• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adhesion-governed buckling of thin-film electronics on soft tissues

    2016-12-09 08:00:08BoWangShuodaoWang

    Bo Wang,Shuodao Wang

    School of Mechanical and Aerospace Engineering,Oklahoma State University,Stillwater,OK,74078,USA

    Letter

    Adhesion-governed buckling of thin-film electronics on soft tissues

    Bo Wang,Shuodao Wang?

    School of Mechanical and Aerospace Engineering,Oklahoma State University,Stillwater,OK,74078,USA

    H I G H L I G H T S

    ?Adhesion-governed buckling physics for thin-film on elastomer.

    ?The transitions between buckling modes are predicted analytically.

    ?Mechanics discussed in the context of bio-integrated electronics applications.

    A R T I C L EI N F O

    Article history:

    Accepted 20 November 2015

    Available online 24 December 2015

    Stretchable electronics

    Bio-electronics

    Buckling

    Work of adhesion

    Bio-interface

    Stretchable/flexible electronics has attracted great interest and attention due to its potentially broad applications in bio-compatible systems.One class of these ultra-thin electronic systems has found promising and importantutilities in bio-integrated monitoring and therapeutic devices.These devices can conform to the surfaces of soft bio-tissues such as the epidermis,the epicardium,and the brain to provide portable healthcare functionalities.Upon contractions of the soft tissues,the electronics undergoes compression and buckles into various modes,depending on the stiffness of the tissue and the strength of the interfacial adhesion.These buckling modes result in different kinds of interfacial delamination and shapes of the deformed electronics,which are very important to the proper functioning of the bioelectronic devices.In this paper,detailed buckling mechanics ofthese thin-film electronics on elastomeric substrates is studied.The analytical results,validated by experiments,provide a very convenient tool for predicting peak strain in the electronics and the intactness of the interface under various conditions.

    Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

    Stretchable electronics,being as stretchable and flexible as soft tissues,has enabled many important applications,such as[1–8] eyeball-like digital cameras[9,10],sensitive robotic skins[11,12], smart surgical gloves[13],comfortable skin sensor[14],and structural health monitoring devices[15].Among these applications, some of the most important ones are the bio-integrated monitoring and therapeutic devices that can conform to the surfaces of soft bio-tissues such as the epidermis[16],the epicardium[17], and the brain[18],which provide promising options for longtermand portable healthcare devices.Upon contractions ofthe soft tissues,the electronics undergoes compression and buckles into various modes[19,20].A few important mechanics models were developed to study the buckling problems on similar film-onelastomer systems.Jiang et al.[2]studied the buckling behavior of strongly-bonded film-on-elastomer structures and predicted the maximum strain in the thin film to prevent fracture.Wang et al.[1] described local and global buckling modes for one-dimensional thin films or two-dimensional thin membranes on elastomers,and obtained the analytical critical conditions for separating the two buckling modes.Cheng etal.[21]introduced a bi-layer elastomeric substrate(a soft layer laminated on top ofa relatively stiffone)that yields high levels of stretchability,and discussed the buckling and post-buckling behaviors.To achieve optimum bio-compatibility, Ko et al.[22]and Wang et al.[23]introduced advanced strategies to wrap thin-filmelectronics onto arbitrarily curvilinearshapes,for which Wang et al.[23]developed an analytical model to study the buckling patterns,and showed thatthe buckling behaviors are governed by the strength of the interface and the level of the compressive strain.

    These important mechanics models indicate that the buckling behavior of these film-on-elastomer structures is related to the applied strain,the material and geometric parameters of the film, the stiffness of the elastomer,as well as the strength of the interfacial adhesion.In the context of bio-electronics applications where the tissues are the elastomeric substrate,the stiffness of the tissues and the strength of the interface can vary in a very wide range due to the type of tissues and changes in temperature, moisture,and bio-chemical activities.The intactness of the interface is of great importance to the functioning of electronic devicesthat rely on intimate contact and coupling to the tissues.Detailed mechanics analysis of the buckling physics that accounts for any tissue stiffness and any interfacial adhesion is presented in this study to predict the intactness of the bio-electronics interfaces.

    Fig.1.The four buckling modes:(a)flat;(b)wrinkling;(c)partial delamination;(d)total delamination.

