• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanics of bioinspired imaging systems

    2016-12-09 08:00:09ZhengweiLiYuWangJianliangXiao

    Zhengwei Li,Yu Wang,Jianliang Xiao

    Department of Mechanical Engineering,University of Colorado Boulder,Boulder,CO 80309,USA

    Review

    Mechanics of bioinspired imaging systems

    Zhengwei Li,Yu Wang,Jianliang Xiao?

    Department of Mechanical Engineering,University of Colorado Boulder,Boulder,CO 80309,USA

    H I G H L I G H T S

    ?Two types of bioinspired imaging systems,i.e.tunable electronic eyeball cameras and artificial compound eye cameras,are introduced.

    ?Recent progresses in mechanics of these bioinspired imaging systems are reviewed.

    ?The impact of mechanics on related systems and future development of curvilinear optoelectronics are discussed.

    A R T I C L EI N F O

    Article history:

    Accepted 26 November 2015

    Available online 23 December 2015

    Mechanics

    Bioinspired imaging system

    Eyeball camera

    Compound eye camera

    Stretchable electronics

    Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics.Recent advancements in materials science,mechanics,and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs.In this review,we discuss some recent progresses in mechanics of bioinspired imaging systems,including tunable hemispherical eyeball camera and artificial compound eye camera.The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems,as well as other related optoelectronic systems that combine rigid elements with soft substrates.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://

    creativecommons.org/licenses/by-nc-nd/4.0/).

    Contents

    1.Introduction........................................................................................................................................................................................................................11

    2.Mechanics of tunable hemispherical eyeball camera......................................................................................................................................................12

    2.1.Mechanics of tunable lens.....................................................................................................................................................................................12

    2.2.Mechanics of tunable detector..............................................................................................................................................................................13

    3.Mechanics of artificial compound eye camera.................................................................................................................................................................15

    3.1.Mechanics of geometrical transformation of the compound eye camera.........................................................................................................16

    3.2.Mechanics and optics of stretchable elastomeric microlenses...........................................................................................................................18

    4.Conclusion and discussion.................................................................................................................................................................................................19

    Acknowledgments.............................................................................................................................................................................................................20

    References...........................................................................................................................................................................................................................20

    1.Introduction

    Evolution has created remarkable imaging systems with many attractive attributes[1–4].For example,human eyes use simple optics to collect light rays from the environment and focus them onto a hemispherical retina to form sharp images[5,6].This type of imaging system has the advantage of optimal photonic usage in order to guarantee maximum light sensitivity and high spatial resolution[1,2].Another type of imaging system is compound eyes that are commonly found in arthropods.A compound eye is usually composed of hundreds or thousands of individual units, i.e.ommatidia,on a curved surface.Each ommatidium has its own optical lens and light detector for imaging purpose[5].Such structures of compound eyes,although cause reduced resolutions, can provide very wide field of view angle,low aberration,high sensitivity to motion and infinite depth of field[7–9].

    Due to their remarkable characteristics,bioinspired imaging devices have great potential in medical,industrial and military applications[10,11].However,almost all biological eyes adopt curvilinear imagers[11],which does not comply with established optoelectronic systems that are hard,rigid and planar,owning tothe inherent 2D nature of established materials processing technologies and intrinsic brittle nature of inorganic semiconductor materials[12–14].This mismatch in mechanics and forms greatly hinders the development of bioinspired digital cameras,with photodetector arrays wrapped onto curvilinear surfaces in order to achieve imaging performances comparable to biological counterparts.

    Thanks to the progress of stretchable electronics,researchers havesuccessfullyrealizedcurvilinearoptoelectronics[15–24].Mechanical stretchability and flexibility have been introduced into otherwise rigid and brittle optoelectronic systems by utilizing advanced mechanics principles and structural designs,so that photodetector arrays can be wrapped onto curvilinear surfaces without noticeably affecting their operating performance[25–31]. For example,Ko et al.[25]developed a fully functional hemispherical electronic eyeball camera that mimics the structure and function of human eye.In this work,silicon photodetectors were connected by buckled,stretchable interconnects to form a mesh layout,such that mechanical stretchability of the array is achieved. This layout of photodetectors was first fabricated in planar geometry,by using established semiconductor processing steps,and then transformed into hemispherical shape to resemble the geometry of retina in human eyes.Impressive imaging capability has been demonstrated with a simple plano-convex lens.

    One drawback of this imaging design,adopted by both the electronic eyeball cameras and human eyes,is that the detector curvature is fixed.However,some recent progresses in optoelectronics require dynamically tunable optical properties in a controllable manner.Different tuning mechanisms,such as strain [32,33],hydraulics[34,35],stimuli-responsive hydrogels[36,37], and others[38–41]have been reported to achieve tunable optics. To achieve tunability in imaging systems,Jung et al.[42]designed a tunable hemispherical eyeball camera system,with curvatures of both the optical lens and the hemispherical imaging plane coordinately adjustable to realize zoom capability.In this design, the stretchable photodetector array was bonded onto a thin elastomericmembrane,whichisthenmountedontoahydraulicchamber.By adjusting the hydraulic pressure,the deformed shape and thus the curvature of the hemispherical detector surface can be accurately controlled.

    Compound eyes,commonly found in arthropods,represent a distinct imaging system from human eyes[43–48].They offer unique imaging characteristics,such as very wide field of view angle,low aberration,high sensitivity to motion and infinite depth of field.Recently,Song et al.[43]have successfully designed and fabricated a digital camera that mimics the apposition compound eyes of insects.Arrays of elastomeric microlenses and stretchable photodetectors were separately fabricated and integrated in their planar geometries,which were then transformed into a hemisphericalshapetorealizetheartificialcompoundeyecamera. Thisdigitalcameraexhibitedanextremelywidefieldofviewangle (160°)and infinite depth of field.

    This article reviews recent progresses in mechanics of two types of bioinspired imaging systems.Mechanics of tunable hemispherical eyeball camera will be discussed in Section 2,and mechanics of artificial compound eye camera will be covered in Section 3.In the end,some discussion on future development of curvilinear optoelectronics is also included.

    2.Mechanics of tunable hemispherical eyeball camera

    The advantage of hemispherical electronic eyeball cameras over conventional digital cameras is that they can achieve superior imaging quality with simple optics[25,30].This could lead to lighter,simpler and cheaper digital cameras.However,the disadvantage is that the fixed detector curvature limits their compatibility with changes in the non-planar image surfaces resulting from adjustable zoom.This issue was overcome by Jung et al.They designed a dynamically tunable hemispherical eyeball camera system[42].In this system,the curvatures of both the lens and detector surface can be accurately controlled by hydraulic pressure. Schematic illustration of the system design is shown in Fig.1(a). The camera consists of two main components,a tunable planoconvex lens(Fig.1(a)upper frame)and a tunable hemispherical detector(Fig.1(a)lowerframe).Anelastomericpolydimethylsiloxane(PDMS)membrane was used to seal a water chamber to form the tunable lens.Changing water pressure in the chamber caused the PDMS membrane to deform into hemisphere with desired radiusofcurvature,yieldingtunableopticalzoom.Thetunabledetector was realized by integrating a stretchable silicon photodetector array with a thin PDMS membranes,and then also mounted onto a water chamber.The radius of curvature of the detector can also be tuned by adjusting the water pressure in the chamber.Figure 1(b) presents an optical image of the tunable hemispherical electronic eyeball camera system.To realize imaging capability,curvatures of both the lens and detector have to be adjusted coordinately.Figure 1(c)shows four pictures of the same disc array object taken by the camera at different zoom.

