A.Nia,M.Z.Sadeghi,The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading—experimental study,Mater.Des.31(2010)1216–1230.

    [9]M.Z.Mahmoudabadi,M.Sadighi,A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb—theoretical and experimental, Mater.Sci.Eng.A 530(2011)333–343.

    [10]T.Sadowski,J.Bec,Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling—static and dynamic response, Comput.Mater.Sci.50(2011)1269–1275.

    [11]L.L.Yan,B.Yu,B.Han,et al.,Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores,Compos.Sci. Technol.86(2013)142–148.

    [12]B.Han,L.L.Yan,B.Yu,etal.,Collapsemechanismsofmetallic sandwichstructureswithaluminumfoam-filledcorrugatedcores, J.Mech.Mater.Struct.9(2014)397–425.

    [13]B.Han,B.Yu,Y.Xu,et al.,Foam filling radically enhances transverse shear response of corrugated sandwich plates,Mater.Des.77(2015)132–141.

    [14]B.Han,K.K.Qin,B.Yu,et al.,Design optimization of foam-reinforced corrugated sandwich beams,Compos.Struct.130(2015)51–62.

    [15]A.Wilbert,W.Y.Jang,S.Kyriakides,et al.,Buckling and progressive crushing of laterally loaded honeycomb,Int.J.Solids Struct.48(2011)803–816.

    [16]F.C?té,V.S.Deshpande,N.A.Fleck,et al.,The out-of-plane compressive behavior of metallic honeycombs,Mater.Sci.Eng.A 380(2004)272–280.

    [17]L.Valdevit,Z.Wei,C.Mercer,et al.,Structural performance of near-optimal sandwich panels with corrugated cores,Int.J.Solids Struct.43(2006) 4888–4905.

    [18]J.K.Paik,A.K.Thayamballi,G.S.Kim,The strength characteristics of aluminum honeycomb sandwich panels,Thin Wall Struct.35(1999)205–231.

    [19]C.C.Foo,G.B.Chai,L.K.Seah,Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels,Proc.Inst.Mech.Eng.L-J.Mat.220 (2006)53–66.

    29 September 2015

    in revised form 30 December 2015

    http://dx.doi.org/10.1016/j.taml.2016.01.001

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?at:MOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China.

    E-mail address:tjlu@mail.xjtu.edu.cn(T.Lu).