    The various buckling modes in the previous work[1,2,16–20] can be categorized into the four modes shown in Fig.1.Under none to minor compression,the film does not buckle and remains flat(Fig.1(a));as the compression increases,the film wrinkles into multiple small waves on top of the elastomer but does not delaminate from the interface,which we refer to as the wrinkling mode(Fig.1(b));under further compression,the multiple waves merge into one and cause the film to partially delaminate from the interface,which is the partial delamination mode(Fig.1(c)); more compression eventually causes the film to delaminate totally from the interface,which we define as the total delamination mode in this study(Fig.1(d)).The energies of these different buckling modes are formulated and then compared in the next section to explain transitions between them.

    Here we consider a film-structure of length L,thickness h,and Young’s modulus E laminated on top of a soft substrate of Young’s modulus Es,and the work of adhesion for the interface isγ,and the structure is under a compressive applied strain of|ε|.By assuming a sinusoidal buckling shape of wavelength 0< l< L (Fig.1(c)),Wang et al.[23]analyzed the energies for the flat,partial and total delamination modes.Their analysis is elaborated in the Supplementary Information and summarized in the following.All the energies are normalized byfor convenience, whereWe also define the following non-

    For the flat mode,the total energy of the system consists of the membraneenergyofthefilm,andtheadhesionenergyoftheentire interface,and is obtained as

    For the partial delamination mode,the total energy consists of the membrane and bending energy of the film and the adhesion energyoftheun-delaminatedpartoftheinterface[lengthof(L?l)], and is obtained as

    Energy minimization with respect to a requires the first derivative of Eq.(2)to be zero and the second derivative to be greater than zero,therefore a can be solved from

    where a≤1 is due to the constraint that l≤L.

    For the total delamination mode,the energy consists of the membrane and bending energy of the film,and is obtained as

    In this study,we find that a fourth buckling mode,i.e.the wrinkling mode,exists under certain conditions.Following similar approach of Jiang et al.[2],the energy of this mode consists of the membrane and bending energies of the film,the strain energy of the substrate,as well as the adhesion energy of the interface,and can be obtained analytically as strain exceeds the critical buckling strain,namely e>ew.

    Here we adopt a typical case of ew=4 and g=3 to facilitate the discussion.Figure 2 shows the four energy curves versus the normalized strain e.All the curves are obtained analytically from Eqs.(1)to(5),except for the case of local buckling(blue curve).It is clearlyshowninFig.2thatforverysmallstraine,theflatmodehas the lowest energy.As e increases,wrinkling,partial delamination and then total delamination modes become the lowest energy state in sequence.Intersections of the above energy curves are important because they indicate the transitions from one buckling mode to another.Depending on the values of ewand g,there are 6 possible intersections between these curves,which are found below.

    Fig.2.Normalized energy curves of the four buckling modes versus normalized applied strain.The inset in the dashed box shows illustrative details of the intersection points(not to scale)between the four curves.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    The intersection between flat and wrinkling(black and green curves)is found by setting(Eqs.(1)and(5)),which yields

    The intersection between flat and total delamination(black and red curves)is found by setting(Eqs.(1)and(4)), which yields

    The intersection between wrinkling and total delamination (black and red curves)is found by setting(Eqs. (4)and(5)),which yields

    Following the analysis of Wang et al.[23],the intersection between flat and partial delamination is found to be

    and that between partial delamination and total delamination is

    The intersection between wrinkling and partial delamination cannot be obtained analytically because the energy of partial delamination needs to be solved numerically from Eqs.(2)and(3). Here an approximate solution is obtained.We notice that the blue curve for partial delamination is very close to a linear line,and two points on this line can be given analytically by Eqs.(9)and(10)and Eqs.(1)and(4)as

    The energy curve for partial delamination can be approximated by the straight line connecting the two points in Eq.(11).The intersection point between this line and the wrinkling curve can be then obtained analytically as

    By carefully comparing the energies,one can determine which buckling mode has the lowest energy.However,the relations between these energies depend on the values of ewand g, and therefore require careful investigation of various cases.We categorize these cases by the value of ew=(3Es/E)2/3/(4εc)(an indication of relative stiffness of the substrate)as the following.