    Mechanics played important roles in design and fabrication of this camera.It was also critical for system operation,since it gave the relationships between the hydraulic pressure and the curvatures of the lens and detector surface.In addition,mechanics was vital to image post processing,as it provided position tracking of photodetectors during deformation.In the following,we review themechanicsoftunablelensfirst,andthendiscussthemechanics of the tunable detector.

    2.1.Mechanics of tunable lens

    ThePDMSmembraneinthetunablelensisanearlyincompressible material,and its nonlinear mechanical behavior can be characterized by the Yeoh hyperelastic model,which gives the strain energy density as[49],

    where Ckare material constants,is the first invariant of the left Cauchy–Green deformation tensor,andλ1,λ2, andλ3are the principal stretches.For PDMS,C1=0.29 MPa, C2=0.015 MPa,C3=0.019 MPa,anddue to incompressibility[50].

    As schematically illustrated in Fig.2(a),the thickness of the PDMSmembraneistlens,andradiusoftheopeningofglasswindow is Rlens.During operation,water pressure p is applied to deform the PDMSmembranetoahemisphericalshapewithapexheightH.The radius R and spherical angle?maxof the hemisphere are obtained as

    The principal stretches in meridional and circumferential directions are

    The principal stretch in the thickness direction isλz=1/(λrλθ). The principle of virtual work is used to determine the relationship between the applied pressure p and the geometry of the deformed

    Fig.1.(a)Schematic design of the tunable hemispherical eyeball camera.(b)Optical image of the tunable hemispherical eyeball camera.(c)Images of the same object taken by the camera at different zoom.

    tunable lens.Integrating W over the PDMS volume V,the strain energy of the deformed hemispherical lens is obtained as

    The virtual work done by the applied pressure is

    where G=2C1is the shear modulus.

    In practice,fabrication of PDMS membrane and assembling of thesysteminducecompressiveprestrainε0(e.g.?2%)intheinitial state.To account for the effect of prestrain,the initial radius of the PDMS membrane corresponding to the tunable lens prior to prestrainshouldbeRlens/(1+ε0).Thentheprincipalstretchesare

    expressed as:

    The applied pressure in Eq.(6)becomes

    where

    Figure 2(b)plots relationships between normalized apex height,and the normalized pressure,,for prestrainε0=0%and?2%.The experiment data are based on Rlens=4.5mmandtlens=0.2mm.Thetheoreticalpredictionwith?2%prestrain shows very good agreement with the experimental results.As shown in Fig.2(b),results from linear elastic model also gives accurate prediction when deformation is small,but deviates from the experiment significantly when deformation is large.

    2.2.Mechanics of tunable detector

    Figure 2(c)shows the schematic illustration of the tunable detector.The tunable component is a PDMS membrane(thickness tsuband radius Rsub)with integrated silicon photodetectors. By controlling water pressure in the chamber,the detector is deformed to a concave hemispherical shape of apex height H,radius R,and spherical angle?max.The radius and spherical angle can be expressed as

    Fig.2.(a)Schematic illustration of the tunable lens.(b)Relationship between normalized apex height H/Rlensand the normalized pressure pRlens/(Gtlens)when prestrain ε0=0%and?2%are considered.(c)Schematic illustration of the tunable detector.(d)Normalized apex height H/Rsubversus the normalized pressure pRsub/(Gtsub)for prestrainsε0=0%and 2%and f=30%.

    Let f denotes the fill factor of photodetectors on the PDMS membrane,i.e.areal fraction of photodetectors.The total length of photodetectors and that of PDMS uncovered by photodetectors can be expressed as fRsubandrespectively.When

    water pressure p is applied,the total length of PDMS uncovered by photodetectorsincreases to.However, thelengthofPDMSunderneathphotodetectorschangesnegligibly, sincetensilestiffnessofthesiliconphotodetectorsisseveralorders of magnitude larger than that of PDMS.Therefore,the principal stretches of PDMS uncovered by the detectors are obtained as

    Considering the tensile prestrainε0(e.g.,2%)induced during integrating detectors onto the stage,the principal stretches of PDMS uncovered by photodetectors in the meridional and circumferential directions are given as

    Integrating strain energy density over the volume of PDMS uncovered by photodetectors,the total strain energy is obtained a s

    where

    Fig.3.Top view of the photodetector positions given by analytical,experimental and finite element analysis(FEA)studies when apex height H=2.87 mm.

    The normalized applied pressure can be obtained by principle of virtual work as

    The curves in Fig.2(d)show the relationships between normalized apex height H/Rsub,versus the normalized pressure, pRsub/(Gtsub),for prestrainsε0=0%and 2%.The theoretical prediction is compared with the experimental results for Rsub= 8 mm,tsub=0.4 mm and fill factor f=30%.As shown in the figure,the results show good agreement when 2%prestrain is considered in the theory[42].

    Positions of photodetectors predicted by Eq.(14)are compared with experiment in Fig.3.In experiment,the thickness and radius of PDMS membrane are 0.4 mm and 8 mm,respectively.Figure 3 presents the top view of the photodetector positions when apex height H=2.87 mm[42].Results from analytical,experimental, and FEA studies show good agreement,except for some deviation at the four corners.Deviation at the four corners is probably due to excessive confinement.

    3.Mechanics of artificial compound eye camera

    Many living organisms in nature(e.g.insects and crustaceans) see the world by means of compound eyes,which possess superior imaging characteristics,such as extremely large field of view angle,acutesensingtomotion,andinfinitedepthoffield[7–9].Recently,compound eye-inspired imaging systems have attracted a lot of attention due to the huge potential in medical,industrial and military applications[5,44].Song et al.[43]have successfully realized a digital camera resembling the structure and function of appositioncompoundeyescommonlyfoundinarthropod.Figure4(a) schematically illustrates the fabrication processes.The compound eye camera was composed of two sub-systems,the stretchable microlens array(the optical subsystem)and the stretchable photodiode array(the electronic subsystem).The stretchable PDMS (Sylgard 184)microlens array was consisted of densely packed microlenses,each sitting on a supporting post and joined by a continuous elastomeric base membrane.The stretchable photodiode array adopted an open mesh layout to enable superior stretchability while keeping optoelectronic performance of otherwise fragile silicon.Both arrays were firstly fabricated and combined at their planar configurations,and then transformed into a nearly full hemispherical shape via a hydraulic mechanism.The hemisphericalhybridsystemisshowninFig.4(b).Thesurfaceisdenselypopulated by 180 imaging elements(i.e.ommatidia),comparable to the eyes of fire ants and bark beetles.