    *This article belongs to the Solid Mechanics

    亚洲va日本ⅴa欧美va伊人久久| 国产视频内射| 国产精品爽爽va在线观看网站| ponron亚洲| 午夜两性在线视频| 夜夜躁狠狠躁天天躁| 别揉我奶头~嗯~啊~动态视频| 91久久精品国产一区二区成人| 有码 亚洲区| 成人三级黄色视频| 小说图片视频综合网站| 免费人成在线观看视频色| 成年免费大片在线观看| 免费观看的影片在线观看| 色综合站精品国产| 国产精品久久久久久精品电影| av国产免费在线观看| 熟女电影av网| 两性午夜刺激爽爽歪歪视频在线观看| 啦啦啦韩国在线观看视频| 亚洲人成网站在线播| 亚洲欧美日韩高清专用| 51午夜福利影视在线观看| 我的女老师完整版在线观看| 久久欧美精品欧美久久欧美| 欧美绝顶高潮抽搐喷水| 亚洲avbb在线观看| 精品人妻熟女av久视频| 久久久久久久精品吃奶| 制服丝袜大香蕉在线| 黄片小视频在线播放| 村上凉子中文字幕在线| 人妻夜夜爽99麻豆av| 精品国产亚洲在线| 在线观看舔阴道视频| www.熟女人妻精品国产| 国产午夜福利久久久久久| 国产成人a区在线观看| 国产69精品久久久久777片| 日韩高清综合在线| 国产精品日韩av在线免费观看| 精品国产三级普通话版| 日韩中文字幕欧美一区二区| 国产精品一区二区免费欧美| 免费在线观看成人毛片| 97热精品久久久久久| 中文字幕熟女人妻在线| 黄片小视频在线播放| 少妇人妻一区二区三区视频| 国产免费一级a男人的天堂| 中文亚洲av片在线观看爽| 日韩欧美国产在线观看| 国产69精品久久久久777片| 18禁裸乳无遮挡免费网站照片| 国产三级黄色录像| 深夜a级毛片| 免费av不卡在线播放| 午夜日韩欧美国产| 九色国产91popny在线| 国产精品伦人一区二区| 一本久久中文字幕| 亚洲av一区综合| 国产精品,欧美在线| 网址你懂的国产日韩在线| 精品人妻一区二区三区麻豆 | 搡女人真爽免费视频火全软件 | 天堂动漫精品| 久久精品国产自在天天线| 日韩人妻高清精品专区| 国产视频一区二区在线看| 午夜免费男女啪啪视频观看 | 成人av一区二区三区在线看| 老熟妇乱子伦视频在线观看| 小说图片视频综合网站| 亚洲无线观看免费| 啦啦啦观看免费观看视频高清| 成熟少妇高潮喷水视频| 欧美xxxx性猛交bbbb| 天天躁日日操中文字幕| 亚洲av电影在线进入| 亚州av有码| 成人特级av手机在线观看| 精品一区二区免费观看| 久久精品人妻少妇| 日本成人三级电影网站| 天堂av国产一区二区熟女人妻| 日本三级黄在线观看| 久久精品国产99精品国产亚洲性色| 久久午夜亚洲精品久久| 日日干狠狠操夜夜爽| 九九热线精品视视频播放| 色综合亚洲欧美另类图片| 久久久久久久久久黄片| 久久精品久久久久久噜噜老黄 | 美女 人体艺术 gogo| 三级毛片av免费| 午夜福利视频1000在线观看| 青草久久国产| 亚洲欧美清纯卡通| 最后的刺客免费高清国语| 日韩高清综合在线| 老鸭窝网址在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| 中文字幕熟女人妻在线| 国产精品一区二区三区四区久久| 搡女人真爽免费视频火全软件 | 九色成人免费人妻av| 香蕉av资源在线| 欧美黄色片欧美黄色片| 免费av毛片视频| 91av网一区二区| 99国产极品粉嫩在线观看| 国产午夜福利久久久久久| 国产老妇女一区| 日韩精品青青久久久久久| 国产精品久久久久久久电影| 欧美激情久久久久久爽电影| 午夜老司机福利剧场| 国产精品精品国产色婷婷| 亚洲av日韩精品久久久久久密| 国产一区二区在线av高清观看| 亚洲av.av天堂| 久久久成人免费电影| 精品久久久久久久久亚洲 | 搞女人的毛片| 亚洲中文日韩欧美视频| 啦啦啦观看免费观看视频高清| 亚洲av成人精品一区久久| 窝窝影院91人妻| 亚洲在线自拍视频| 国产精品野战在线观看| 免费一级毛片在线播放高清视频| 国产 一区 欧美 日韩| 国产成人啪精品午夜网站| 黄色丝袜av网址大全| 日韩欧美在线二视频| 黄色丝袜av网址大全| 国产在视频线在精品| 国产 一区 欧美 日韩| 尤物成人国产欧美一区二区三区| 欧美高清性xxxxhd video| 日韩欧美在线二视频| 男女那种视频在线观看| 国产精品电影一区二区三区| 国产精品伦人一区二区| 国产69精品久久久久777片| 亚洲人成伊人成综合网2020| 三级毛片av免费| 欧美黄色淫秽网站| 国产激情偷乱视频一区二区| 国产av麻豆久久久久久久| 欧美三级亚洲精品| 国产高清激情床上av| 国产精品自产拍在线观看55亚洲| 在现免费观看毛片| 日本三级黄在线观看| 亚洲在线观看片| 91狼人影院| 日韩免费av在线播放| 97碰自拍视频| 一a级毛片在线观看| 免费看美女性在线毛片视频| 在线免费观看不下载黄p国产 | 国产69精品久久久久777片| 淫妇啪啪啪对白视频| 国产熟女xx| 日本成人三级电影网站| 国产午夜福利久久久久久| 亚洲自拍偷在线| 久久精品国产亚洲av香蕉五月| 一进一出好大好爽视频| 九色成人免费人妻av| 精品免费久久久久久久清纯| 桃红色精品国产亚洲av| 精品久久久久久久末码| 简卡轻食公司| 老司机福利观看| 极品教师在线视频| 免费在线观看日本一区| 欧美精品啪啪一区二区三区| 日韩免费av在线播放| 最新中文字幕久久久久| 99热只有精品国产| 精品久久国产蜜桃| 偷拍熟女少妇极品色| 国模一区二区三区四区视频| 国产美女午夜福利| 内地一区二区视频在线| 国产成人a区在线观看| 欧美乱色亚洲激情| 国产亚洲精品久久久久久毛片| 我的老师免费观看完整版| 欧美日韩综合久久久久久 | 青草久久国产| 国产欧美日韩一区二区精品| 老司机福利观看| 观看免费一级毛片| 日日摸夜夜添夜夜添av毛片 | 99热精品在线国产| 少妇熟女aⅴ在线视频| 欧美三级亚洲精品| 无遮挡黄片免费观看| 18禁黄网站禁片免费观看直播| 国产精品av视频在线免费观看| 男女做爰动态图高潮gif福利片| 3wmmmm亚洲av在线观看| 午夜a级毛片| 免费电影在线观看免费观看| 亚洲av免费在线观看| 国产精品三级大全| 成人午夜高清在线视频| 亚洲成av人片免费观看| 国产日本99.免费观看| 人妻久久中文字幕网| 男女那种视频在线观看| 久久久久久久久久成人| 一个人看的www免费观看视频| 久久久久久九九精品二区国产| 国产欧美日韩一区二区精品| 青草久久国产| 简卡轻食公司| 黄色丝袜av网址大全| 99久久99久久久精品蜜桃| 免费无遮挡裸体视频| 午夜福利在线在线| 亚洲综合色惰| 露出奶头的视频| 高清毛片免费观看视频网站| 久久精品国产99精品国产亚洲性色| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人看人人澡| 麻豆成人av在线观看| 男女下面进入的视频免费午夜| 中文字幕熟女人妻在线| 一区二区三区免费毛片| 国产精品亚洲av一区麻豆| 特级一级黄色大片| 99国产极品粉嫩在线观看| 日韩欧美一区二区三区在线观看| 90打野战视频偷拍视频| 天天躁日日操中文字幕| 国产人妻一区二区三区在| 欧美日韩亚洲国产一区二区在线观看| 国产在线精品亚洲第一网站| 久久久久久久久久成人| 久久精品91蜜桃| 美女大奶头视频| www.999成人在线观看| 日韩欧美免费精品| 午夜福利视频1000在线观看| 首页视频小说图片口味搜索| 国产成人a区在线观看| 免费看光身美女| 成年女人看的毛片在线观看| 男女下面进入的视频免费午夜| 亚洲熟妇中文字幕五十中出| 一个人免费在线观看的高清视频| 嫩草影院入口| 亚洲一区高清亚洲精品| 欧美最黄视频在线播放免费| 国产黄片美女视频| 久久久久亚洲av毛片大全| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 亚洲成人久久爱视频| 国产大屁股一区二区在线视频| 日日摸夜夜添夜夜添av毛片 | 真实男女啪啪啪动态图| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人不卡在线观看播放网| 色哟哟·www| 三级毛片av免费| 欧美潮喷喷水| 久久香蕉精品热| www日本黄色视频网| 18禁在线播放成人免费| 亚洲人成电影免费在线| 精品久久久久久久久久免费视频| 国产精品98久久久久久宅男小说| 亚洲自拍偷在线| 国产一区二区三区在线臀色熟女| 国产淫片久久久久久久久 | 免费av观看视频| av在线蜜桃| 久久国产乱子免费精品| 日本精品一区二区三区蜜桃| 成人午夜高清在线视频| 久久久久性生活片| 直男gayav资源| 色5月婷婷丁香| 一区二区三区激情视频| 搡老岳熟女国产| 美女xxoo啪啪120秒动态图 | 老熟妇乱子伦视频在线观看| 亚洲乱码一区二区免费版| 成人特级av手机在线观看| 午夜精品久久久久久毛片777| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产日韩欧美精品在线观看| 一区二区三区激情视频| 国产午夜精品久久久久久一区二区三区 | 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av涩爱 | 欧美绝顶高潮抽搐喷水| 久久热精品热| 少妇的逼好多水| 日本免费a在线| 国产精品久久久久久人妻精品电影| 午夜免费激情av| 午夜精品在线福利| 特大巨黑吊av在线直播| 欧美潮喷喷水| 99视频精品全部免费 在线| 日本 av在线| 极品教师在线免费播放| 久久九九热精品免费| 欧洲精品卡2卡3卡4卡5卡区| 丁香六月欧美| 久久精品人妻少妇| 成人特级av手机在线观看| aaaaa片日本免费| 看片在线看免费视频| 