    (1)0< ew≤ 1:for extremely soft substrate,it is found that the energyofthewrinkling modeisalwayslowerthanthoseofpartial and total delamination modes.Therefore,the deformation map is obtained from Eq.(6)as

    (

    3)3<ew≤5:the conclusions are the same as Case 2 for weak adhesion ofFor stronger adhesion,the transitions from flat to wrinkling,then to partial and total delamination modes can be obtained from Eqs.(6),(10) and(12)as

    (4)ew>5:for relatively stiffer substrate(note:its Young’s modulusisstillfourtofiveordersofmagnitudelowerthanthat ofthefilm),theconclusionsarethesameastheresultsofWang et al.[23]for weak adhesion ofFor adhesion stronger than that,the transitions are the same as in Case 3:

    Fig.3.Deformation mapsversusthat separate the four buckling modes for various values of ew;the plots are generated for representative ewvalues of (a)0.8;(b)2.5;(c)4.0;(d)7.0.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Hereweusetheexampleinthepreviousstudies[21,22]toshow theutility ofthepresentedresults.Thematerialandgeometric and mechanical properties[22,23]are E=2.5 GPa,h=1.4μm,L= 150μm,Es=2.0 MPa,andγ=0.16 J/m2,which correspond to thenormalizedvaluesofew=15.6andg=69.6.Underthesetwo conditions,Eq.(16)applies and gives the following results(these can also be obtained from Fig.3(d)):

    These results agree very well with experimental observance shown in Fig.4:the film is flat(Fig.4(a))before compression is applied;under very small strain it wrinkles into multiple waves (Fig.4(b))and then quickly transits to the partial delamination mode(Fig.4(c));when|ε|exceeds about 8.5%[23],the film totally delaminated from the substrate(Fig.4(d)),which agrees very well with the 8.0%strain predicted by the analytical model.It should be noted that there may exist another buckling mode between the wrinkling and partial delamination modes,in which the film delaminates from the substrate from multiple locations.However, since the transitions happen at very similar strain levels,we propose to adopt the simplified model presented here.

    Fig.4.Experimental images of the four buckling modes.

    The deformed shape of the film and the peak strain for the flat, partial/total delamination modes are analyzed in detail by Wang et al.[23].For the wrinkling mode,Jiang’s analysis[2]shows that the wrinkling wavelengthλand amplitude A can be obtained by which gives the wavelength to be 67.5μm and agrees reasonably with 56.8μm from experiments(Fig.4(b)).This predicts 2–3 waves over the total span of L=150μm,which again agrees withexperimentalobservations(onlythemiddlewaveofthethree waves in Fig.4(b)spans for an entire wavelength ofλ).Therefore, for the wrinkling mode,we propose to follow Jiang’s approach in Ref.[2]to analyze the maximum strain to prevent fracture of the film structure.

    The deformation maps shown in Fig.3 are very important for the design of bio-integrated electronics,in the sense that they predict the buckling modes for any materials under any adhesion conditions.One crucial information they predict is the onset of interfacial delamination,indicated in these figures by the lower bounds of partial and total delamination modes(magenta,purple, cyan and red curves).

    In this paper,an analytical model is established for thin-film on elastomer structures in the context of bio-integrated electronics applications.Under different conditions in interfacial adhesion, stiffness of the elastomer(tissues)and the levels of compressive strain,the thin film buckles into various modes.The transitions between these modes are predicted analytically,and summarized infourdeformationmaps.Thelowerboundsofthepartialandtotal delamination modes predict the onset of interfacial delamination, which sets design criteria to avoid delamination and achieve intimate and conformal contact to bio-tissues.The analytically predicted information on deformation modes,maximum strain, and interfacial intactness,are important to the design and optimization of high performance bio-integrated electronics.

    Acknowledgment

    Theauthorsacknowledgepartialsupportofthisresearchbythe National Natural Science Foundation of China(Grants 11272260, 11172022,11572022,51075327,11302038).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.taml.2015.11.010.

    References

    [1]S.Wang,J.Song,D.-H.Kim,et al.,Local versus global buckling of thin films on elastomeric substrates,Appl.Phys.Lett.93(2008)023126. http://dx.doi.org/10.1063/1.2956402.

    [2]H.Jiang,D.-Y.Khang,J.Song,et al.,Finite deformation mechanics in buckled thin films on compliant supports,Proc.Natl.Acad.Sci.104(2007) 15607–15612.http://dx.doi.org/10.1073/pnas.0702927104.