    During the geometrical transformation,very large deformation is introduced into both the microlens and photodiode arrays.FEA results show that the maximum strain in the whole microlens array can reach as large as 50%,as shown in the right frame of Fig.4(c).Under such large deformation,it is critical to ensure no fracture in silicone photodetectors and precise alignment between the photodiodes and microlenses,for the compound eye camera to operate properly.To achieve these goals,the optical and electrical sub-systems are only partially bonded at the positions of the photodetectors to maintain optical alignment,and also to allow free movement and deformation of the serpentine interconnects to minimize the effect on the overall mechanics.In addition,to maximumthestretchabilityinthephotodetectorarray,serpentine shapes are adopted for electrical interconnects to maximize stretchability.This design strategy can help keep the strains in photodetectors well below the fracture strain(e.g.1%for silicon). As shown in the left frame of Fig.4(c),the maximum strain in the siliconphotodetectormaintainsbelow0.3%,evenwhenthesystem is stretched by 50%.

    Another challenge is how to design the optical sub-system such that it can be mechanically stretched to very large extent without deteriorating the optical performance.In this work,strain isolation design concept is adopted,with each microlens sitting on a cylindrical supporting pedestal connected to a continuous PDMS base membrane.By using such a design,the deformation induced by stretching the base membrane can be effectively decoupled from the microlenses,and therefore no adverse effects are introduced to the optical properties.As shown in the left frame of Fig.4(c),the peak strain in the microlens is less than 2%even when geometrical transformation induces 50%stretch in the base membrane.

    Fig.4.(a)Schematic illustration of the fabrication processes of the artificial compound eye camera.(b)Optical image of the artificial compound eye camera.(c)Strain contours of the entire hemispherical PDMS microlens array(right)and different parts in an ommatidium(left),including microlens,supporting post,base membrane and the photodetector.(d)Picture of a Chinese character‘‘eye’captured by this compound eye camera.(e)Schematic illustration of an experimental setup(left)to demonstrate the infinite depth of field,and pictures of two different objects taken by this camera when they are at the same distances but with different angles(middle)and at different angles and distances(right).

    By adopting designs as discussed above,both the microlens and photodetector arrays can be stretched extensively without affecting their optical and electrical performances.Therefore, the hemispherical,apposition compound eye camera can realize superior imaging characteristics.Figure 4(d)exhibits a picture of line art for the Chinese character‘‘eye’captured by this compound eye camera.Figure 4(e)demonstrates one interesting and unique imaging attribute,i.e.,infinite depth of field.The left frame is the schematic illustration of the experimental setup,with two different objects(a triangle and a circle)simultaneously located in front of the camera.At first,these two objects are placed at the same distance to the camera but with different angular positions.Both objects can be clearly captured by the camera simultaneously,which illustrates large field of view angle of this camera.Next,the circle is moved away from the camera while the position of the triangle is fixed.Even now,the camera can still form clear pictures of both objects simultaneously.This simple experiment demonstrates that such a camera has the ability to capturer multiple objects in the field of view even when they are of very different angles and distances.

    3.1.Mechanics of geometrical transformation of the compound eye camera

    Figure 5(a)–(c)schematically illustrates the geometrical transformation of the elastomeric microlens array from planar to hemispherical shape,by using hydraulic actuation.As shown in Fig.5(a),the array is secured by a stiff ring of radius R1above a water chamber with a circular opening of radius of R2.The inner edge of the ring is rounded,with radius r0.Water pressure inside the chamber deforms the PDMS membrane into a hemispherical cap, as shown in Fig.5(b).During deformation,due to thickness reduction in the PDMS caused by stretching,sliding occurs between the PDMS and the stiff ring in the region highlighted by red in Fig.5(c).

    A uniform PDMS membrane is used to approximate the response of the microlens array.When water pressure is applied, the base membrane deforms to be a hemisphere with the peak deflection H.The radius of the hemisphere R and spherical angle ?maxare expressed as

    Fig.5.(a)Schematic illustration of the initially flat configuration of the stretchable microlens array.(b)Schematic illustration of the deformed,hemispherical microlens array.(c)Illustration of sliding between the stiff ring and the PDMS membrane.(d)The relationship between the apex height of the microlens array and applied hydraulic pressure obtained by experimental measurement(circle line),analytical model(red line)and FEA(green line).(e)The radius of curvature of the microlens array versus the applied hydraulic pressure,given by analytical(red line)and experimental(black circles)studies.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    The separation point A′in the deformed configuration is where the membrane separates from the stiff ring.Its cylindrical coordinate is

    The radial coordinate of point A in the initial configuration corresponding to A′is

    For any material point initially at(r<rA,θ,0),it moves to a new position on the hemispherical cap with a polar angleThe principle stretches at this point are

    The point B′is the connecting point in the deformed configuration between the flat region and the curved region in contact with the stiff ring.The radial coordinate of its corresponding point B in the

    initial configuration is

    The contact region between the PDMS and the stiff ring consists of two parts,the flat region(rB≤r≤ R2)and the curved region (rA≤r≤rB).The principle stretches in the curved region are

    The principle stretches in the flat region are

    Fig.6.Relationships between the normalized maximum strain and the height ratio h/t for a microlens unit cell subject to(a)equibiaxial tension and(b)uniaxial tension. The normalized radius of curvature of the deformed microlens versus the height ratio h/t when equibiaxial(c)and uniaxial(d)tension are applied.

    By adopting Yeoh hyperelastic model,the elastic strain energy in the PDMS membrane is obtained as

    The work done by the hydraulic pressure p is

    Figure 5(d)compares the analytical results given by Eq. (24)with the experiment and FEA results,which shows good agreement.Theanalyticalrelationshipbetweenradiusofcurvature R and the applied water pressure also exhibits good agreement with the experimental results,as shown in Fig.5(e).

    3.2.Mechanics and optics of stretchable elastomeric microlenses

    For the compound eye camera,one key mechanics design is adopting strain-isolation concept in the stretchable microlens array by introducing the supporting post between each microlens andthebasemembrane.Astheheightofsupportingpostincreases, the overall strain level in the microlens is expected to decrease. On the other hand,the photodetector should be placed at the focal point of the microlens to gain best imaging performance.So thesummationofhemisphericalmicrolensradius,supportingpost height and the base membrane thickness should be equal to the focal length of the microlens.Therefore,it is critically important to properly design an elastomeric microlens array that can be mechanically stretched to very large extent without introducing adverse effect to the optical performance.