波多野结衣高清无吗| 国产一区二区亚洲精品在线观看| 亚洲av免费高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 看黄色毛片网站| 成人国产一区最新在线观看| 一边摸一边抽搐一进一小说| 亚洲国产色片| 免费观看精品视频网站| 国产一区二区三区视频了| 亚洲自偷自拍三级| 给我免费播放毛片高清在线观看| 亚洲美女搞黄在线观看 | 一二三四社区在线视频社区8| 亚洲欧美清纯卡通| 高潮久久久久久久久久久不卡| 12—13女人毛片做爰片一| 亚洲av电影在线进入| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 国产精品女同一区二区软件 | 天天躁日日操中文字幕| 亚洲人与动物交配视频| 成人欧美大片| 久久久久亚洲av毛片大全| 在线观看美女被高潮喷水网站 | 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 91麻豆精品激情在线观看国产| 嫩草影院入口| 国产在视频线在精品| 三级男女做爰猛烈吃奶摸视频| 国产伦精品一区二区三区视频9| 狠狠狠狠99中文字幕| 亚洲精品456在线播放app | 99精品在免费线老司机午夜| 亚洲国产高清在线一区二区三| 亚洲av.av天堂| 嫩草影院入口| 又爽又黄a免费视频| 又紧又爽又黄一区二区| 丰满的人妻完整版| 在线观看午夜福利视频| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼| 免费观看人在逋| 99久国产av精品| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 成人午夜高清在线视频| 亚洲avbb在线观看| 不卡一级毛片| 99在线人妻在线中文字幕| 欧美成狂野欧美在线观看| 免费人成在线观看视频色| 99久久久亚洲精品蜜臀av| 床上黄色一级片| 午夜激情福利司机影院| 欧美高清成人免费视频www| 亚洲精品在线观看二区| 听说在线观看完整版免费高清| 两人在一起打扑克的视频| 久久久久免费精品人妻一区二区| 99国产极品粉嫩在线观看| 欧美性猛交╳xxx乱大交人| 首页视频小说图片口味搜索| 91狼人影院| 久久国产乱子免费精品| 欧美成人性av电影在线观看| 亚洲久久久久久中文字幕| 久久久久国产精品人妻aⅴ院| 最新中文字幕久久久久| 色精品久久人妻99蜜桃| 尤物成人国产欧美一区二区三区| 成人特级黄色片久久久久久久| 欧美黄色片欧美黄色片| 最近在线观看免费完整版| 亚洲午夜理论影院| 国产欧美日韩一区二区三| 高清毛片免费观看视频网站| 美女被艹到高潮喷水动态| 免费看a级黄色片| 嫩草影院入口| 啦啦啦韩国在线观看视频| 神马国产精品三级电影在线观看| 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 婷婷亚洲欧美| 国产精品免费一区二区三区在线| 无人区码免费观看不卡| 久久久久免费精品人妻一区二区| 99久久精品热视频| 午夜免费激情av| 日日夜夜操网爽| 深夜a级毛片| 久久久久国内视频| 国产精品电影一区二区三区| 日韩成人在线观看一区二区三区| 一个人观看的视频www高清免费观看| 精品日产1卡2卡| 欧美日韩综合久久久久久 | 欧美不卡视频在线免费观看| 色综合亚洲欧美另类图片| 久9热在线精品视频| netflix在线观看网站| 亚州av有码| 99久久精品国产亚洲精品| 少妇高潮的动态图| 搡女人真爽免费视频火全软件 | 午夜久久久久精精品| 悠悠久久av| 一级毛片久久久久久久久女| 精品久久久久久久久久久久久| 国内少妇人妻偷人精品xxx网站| 我要搜黄色片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲成人久久性| 岛国在线免费视频观看| 午夜精品一区二区三区免费看| 国产三级中文精品| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 久久久久亚洲av毛片大全| 男插女下体视频免费在线播放| 国产亚洲精品av在线| 91麻豆精品激情在线观看国产| 99久久精品国产亚洲精品| 熟女电影av网| 搡老妇女老女人老熟妇| 亚洲片人在线观看| 亚洲最大成人中文| 天堂动漫精品| 熟女人妻精品中文字幕| 国产av麻豆久久久久久久| 久久人人精品亚洲av| 久久天躁狠狠躁夜夜2o2o| 亚洲在线观看片| 精品人妻1区二区| 国产成人影院久久av| 内射极品少妇av片p| 欧美精品国产亚洲| 丰满人妻熟妇乱又伦精品不卡| 精品人妻视频免费看| 一进一出抽搐动态| .