    [3]J.Xiao,A.Carlson,Z.J.Liu,et al.,Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile,J.Appl.Mech. 77(2009)011003–011003-6,http://dx.doi.org/10.1115/1.3132184.

    [4]Y.Zhang,S.Xu,H.Fu,etal.,Bucklinginserpentinemicrostructuresandapplicationsinelastomer-supportedultra-stretchableelectronicswithhigharealcoverage,SoftMatter9(2013)8062–8070. http://dx.doi.org/10.1039/C3SM51360B.

    [5]Z.Li,Y.Wang,J.Xiao,Mechanicsofcurvilinearelectronicsandoptoelectronics, Curr.Opin.Solid State Mater.Sci.3(2015)171–189. http://dx.doi.org/10.1016/j.cossms.2015.01.003.

    [6]S.Xu,Z.Yan,K.-I.Jang,et al.,Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling,Science 347(2015) 154–159.http://dx.doi.org/10.1126/science.1260960.

    [7]Y.Xue,Y.Zhang,X.Feng,et al.,A theoretical model of reversible adhesion in shapememory surfacereliefstructuresand itsapplicationin transferprinting, J.Mech.Phys.Solids 77(2015)27–42. http://dx.doi.org/10.1016/j.jmps.2015.01.001.

    [8]Z.Li,J.Xiao,Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,J.Appl.Phys.117(2015)014904. http://dx.doi.org/10.1063/1.4905299.

    [9]H.C.Ko,M.P.Stoykovich,J.Song,et al.,A hemispherical electronic eye camera based on compressible silicon optoelectronics,Nature 454(2008)748–753. http://dx.doi.org/10.1038/nature07113.

    [10]G.Shin,I.Jung,V.Malyarchuk,etal.,Micromechanicsandadvanceddesignsfor curved photodetector arrays in hemispherical electronic-eye cameras,Small 6 (2010)851–856.http://dx.doi.org/10.1002/smll.200901350.

    [11]S.Wagner,S.P.Lacour,J.Jones,et al.,Electronic skin:architecture and components,Physica E 25(2004)326–334. http://dx.doi.org/10.1016/j.physe.2004.06.032.

    [12]S.P.Lacour,J.Jones,Z.Suo,et al.,Design and performance of thin metal film interconnects for skin-like electronic circuits,IEEE Electron Device Lett.25 (2004)179–181.http://dx.doi.org/10.1109/LED.2004.825190.

    [13]T.Someya,T.Sekitani,S.Iba,etal.,Alarge-area,flexiblepressuresensormatrixwithorganicfield-effecttransistorsforartificial skin applications,Proc.Natl.Acad.Sci.USA 101(2004)9966–9970. http://dx.doi.org/10.1073/pnas.0401918101.

    [14]S.Xu,Y.Zhang,L.Jia,etal.,Softmicrofluidicassembliesofsensors,circuits,andradiosfortheskin,Science344(2014)70–74. http://dx.doi.org/10.1126/science.1250169.

    [15]A.Nathan,B.Park,A.Sazonov,et al.,Amorphous silicon detector and thin film transistor technology for large-area imaging of X-rays,Microelectron.J. 31(2000)883–891.http://dx.doi.org/10.1016/S0026-2692(00)00082-3.

    [16]D.-H.Kim,N.Lu,R.Ma,et al.,Epidermal electronics,Science 333(2011) 838–843.http://dx.doi.org/10.1126/science.1206157.

    [17]L.Xu,S.R.Gutbrod,A.P.Bonifas,et al.,3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium,Nature Commun.5(2014)3329. http://dx.doi.org/10.1038/ncomms4329.

    [18]J.Viventi,D.-H.Kim,L.Vigeland,et al.,Flexible,foldable,actively multiplexed, high-density electrode array for mapping brain activity in vivo,Nat.Neurosci. 14(2011)1599–1605.http://dx.doi.org/10.1038/nn.2973.

    [19]Z.Y.Huang,W.Hong,Z.Suo,Nonlinear analyses of wrinkles in a film bonded to a compliant substrate,J.Mech.Phys.Solids 53(2005)2101–2118. http://dx.doi.org/10.1016/j.jmps.2005.03.007.