    Fig.7.Curves of normalized focal length of the microlens versus the height ratio h/t under(a)equibiaxial and(b)uniaxial tension.Relationships between normalized radius of image spot and the height ratio h/t under(c)equibiaxial and(d)uniaxial tension.The insets are the shapes of the image spots.

    Here,the radius of the microlens is fixed,so the summation of the supporting post height h and base membrane thickness t will be kept constant to meet optical requirements.However,their ratio h/t can be engineered to change the mechanics.Due to the periodic nature of the whole structure,one unit cell(i.e.artificial ommatidium)that contains a microlens,supporting post and base membrane is chosen to conduct FEA.During geometrical transformation of the microlens array from flat to hemispherical shape,the strain at the periphery is uniaxial and the strain at the center is equibiaxial.Therefore,both uniaxial and equibiaxial stretchingareconsidered.Figure6(a)and(b)showtherelationship between the maximum strain normalized by the applied strain in the microlens and the height ratio h/t under equibiaxial and uniaxial tension respectively.Under both equibiaxial and uniaxial tension,the normalized maximum strain in the microlens decreases dramatically as the ratio h/t increases.Once the ratio h/t is larger than 1,the maximum strain in the microlens is negligibly small.It was also shown that the surface profile of the deformed microlens can be very well fitted by a hemispherical cap.The relationships between the radius of the hemispherical cap and the height ratio,under equibiaxial and uniaxial tension are presented in Fig.6(c)and(d),respectively.Under equibiaxial tension,the radius of the microlens increases,but the shape keeps hemispherical.However,when uniaxial tension is applied, the shape of the microlens changes to be oblate,which can be characterized by major and minor axes,Rxand Ry.It is also clearly demonstrated by Fig.6(c)and(d)that once the height ratio h/t is greater than 1,the change in the surface profile of the microlens is negligible.

    Based on the results from mechanics simulations,optical raytracing simulation is used to study the change in optical properties (e.g.focal length and image spot)of the microlens unit cell subject to stretching.Figure 7(a)and(b)show the curves of focal length of the microlens normalized by that of undeformed microlens versus the height ratio h/t under equibiaxial and uniaxial tension, respectively.Under equibiaxial tension,the focal length is larger than that of the undeformed microlens,but it decreases rapidly as the height ratio increases.Once the height ratio is larger than 1, the focal length is equal to that of undeformed microlens.Similar trend can be seen when uniaxial tension is applied,as shown in Fig.7(b).The influence on imaging characteristics of the microlens is presented in Fig.7(c)and(d),when the microlens is subject equibiaxial and uniaxial tension,respectively.The geometry of image spot of the light beam focused by the microlens is important for the design of photodetectors.The inset in Fig.7(c)shows the shapes of two image spots focused by the microlens with and without supporting post under equibiaxial tension.The difference in size is significant.The spot radius normalized by that of the undeformed microlens versus the height ratio is exhibited in Fig.7(c).The spot size quickly decreases as the height ratio h/t increases,and it reaches the spot size of the undeformed lens once h/t is greater than 1.Figure 7(d)presents normalized major radius of spot and the ratio of minor radius over major radius(b/a) versus the height ratio h/t.The spot size quickly approaches that of undeformed microlens as h/t increases.Once h/t is greater than 1,the effect of stretching on imaging is negligible.

    4.Conclusion and discussion

    This article has reviewed the progress in mechanics of bioinspired imaging systems,including the dynamically tunable hemispherical eyeball camera and the artificial compound eye camera.Mechanics analysis illustrates the relationships between the deformation of the tunable lens and tunable detector and the hydraulic pressure,which can be used for not only designing the tunable electronic eyeball camera,but also guiding the system operation.A simple mechanics model is also established to track the positions of photodetectors on the dynamically deforming hemispherical surface,which is critically important for image post-processing.For the artificial compound eye camera,the relationship between the deformation of the hybrid system and the actuation pressure is also given by an analytical mechanics model.Computational mechanics and optics study on stretchable microlens provides important guidance for designing elastomericmicrolens arrays that can sustain very large strain without sacrificing the optical performance.The results and models reviewed in this article can provide important guidance for the design of similar systems,and can also find applications in other systems that require dynamical tunability,stretchable optoelectronics and optics.

    It is also notable to mention that in the systems reviewed here, the geometrical transformation requires external actuation,such as hydraulic mechanisms.Recent research in soft active materials might potentially broaden the application range of stretchable optoelectronics[51–57],since they can deform by themselves in response to environmental stimuli.For example,SMPs can recover as large as 400%programmed strain in response to different environmental stimuli,such as heat,humidity and magnetic field [51,54].The effect of strain on optics was eliminated in the design of stretchable elastomeric microlens array as reviewed in this article,however,it could be useful in other applications.For example,recent studies have shown that tunable optics can have many interesting applications,and the mechanisms can be used to tune optics include strain[32,33],electrowetting[38],hydraulics [34,35,42],dielectric[39]and electromagnetic actuation[40].

    Acknowledgments

    TheauthorsgratefullyacknowledgesupportfromACSPetroleum Research Fund(Grant No.53780-DNI7)and NSF(Grant No.CMMI-1405355).

    References

    [1]M.F.Land,D.E.Nillson,Animal Eyes,Oxford Univ.Press,2012.

    [2]M.F.Land,The optics of animal eyes,Contemp.Phys.29(1988)435–455.

    [3]D.E.Nilsson,A new type of imaging optics in compound eyes,Nature 332 (1988)76–78.

    [4]J.Zeil,A new kind of neural superposition eye:the compound eye of male Bibionidae,Nature 278(1979)249–250.

    [5]L.P.Lee,R.Szema,Inspirations from biological optics for advanced photonic systems,Science 310(2005)1148–1150.

    [6]A.Borst,J.Plett,Optical devices:Seeing the world through an insect’s eyes, Nature 497(2013)47–48.

    [7]E.Warrant,D.E.Nillson,Invertebrate Vision,Cambridge Univ.Press,2006.

    [8]R.Dudley,The Biomechanics of Insect Flight:Form,Function,Evolution, Princeton Univ.Press,2000.

    [9]D.Floreano,J.C.Zufferey,M.V.Srinivasan,et al.,Flying Insects and Robot, Springer,New York,2009.

    [10]K.H.Jeong,J.Kim,L.P.Lee,Biologically inspired artificial compound eyes, Science 312(2006)557–561.

    [11]T.Someya,Optics:Electronic eyeballs,Nature 454(2008)703–704.

    [12]R.G.Arns,Theothertransistor:earlyhistoryofthemetal-oxidesemiconductor field-effect transistor,Eng.Sci.Educ.J.7(1998)233–240.

    [13]G.E.Moore,Cramming more components onto integrated circuits,Proc.IEEE 86(1998)82–85.

    [14]I.Hayashi,Optoelectronic devices and material technologies for photoelectronic integrated systems,Japan.J.Appl.Phys.32(1993)266.