国产精品久久| 亚洲最大成人av| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 久久九九热精品免费| 欧美激情国产日韩精品一区| 久久久久久久久大av| 久99久视频精品免费| 欧美精品啪啪一区二区三区| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 中文在线观看免费www的网站| 村上凉子中文字幕在线| 国产亚洲精品久久久com| 国产免费男女视频| 国产一区二区在线av高清观看| 亚洲不卡免费看| 午夜免费成人在线视频| 给我免费播放毛片高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 天堂动漫精品| 欧洲精品卡2卡3卡4卡5卡区| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 国产探花在线观看一区二区| 亚洲国产精品999在线| 亚洲国产色片| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 岛国在线免费视频观看| 久久久精品大字幕| 亚洲国产精品sss在线观看| 亚洲最大成人手机在线| 久久精品国产亚洲av涩爱 | 男人舔奶头视频| 最近在线观看免费完整版| 日本成人三级电影网站| 九九热线精品视视频播放| 国产色爽女视频免费观看| 久久精品国产自在天天线| 国内精品久久久久久久电影| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 国内精品久久久久精免费| 久久99热这里只有精品18| 国产精品伦人一区二区| 亚洲精品亚洲一区二区| 亚洲欧美清纯卡通| av福利片在线观看| 日本a在线网址| 小蜜桃在线观看免费完整版高清| 久久精品久久久久久噜噜老黄 | 神马国产精品三级电影在线观看| 免费观看的影片在线观看| 日韩精品中文字幕看吧| 岛国在线免费视频观看| 小蜜桃在线观看免费完整版高清| 精品乱码久久久久久99久播| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 日韩av在线大香蕉| 成人永久免费在线观看视频| 丰满乱子伦码专区| 午夜精品一区二区三区免费看| 国产蜜桃级精品一区二区三区| 成年女人毛片免费观看观看9| 91字幕亚洲| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 女人十人毛片免费观看3o分钟| 99久久99久久久精品蜜桃| 长腿黑丝高跟| 国产精品永久免费网站| www日本黄色视频网| 99热这里只有是精品在线观看 | 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 18禁在线播放成人免费| 成人精品一区二区免费| 天堂√8在线中文| 日本一本二区三区精品| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 久久国产乱子免费精品| 麻豆av噜噜一区二区三区| av中文乱码字幕在线| 无人区码免费观看不卡| 国产精品综合久久久久久久免费| 给我免费播放毛片高清在线观看| 欧美区成人在线视频| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看| 岛国在线免费视频观看| 91狼人影院| 听说在线观看完整版免费高清| 看片在线看免费视频| АⅤ资源中文在线天堂| 成人美女网站在线观看视频| 国产91精品成人一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女视频黄频| 蜜桃久久精品国产亚洲av| 少妇丰满av| 校园春色视频在线观看| 久久精品国产自在天天线| 成年女人毛片免费观看观看9| 97人妻精品一区二区三区麻豆| 国产成人欧美在线观看| 色在线成人网| 国产69精品久久久久777片| 亚洲精品一区av在线观看| 国产日本99.免费观看| 此物有八面人人有两片| bbb黄色大片| 午夜福利在线在线| 国产亚洲欧美98| 亚洲国产精品999在线| 久久草成人影院| 3wmmmm亚洲av在线观看| 亚洲avbb在线观看| 精品国产三级普通话版| 亚洲精品乱码久久久v下载方式| 丰满的人妻完整版| 精品人妻一区二区三区麻豆 | 国内毛片毛片毛片毛片毛片| 久久久久免费精品人妻一区二区| 18禁在线播放成人免费| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院新地址| 久久久久国产精品人妻aⅴ院| 日韩欧美精品v在线| 国产精品伦人一区二区| eeuss影院久久| 亚洲不卡免费看| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 国产国拍精品亚洲av在线观看| 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 国产精品不卡视频一区二区 | 看免费av毛片| 色综合站精品国产|