    [20]S.Wang,M.Li,J.Wu,et al.,Mechanics of epidermal electronics,J.Appl.Mech. 79(2012)031022–031022-6,http://dx.doi.org/10.1115/1.4005963.

    [21]H.Cheng,Y.Zhang,K.-C.Hwang,et al.,Buckling of a stiff thin film on a prestrained bi-layer substrate,Int.J.Solids Struct.51(2014)3113–3118. http://dx.doi.org/10.1016/j.ijsolstr.2014.05.012.

    [22]H.C.Ko,G.Shin,S.Wang,et al.,Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,Small 5(2009) 2703–2709.http://dx.doi.org/10.1002/smll.200900934.

    [23]S.Wang,J.Xiao,J.Song,et al.,Mechanics of curvilinear electronics,Soft Matter 6(2010)5757–5763.http://dx.doi.org/10.1039/C0SM00579G.

    13 October 2015

    in revised form 14 November 2015

    http://dx.doi.org/10.1016/j.taml.2015.11.010

    2095-0349/Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?.

    E-mail address:shuodao.wang@okstate.edu(S.Wang).

    女警被强在线播放| 丁香六月天网| 精品熟女少妇八av免费久了| 搡老乐熟女国产| 下体分泌物呈黄色| 美女午夜性视频免费| 国产av精品麻豆| 欧美日韩一级在线毛片| 美女福利国产在线| 亚洲av成人不卡在线观看播放网| 99精品欧美一区二区三区四区| 国产福利在线免费观看视频| 国产97色在线日韩免费| 在线观看舔阴道视频| 91字幕亚洲| 99国产精品免费福利视频| 又大又爽又粗| 国产日韩一区二区三区精品不卡| 另类精品久久| 国产午夜精品久久久久久| 中亚洲国语对白在线视频| 久久久久久亚洲精品国产蜜桃av| 丰满少妇做爰视频| 女人高潮潮喷娇喘18禁视频| 黄色视频,在线免费观看| 免费观看a级毛片全部| 久久国产精品人妻蜜桃| 亚洲国产欧美日韩在线播放| www.999成人在线观看| 人成视频在线观看免费观看| 久久久精品94久久精品| 麻豆乱淫一区二区| 精品一区二区三卡| av网站免费在线观看视频| 大片电影免费在线观看免费| 久热爱精品视频在线9| 精品一品国产午夜福利视频| 国产成人精品无人区| 亚洲成国产人片在线观看| 丰满少妇做爰视频| 久久久国产欧美日韩av| 大型av网站在线播放| 91麻豆av在线| 黄色成人免费大全| kizo精华| 久久精品亚洲av国产电影网| 精品一区二区三区av网在线观看 | 国产免费现黄频在线看| 极品人妻少妇av视频| 午夜福利视频精品| 一个人免费看片子| 国产精品 国内视频| 国产男女内射视频| 久久久精品区二区三区| 99国产精品免费福利视频| 久久午夜亚洲精品久久| 啦啦啦视频在线资源免费观看| 悠悠久久av| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 我的亚洲天堂| 日韩制服丝袜自拍偷拍| 18禁美女被吸乳视频| 成人国语在线视频| 亚洲精品一卡2卡三卡4卡5卡| 极品少妇高潮喷水抽搐| 午夜福利欧美成人| 亚洲成人手机| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 国产av精品麻豆| 高清毛片免费观看视频网站 | 国产成人av激情在线播放| 女人爽到高潮嗷嗷叫在线视频| 97人妻天天添夜夜摸| 999久久久精品免费观看国产| 巨乳人妻的诱惑在线观看| 日韩成人在线观看一区二区三区| 日本欧美视频一区| 一区福利在线观看| 国产亚洲欧美在线一区二区| 久久99一区二区三区| 69精品国产乱码久久久| 精品午夜福利视频在线观看一区 | 亚洲午夜理论影院| 亚洲欧美精品综合一区二区三区| 91字幕亚洲| 欧美变态另类bdsm刘玥| 久久中文字幕人妻熟女| 久久精品亚洲av国产电影网| 午夜老司机福利片| 在线观看舔阴道视频| 一个人免费看片子| 一边摸一边抽搐一进一小说 | 激情视频va一区二区三区| 高清视频免费观看一区二区| 99热网站在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲,欧美精品.