    [15]Z.Li,Y.Wang,J.Xiao,Mechanicsofcurvilinearelectronicsandoptoelectronics, Curr.Opin.Solid State Mater.Sci.19(2015)171–189.

    [16]H.C.Ko,G.Shin,S.Wang,et al.,Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,Small 5(2009) 2703–2709.

    [17]S.Wang,J.Xiao,J.Song,et al.,Mechanics of curvilinear electronics,Soft Matter 6(2010)5757–5763.

    [18]J.A.Rogers,T.Someya,Y.Huang,Materials and mechanics for stretchable electronics,Science 327(2010)1603–1607.

    [19]D.H.Kim,J.Xiao,J.Song,et al.,Stretchable,curvilinear electronics based on inorganic materials,Adv.Mater.22(2010)2108–2124.

    [20]J.A.Rogers,Materials for semiconductor devices that can bend,fold,twist,and stretch,MRS Bull.39(2014)549–556.

    [21]D.H.Kim,N.Lu,Y.Huang,et al.,Materials for stretchable electronics in bioinspired and biointegrated devices,MRS Bull.37(2012)226–235.

    [22]Y.Zhang,Y.Huang,J.A.Rogers,Mechanics of stretchable batteries and supercapacitors,Curr.Opin.Solid State Mater.Sci.19(2015)190–199.

    [23]N.Lu,S.Yang,Mechanics for stretchable sensors,Curr.Opin.Solid State Mater. Sci.19(2015)149–159.

    [24]D.Kang,S.M.Lee,Z.Li,et al.,Compliant,heterogeneously integrated GaAs Micro-VCSELs towards wearable and implantable integrated optoelectronics platforms,Adv.Opt.Mater.2(2014)373–381.

    [25]H.C.Ko,M.P.Stoykovich,J.Song,et al.,A hemispherical electronic eye camera based on compressible silicon optoelectronics,Nature 454(2008)748–753.

    [26]G.Shin,I.Jung,V.Malyarchuk,etal.,Micromechanicsandadvanceddesignsfor curved photodetector arrays in hemispherical electronic-eye cameras,Small 6 (2010)851–856.

    [27]I.Jung,G.Shin,V.Malyarchuk,et al.,Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts,Appl.Phys. Lett.96(2010)021110.

    [28]C.C.Huang,X.Wu,H.Liu,et al.,Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes,Small 10(2014)3050–3057.

    [29]L.Li,A.Y.Yi,Development of a 3D artificial compound eye,Opt.Express 18 (2010)18125–18137.

    [30]X.Xu,M.Davanco,X.Qi,et al.,Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays,Organ.Electron.9(2008)1122–1127.

    [31]S.Wang,J.Xiao,I.Jung,et al.,Mechanics of hemispherical electronics,Appl. Phys.Lett.95(2009)181912.

    [32]Z.Li,J.Xiao,Strain tunable optics of elastomeric microlens array,Extreme Mech.Lett.4(2015)118–123.

    [33]D.Chandra,S.Yang,P.C.Lin,Strain responsive concave and convex microlens arrays,Appl.Phys.Lett.91(2007)251912.

    [34]S.T.Choi,J.Y.Lee,J.O.Kwon,et al.,Varifocal liquid-filled microlens operated by an electroactive polymer actuator,Opt.Lett.36(2011)1920–1922.

    [35]S.T.Choi,B.S.Son,G.W.Seo,et al.,Opto-mechanical analysis of nonlinear elastomermembranedeformationunderhydraulicpressureforvariable-focus liquid-filled microlenses,Opt.Express 22(2014)6133–6146.

    [36]L.Dong,A.K.Agarwal,D.J.Beebe,et al.,Adaptive liquid microlenses activated by stimuli-responsive hydrogels,Nature 442(2006)551–554.

    [37]L.Dong,A.K.Agarwal,D.J.Beebe,et al.,Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels,Adv.Mater.19 (2007)401–405.

    [38]T.Krupenkin,S.Yang,P.Mach,Tunable liquid microlens,Appl.Phys.Lett.82 (2003)316–318.

    [39]F.Carpi,G.Frediani,S.Turco,et al.,Bioinspired tunable lens with muscle-like electroactive elastomers,Adv.Funct.Mater.21(2011)4152–4158.

    [40]P.Liebetraut,S.Petsch,W.M?nch,et al.,Tunable solid-body elastomer lenses with electromagnetic actuation,Appl.Opt.50(2011)3268–3274.

    [41]A.Llobera,R.Wilke,S.Büttgenbach,Poly(dimethylsiloxane)hollow Abbe prismwithmicrolensesfordetectionbasedonabsorptionandrefractiveindex shift,Lab Chip 4(2004)24–27.

    [42]I.Jung,J.Xiao,V.Malyarchuk,et al.,Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability,Proc.Natl. Acad.Sci.108(2011)1788–1793.

    [43]Y.M.Song,Y.Xie,V.Malyarchuk,et al.,Digital cameras with designs inspired by the arthropod eye,Nature 497(2013)95–99.

    [44]Z.Li,J.Xiao,Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,J.Appl.Phys.117(2015)014904.

    [45]D.Floreano,R.Pericet-Camara,S.Viollet,et al.,Miniature curved artificial compound eyes,Proc.Natl.Acad.Sci.110(2013)9267–9272.

    [46]H.Zhang,L.Li,D.L.McCray,et al.,Development of a low cost high precision three-layer 3D artificial compound eye,Opt.Express 21(2013)22232–22245.

    [47]A.Brückner,J.Duparré,R.Leitel,et al.,Thin wafer-level camera lenses inspired by insect compound eyes,Opt.Express 18(2010)24379–24394.

    [48]K.Stollberg,A.Brückner,J.Duparré,et al.,The Gabor superlens as an alternativewafer-levelcameraapproachinspiredbysuperpositioncompound eyes of nocturnal insects,Opt.Express 17(2009)15747–15759.

    [49]O.H.Yeoh,Some forms of the strain energy function for rubber,Rubber Chem. Technol.66(1993)754–771.

    [50]C.Lü,M.Li,J.Xiao,et al.,Mechanics of tunable hemispherical electronic eye camera systems that combine rigid device elements with soft elastomers, J.Appl.Mech.80(2013)061022.

    [51]H.Meng,G.Li,A review of stimuli-responsive shape memory polymer composites,Polymer 54(2013)2199–2221.

    [52]T.Xie,Tunable polymer multi-shape memory effect,Nature 464(2010) 267–270.

    [53]L.M.Cox,J.P.Killgore,Z.Li,etal.,Morphingmetal–polymerJanusparticles,Adv. Mater.26(2014)899–904.

    [54]Q.Zhao,H.J.Qi,T.Xie,Recent progress in shape memory polymer:New behavior,enablingmaterials,andmechanisticunderstanding,Prog.Polym.Sci. 49–50(2015)79–120.

    [55]L.M.Cox,Z.Li,N.Sowan,et al.,Reconfigurable surface patterns on covalent adaptive network polymers using nanoimprint lithography,Polymer 55 (2014)5933–5937.

    [56]S.H.Maruf,Z.Li,J.A.Yoshimura,et al.,Influence of nanoimprint lithography on membrane structure and performance,Polymer 69(2015)129–137.

    [57]C.Yu,Z.Duan,P.Yuan,et al.,Electronically programmable,reversible shape change in two-and three-dimensional hydrogel structures,Adv.Mater.25 (2013)1541–1546.

    7 October 2015

    http://dx.doi.org/10.1016/j.taml.2015.11.011

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?.

    E-mail address:jianliang.xiao@colorado.edu(J.Xiao).

    国产一区二区三区视频了| 免费搜索国产男女视频| 亚洲精品一区av在线观看| 亚洲午夜理论影院| 欧美色欧美亚洲另类二区| 久久久久国内视频| 亚洲自拍偷在线| 亚洲成人中文字幕在线播放| 天堂网av新在线| 操出白浆在线播放| 男女之事视频高清在线观看| АⅤ资源中文在线天堂| 18禁国产床啪视频网站| 搡老岳熟女国产| 日本与韩国留学比较| 国产探花在线观看一区二区| 亚洲成人久久爱视频| 老汉色av国产亚洲站长工具| 身体一侧抽搐| 国产免费男女视频| www.精华液| 久99久视频精品免费| 天天躁日日操中文字幕| av在线天堂中文字幕| АⅤ资源中文在线天堂| 久久亚洲精品不卡| 精品久久久久久,| 日韩免费av在线播放| 麻豆久久精品国产亚洲av| 给我免费播放毛片高清在线观看| 久久久国产欧美日韩av| 国产欧美日韩精品一区二区| 国产精品亚洲av一区麻豆| 一个人免费在线观看电影 | 天堂动漫精品| 好男人电影高清在线观看| h日本视频在线播放| 看免费av毛片| 国产 一区 欧美 日韩| 欧美日韩亚洲国产一区二区在线观看| 欧美丝袜亚洲另类 | 日韩欧美免费精品| 一本综合久久免费| 亚洲精品中文字幕一二三四区| 女人高潮潮喷娇喘18禁视频| 两性午夜刺激爽爽歪歪视频在线观看| www.熟女人妻精品国产| 亚洲色图 男人天堂 中文字幕| 国产精品av久久久久免费| 久久99热这里只有精品18| 最好的美女福利视频网| 日本成人三级电影网站| 亚洲国产欧美网| 成人精品一区二区免费| 女人被狂操c到高潮| 黄色视频,在线免费观看| 国产不卡一卡二| 不卡一级毛片| 国产精品一区二区三区四区免费观看 | 欧美在线黄色| 免费一级毛片在线播放高清视频| 欧美另类亚洲清纯唯美| 一进一出抽搐动态| 一进一出抽搐动态| 日本免费a在线| 日韩三级视频一区二区三区| 97超视频在线观看视频| avwww免费| 一级a爱片免费观看的视频| 婷婷精品国产亚洲av在线| 一区二区三区高清视频在线| 国产极品精品免费视频能看的| 一个人看的www免费观看视频| 欧美国产日韩亚洲一区| 免费人成视频x8x8入口观看| 国产不卡一卡二| 超碰成人久久| 婷婷丁香在线五月| 欧美黑人巨大hd| 一区福利在线观看| 嫩草影视91久久| 亚洲专区国产一区二区| 国产黄片美女视频| 亚洲最大成人中文| 日韩国内少妇激情av| 国产免费男女视频| 日韩欧美在线乱码| 免费一级毛片在线播放高清视频| 天堂网av新在线| 国产97色在线日韩免费| 日韩高清综合在线| 男女下面进入的视频免费午夜| 中文字幕高清在线视频| 欧美日韩一级在线毛片| 老汉色av国产亚洲站长工具| 久久国产乱子伦精品免费另类| 欧美三级亚洲精品| 好看av亚洲va欧美ⅴa在| 人妻丰满熟妇av一区二区三区| 欧美3d第一页| 两性夫妻黄色片| 黄频高清免费视频| 噜噜噜噜噜久久久久久91| 男女床上黄色一级片免费看| 18禁黄网站禁片免费观看直播| 国产三级在线视频| 村上凉子中文字幕在线| 全区人妻精品视频| 天堂av国产一区二区熟女人妻| 免费在线观看日本一区| 国产精品久久电影中文字幕| 欧美另类亚洲清纯唯美| 国产又黄又爽又无遮挡在线| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| 在线免费观看不下载黄p国产 | 亚洲欧美精品综合一区二区三区| 日本在线视频免费播放| 欧美黄色淫秽网站| 老司机午夜福利在线观看视频| 最新在线观看一区二区三区| 国产美女午夜福利| 很黄的视频免费| 18禁黄网站禁片午夜丰满| 久久久国产成人免费| 狂野欧美白嫩少妇大欣赏| 美女高潮的动态| 久久久久久国产a免费观看| 国产精品久久久久久亚洲av鲁大| 黄色成人免费大全| 午夜日韩欧美国产| 首页视频小说图片口味搜索| 狠狠狠狠99中文字幕| 亚洲无线在线观看| 国产蜜桃级精品一区二区三区| 无遮挡黄片免费观看| 最好的美女福利视频网| 亚洲av成人不卡在线观看播放网| 人妻夜夜爽99麻豆av| 999精品在线视频| 亚洲av成人不卡在线观看播放网| 又粗又爽又猛毛片免费看| 国产极品精品免费视频能看的| 日韩欧美国产在线观看| 99riav亚洲国产免费| 国产一区二区三区在线臀色熟女| 宅男免费午夜| 美女免费视频网站| 国产av在哪里看| 伊人久久大香线蕉亚洲五| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区免费观看 | 日韩欧美在线二视频| 国产成人欧美在线观看| 免费看日本二区| 97超级碰碰碰精品色视频在线观看| 在线观看日韩欧美| 在线观看午夜福利视频| 嫩草影院精品99| 免费av毛片视频| 精品久久久久久,| 美女被艹到高潮喷水动态| 别揉我奶头~嗯~啊~动态视频| 非洲黑人性xxxx精品又粗又长| 美女cb高潮喷水在线观看 | 又爽又黄无遮挡网站| 最新在线观看一区二区三区| 91麻豆av在线| 中文在线观看免费www的网站| 九色国产91popny在线| 淫妇啪啪啪对白视频| 国产人伦9x9x在线观看| 国产av一区在线观看免费| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三区视频在线 | 亚洲av电影在线进入| 搡老妇女老女人老熟妇| 亚洲国产欧美一区二区综合| 亚洲精华国产精华精| 88av欧美| 人人妻人人澡欧美一区二区| 欧美日韩黄片免| 