| tocl精华| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看 | 欧美成狂野欧美在线观看| 亚洲精品久久午夜乱码| 好男人电影高清在线观看| 久久精品人人爽人人爽视色| 一级片'在线观看视频| 国产精品免费视频内射| 国产一区二区激情短视频| 日本撒尿小便嘘嘘汇集6| 一本大道久久a久久精品| 亚洲国产看品久久| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 国产淫语在线视频| 国产欧美日韩一区二区精品| 一本大道久久a久久精品| 日韩 欧美 亚洲 中文字幕| 中国美女看黄片| 精品一区二区三区av网在线观看 | 日本av免费视频播放| 脱女人内裤的视频| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 欧美大码av| 悠悠久久av| 国产精品自产拍在线观看55亚洲 | 色老头精品视频在线观看| 在线观看一区二区三区激情| 高清毛片免费观看视频网站 | 99香蕉大伊视频| 亚洲av片天天在线观看| 考比视频在线观看| 国产麻豆69| 国产精品久久久久成人av| 考比视频在线观看| 精品国产一区二区久久| 欧美精品亚洲一区二区| 女性生殖器流出的白浆| 欧美中文综合在线视频| 国产欧美日韩一区二区三区在线| 黄频高清免费视频| 50天的宝宝边吃奶边哭怎么回事| 搡老岳熟女国产| 中国美女看黄片| 脱女人内裤的视频| 成年动漫av网址| 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| a级毛片在线看网站| 我的亚洲天堂| 国产淫语在线视频| 无人区码免费观看不卡 | 久久性视频一级片| 一区二区三区乱码不卡18| h视频一区二区三区| 欧美乱妇无乱码| 亚洲av成人一区二区三| 他把我摸到了高潮在线观看 | 精品一区二区三卡| 操出白浆在线播放| av免费在线观看网站| 一二三四社区在线视频社区8| 国产麻豆69| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 国产高清videossex| 三上悠亚av全集在线观看| 欧美激情高清一区二区三区| 欧美精品av麻豆av| 波多野结衣av一区二区av| 最新的欧美精品一区二区| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 久久精品亚洲av国产电影网| 午夜91福利影院| 久久精品aⅴ一区二区三区四区| 69精品国产乱码久久久| 国产精品98久久久久久宅男小说| 大香蕉久久网| 高清在线国产一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久性视频一级片| 高清欧美精品videossex| 亚洲成人国产一区在线观看| 精品欧美一区二区三区在线| 自线自在国产av| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 日韩欧美一区视频在线观看| 一进一出抽搐动态| 在线观看www视频免费| 丝袜美腿诱惑在线| 在线播放国产精品三级| 亚洲国产毛片av蜜桃av| 99香蕉大伊视频| 久久久久网色| 俄罗斯特黄特色一大片| 久久久久精品国产欧美久久久| 亚洲全国av大片| 啪啪无遮挡十八禁网站| 女人爽到高潮嗷嗷叫在线视频| 欧美老熟妇乱子伦牲交| 一级片'在线观看视频| 欧美 日韩 精品 国产| 一夜夜www| 50天的宝宝边吃奶边哭怎么回事| tube8黄色片| 亚洲五月婷婷丁香| 成年版毛片免费区| 国内毛片毛片毛片毛片毛片| 脱女人内裤的视频| 1024香蕉在线观看| 狂野欧美激情性xxxx| 在线观看www视频免费| 免费观看av网站的网址| 国产日韩一区二区三区精品不卡| 久久国产精品男人的天堂亚洲| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 80岁老熟妇乱子伦牲交| 日韩有码中文字幕| 国产亚洲av高清不卡| 五月开心婷婷网| 亚洲精品中文字幕在线视频| 俄罗斯特黄特色一大片| 精品国内亚洲2022精品成人 | 国产野战对白在线观看| 久久久国产成人免费| 不卡av一区二区三区| 日本精品一区二区三区蜜桃| 欧美中文综合在线视频| 免费看a级黄色片| 欧美亚洲 丝袜 人妻 在线| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 最新在线观看一区二区三区| 欧美日韩黄片免| 狠狠婷婷综合久久久久久88av| 色尼玛亚洲综合影院| 男人舔女人的私密视频| 亚洲精华国产精华精| 精品高清国产在线一区| 免费在线观看完整版高清| 国产成人欧美在线观看 | 日本精品一区二区三区蜜桃| 亚洲欧洲精品一区二区精品久久久| 国产男靠女视频免费网站| 