国产精品久久久人人做人人爽| 叶爱在线成人免费视频播放| 母亲3免费完整高清在线观看| 国产精品一区二区三区四区久久| 国产精品精品国产色婷婷| 欧美成狂野欧美在线观看| 久久久精品大字幕| 亚洲成人免费电影在线观看| 国产主播在线观看一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美在线乱码| 法律面前人人平等表现在哪些方面| 两人在一起打扑克的视频| 午夜激情福利司机影院| 美女高潮的动态| 观看免费一级毛片| 亚洲自偷自拍图片 自拍| 日本成人三级电影网站| 久久久国产欧美日韩av| 国产精品一及| 日本免费a在线| 久久午夜亚洲精品久久| 欧美黄色淫秽网站| 精品国产乱子伦一区二区三区| 亚洲一区二区三区不卡视频| 又黄又爽又免费观看的视频| 1000部很黄的大片| 2021天堂中文幕一二区在线观| 久久久久亚洲av毛片大全| 成人三级黄色视频| 亚洲片人在线观看| 少妇丰满av| 热99在线观看视频| 免费电影在线观看免费观看| 国产伦精品一区二区三区视频9 | 国产精品99久久久久久久久| 国产精品久久久久久久电影 | 白带黄色成豆腐渣| 在线a可以看的网站| 一进一出抽搐gif免费好疼| 国产又色又爽无遮挡免费看| 99热只有精品国产| 亚洲av日韩精品久久久久久密| 免费搜索国产男女视频| 免费搜索国产男女视频| 一本久久中文字幕| 老司机午夜福利在线观看视频| 欧美最黄视频在线播放免费| 亚洲av五月六月丁香网| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 成年女人永久免费观看视频| 亚洲精华国产精华精| 国产亚洲欧美98| 精品免费久久久久久久清纯| 18禁黄网站禁片免费观看直播| 2021天堂中文幕一二区在线观| 18禁观看日本| 久久婷婷人人爽人人干人人爱| 91av网一区二区| av天堂在线播放| 日韩欧美国产一区二区入口| 少妇丰满av| 一个人免费在线观看的高清视频| 天天躁日日操中文字幕| 国产69精品久久久久777片 | 99久久久亚洲精品蜜臀av| 亚洲美女视频黄频| 黄频高清免费视频| 无人区码免费观看不卡| 国产在线精品亚洲第一网站| 成人高潮视频无遮挡免费网站| 一区二区三区激情视频| 亚洲最大成人中文| 成人三级做爰电影| 欧美中文综合在线视频| 久久久久久久久中文| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 欧美zozozo另类| 亚洲成av人片免费观看| 桃色一区二区三区在线观看| 国产精品久久电影中文字幕| 亚洲欧洲精品一区二区精品久久久| 一级毛片高清免费大全| 老司机在亚洲福利影院| 两个人的视频大全免费| av欧美777| 叶爱在线成人免费视频播放| 男人的好看免费观看在线视频| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| 国产精品一区二区三区四区免费观看 | 亚洲av第一区精品v没综合| 男人的好看免费观看在线视频| 亚洲精品乱码久久久v下载方式 | 啦啦啦韩国在线观看视频| 久久国产精品影院| 少妇丰满av| 国产一区二区三区在线臀色熟女| 99国产精品一区二区蜜桃av| 在线看三级毛片| 亚洲国产精品久久男人天堂| 好看av亚洲va欧美ⅴa在| 国产一级毛片七仙女欲春2| 日韩人妻高清精品专区| 精品乱码久久久久久99久播| 久久精品91无色码中文字幕| 成年免费大片在线观看| 人妻丰满熟妇av一区二区三区| 久久香蕉精品热| 九九久久精品国产亚洲av麻豆 | 18禁裸乳无遮挡免费网站照片| 又爽又黄无遮挡网站| 一本综合久久免费| 亚洲乱码一区二区免费版| 久久香蕉精品热| 最好的美女福利视频网| 国产又色又爽无遮挡免费看| 淫秽高清视频在线观看| 99国产综合亚洲精品| 女警被强在线播放| 精品久久蜜臀av无| 夜夜躁狠狠躁天天躁| 99精品在免费线老司机午夜| 小说图片视频综合网站| 午夜福利18| 久久香蕉国产精品| 两性夫妻黄色片| 国产av一区在线观看免费| 色老头精品视频在线观看| 美女免费视频网站| or卡值多少钱| 很黄的视频免费| 亚洲欧洲精品一区二区精品久久久| 日本熟妇午夜| 久久人人精品亚洲av| 变态另类丝袜制服| 午夜亚洲福利在线播放| 午夜福利免费观看在线| 欧美黑人巨大hd| 在线观看免费午夜福利视频| 亚洲天堂国产精品一区在线| 99国产精品一区二区三区| ponron亚洲| 久久中文看片网| 欧美日韩乱码在线| 久久久国产成人免费| 国内久久婷婷六月综合欲色啪| 亚洲专区字幕在线| ponron亚洲| 中文字幕人妻丝袜一区二区| 在线观看午夜福利视频| 久久人妻av系列| 亚洲精品一卡2卡三卡4卡5卡| 18禁黄网站禁片免费观看直播| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 成人精品一区二区免费| 男人舔奶头视频| 国产成人福利小说| 免费看十八禁软件| 天堂影院成人在线观看| 在线观看66精品国产| 国产精品久久久久久精品电影| 99久久无色码亚洲精品果冻| 成熟少妇高潮喷水视频| 亚洲av成人一区二区三| 此物有八面人人有两片| a级毛片a级免费在线| 亚洲欧美激情综合另类| 91九色精品人成在线观看| 在线视频色国产色| 琪琪午夜伦伦电影理论片6080| 成人av在线播放网站| 亚洲av中文字字幕乱码综合| 伊人久久大香线蕉亚洲五| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 99热精品在线国产| 国产视频一区二区在线看| avwww免费| 黄频高清免费视频| 亚洲avbb在线观看| 国产毛片a区久久久久| 亚洲 欧美 日韩 在线 免费| 欧美午夜高清在线| 日韩有码中文字幕| 老司机深夜福利视频在线观看| 中文字幕人成人乱码亚洲影| 日本一二三区视频观看| 法律面前人人平等表现在哪些方面| 色尼玛亚洲综合影院| 亚洲国产高清在线一区二区三| 成在线人永久免费视频| 国产v大片淫在线免费观看| 全区人妻精品视频| or卡值多少钱| xxxwww97欧美| 亚洲无线观看免费| 国产精品久久久久久亚洲av鲁大| 麻豆国产97在线/欧美| 成人性生交大片免费视频hd| 欧美乱码精品一区二区三区| 人人妻,人人澡人人爽秒播| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 国产精品亚洲美女久久久| 国产伦精品一区二区三区视频9 | 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 国产成人一区二区三区免费视频网站| 国产成人精品久久二区二区免费| 少妇丰满av| 91久久精品国产一区二区成人 | 成人鲁丝片一二三区免费| 国产美女午夜福利| 欧美激情久久久久久爽电影| 熟女电影av网| 欧美av亚洲av综合av国产av| 18禁黄网站禁片免费观看直播| 久久99热这里只有精品18| 欧美黑人欧美精品刺激| 最近视频中文字幕2019在线8| 老鸭窝网址在线观看| 美女 人体艺术 gogo| 国产精品永久免费网站| 老司机深夜福利视频在线观看| 神马国产精品三级电影在线观看| 88av欧美| 色精品久久人妻99蜜桃| 欧美丝袜亚洲另类 | 亚洲专区国产一区二区| 国产精品久久久久久亚洲av鲁大| 深夜精品福利| 久久中文字幕人妻熟女| 美女cb高潮喷水在线观看 | 中出人妻视频一区二区| 级片在线观看| 国产成+人综合+亚洲专区| 精品不卡国产一区二区三区| 亚洲真实伦在线观看| 色吧在线观看| 在线观看一区二区三区| 小说图片视频综合网站| 国产1区2区3区精品| 日韩国内少妇激情av| 国产爱豆传媒在线观看| 最新中文字幕久久久久 | 美女免费视频网站| 国产精品九九99| 亚洲色图 男人天堂 中文字幕| 久久草成人影院| 精品国产乱子伦一区二区三区| 午夜两性在线视频| 国产乱人视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美成狂野欧美在线观看| 级片在线观看| 久久国产精品影院| 久久精品aⅴ一区二区三区四区| 成人午夜高清在线视频| 女警被强在线播放| 亚洲精品456在线播放app | 999久久久国产精品视频| 啦啦啦免费观看视频1| 色综合亚洲欧美另类图片| 欧美一区二区国产精品久久精品| 女警被强在线播放| 久久热在线av| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女| 女警被强在线播放| 亚洲av成人一区二区三| 精品电影一区二区在线| 五月玫瑰六月丁香| 国产精华一区二区三区| 天堂影院成人在线观看| 中文字幕久久专区| 欧美日韩瑟瑟在线播放| 日韩精品青青久久久久久| 欧美黑人巨大hd| 国产人伦9x9x在线观看| 国产精品亚洲一级av第二区| 啦啦啦免费观看视频1| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 日韩大尺度精品在线看网址| 久久国产乱子伦精品免费另类| 精品国产乱码久久久久久男人| 久久久成人免费电影| 一本一本综合久久| 国产亚洲精品一区二区www| 一区二区三区高清视频在线| 国产91精品成人一区二区三区| 亚洲五月天丁香| 99久久精品一区二区三区| 老熟妇仑乱视频hdxx| 国产成人福利小说| 日日干狠狠操夜夜爽| 久久热在线av| 九九在线视频观看精品| 国产伦精品一区二区三区视频9 | 国产97色在线日韩免费| 在线观看舔阴道视频| 国产高潮美女av| 亚洲狠狠婷婷综合久久图片| 国产成人一区二区三区免费视频网站| 中文字幕av在线有码专区| 91字幕亚洲| 亚洲精品国产精品久久久不卡| 国产美女午夜福利| 亚洲av中文字字幕乱码综合| 午夜a级毛片| 国产成人精品无人区| 亚洲av电影不卡..在线观看| 免费一级毛片在线播放高清视频| 国产伦精品一区二区三区四那| 亚洲欧美精品综合一区二区三区| 精品国产三级普通话版| 欧美成人一区二区免费高清观看 | 亚洲成av人片在线播放无| 神马国产精品三级电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美成人性av电影在线观看| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 国产真人三级小视频在线观看| 精品久久久久久久末码| 午夜成年电影在线免费观看| 久久国产精品影院| 亚洲av第一区精品v没综合| 欧美极品一区二区三区四区| 黑人操中国人逼视频| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 啦啦啦观看免费观看视频高清| 男人舔女人下体高潮全视频| 中国美女看黄片| 怎么达到女性高潮| 国产精品99久久99久久久不卡| 国产真人三级小视频在线观看| а√天堂www在线а√下载| 国产精品 欧美亚洲| 亚洲国产高清在线一区二区三| 欧美一区二区国产精品久久精品| 精品欧美国产一区二区三| 黑人欧美特级aaaaaa片| 欧美日韩黄片免| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| 观看免费一级毛片| av中文乱码字幕在线| 国产一区二区在线av高清观看| 国产成人av教育| 一级毛片高清免费大全| 亚洲中文字幕一区二区三区有码在线看 | 久久久精品大字幕| 国产精品综合久久久久久久免费| 女生性感内裤真人,穿戴方法视频| 黄色片一级片一级黄色片| 又黄又粗又硬又大视频| 亚洲国产精品999在线| 我要搜黄色片| 精品99又大又爽又粗少妇毛片 | 两个人的视频大全免费| 国产91精品成人一区二区三区| 免费大片18禁| 免费在线观看成人毛片| 久久热在线av| 精品不卡国产一区二区三区| 国产高清视频在线观看网站| 国产真实乱freesex| 一级毛片女人18水好多| 男人舔奶头视频| 亚洲精品中文字幕一二三四区| 欧洲精品卡2卡3卡4卡5卡区| 欧美三级亚洲精品| 亚洲无线在线观看| 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 九九久久精品国产亚洲av麻豆 | 天天添夜夜摸| 两人在一起打扑克的视频| 欧美一级a爱片免费观看看| 久久久久久久久免费视频了| 99久久久亚洲精品蜜臀av| 国产精品精品国产色婷婷| 99久久精品一区二区三区| 一边摸一边抽搐一进一小说| 精品久久久久久成人av| 91av网一区二区| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 日本 av在线| 91麻豆av在线| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 国产激情偷乱视频一区二区| 最好的美女福利视频网| x7x7x7水蜜桃| av福利片在线观看| 成人无遮挡网站| 制服人妻中文乱码| 国产乱人伦免费视频| 国产私拍福利视频在线观看| 国产精品亚洲美女久久久| 国产极品精品免费视频能看的| avwww免费| 一本一本综合久久| 看黄色毛片网站| 国产精品久久久av美女十八| 极品教师在线免费播放| 午夜成年电影在线免费观看| 国产极品精品免费视频能看的| 久久中文字幕一级| 国内精品久久久久精免费| 此物有八面人人有两片| 午夜亚洲福利在线播放| 两性夫妻黄色片| 婷婷精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| 亚洲一区高清亚洲精品| 亚洲中文字幕一区二区三区有码在线看 | 人妻久久中文字幕网| 女同久久另类99精品国产91| 色综合站精品国产| xxx96com| 婷婷六月久久综合丁香| 欧美一级a爱片免费观看看| 热99在线观看视频| 国产人伦9x9x在线观看| 国产精品av视频在线免费观看|