欧美精品一区二区免费开放| 久久国产精品影院| 欧美日韩亚洲综合一区二区三区_| 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| 热99re8久久精品国产| 在线观看免费视频日本深夜| 欧美精品一区二区大全| 中文字幕精品免费在线观看视频| 亚洲精品美女久久av网站| 色尼玛亚洲综合影院| 在线观看人妻少妇| 99久久国产精品久久久| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 又黄又粗又硬又大视频| 亚洲av电影在线进入| 黄色a级毛片大全视频| 精品一区二区三卡| 免费不卡黄色视频| 日韩制服丝袜自拍偷拍| 操出白浆在线播放| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 亚洲午夜理论影院| 国产精品九九99| 最近最新中文字幕大全电影3 | 欧美日本中文国产一区发布| 丰满迷人的少妇在线观看| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 国产在线一区二区三区精| 欧美乱妇无乱码| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 超碰成人久久| 久久人妻熟女aⅴ| 精品少妇内射三级| 亚洲精品国产精品久久久不卡| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 亚洲精品乱久久久久久| 精品亚洲成国产av| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人看| 热re99久久精品国产66热6| av网站免费在线观看视频| 无限看片的www在线观看| 日韩熟女老妇一区二区性免费视频| 欧美久久黑人一区二区| kizo精华| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 免费久久久久久久精品成人欧美视频| 日韩精品免费视频一区二区三区| 成人三级做爰电影| 搡老岳熟女国产| 99热网站在线观看| 亚洲全国av大片| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 久久精品91无色码中文字幕| 欧美精品亚洲一区二区| 久久免费观看电影| 九色亚洲精品在线播放| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 国产精品av久久久久免费| 亚洲精品av麻豆狂野| 91精品三级在线观看| 欧美大码av| 欧美变态另类bdsm刘玥| 成人影院久久| a级片在线免费高清观看视频| 亚洲精品国产一区二区精华液| 丝袜喷水一区| 日韩中文字幕视频在线看片| 亚洲第一av免费看| 欧美另类亚洲清纯唯美| 亚洲欧美色中文字幕在线| 夜夜夜夜夜久久久久| 久久人人97超碰香蕉20202| 久久香蕉激情| 大型黄色视频在线免费观看| 久久这里只有精品19| 亚洲全国av大片| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 精品久久久久久电影网| 精品亚洲成国产av| 久久久久国产一级毛片高清牌| 丁香六月天网| 久久久久国产一级毛片高清牌| 在线观看人妻少妇| 91麻豆av在线| 一区福利在线观看| 伦理电影免费视频| 亚洲精品一二三| 黄色丝袜av网址大全| 亚洲精品久久成人aⅴ小说| 高清av免费在线| 搡老岳熟女国产| 日韩中文字幕视频在线看片| 亚洲国产看品久久| 精品久久蜜臀av无| 男女无遮挡免费网站观看| 亚洲综合色网址| 国产精品久久久av美女十八| 午夜激情久久久久久久| 一区二区日韩欧美中文字幕| 丰满人妻熟妇乱又伦精品不卡| 久久亚洲精品不卡| 伦理电影免费视频| 深夜精品福利| 国精品久久久久久国模美| 国产欧美亚洲国产| 色综合婷婷激情| 国产成人精品在线电影| 成人永久免费在线观看视频 | 一边摸一边做爽爽视频免费| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美| 一区二区av电影网| 日本五十路高清| e午夜精品久久久久久久| videos熟女内射| 夜夜夜夜夜久久久久| 91成人精品电影| 亚洲精品乱久久久久久| avwww免费| 欧美国产精品一级二级三级| 亚洲成人国产一区在线观看| 日本av手机在线免费观看| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 色94色欧美一区二区| 99九九在线精品视频| 欧美日韩亚洲综合一区二区三区_| av电影中文网址| 少妇裸体淫交视频免费看高清 | 午夜久久久在线观看| 久热这里只有精品99| 国产高清videossex| 1024香蕉在线观看| 一级毛片女人18水好多| 精品久久久久久久毛片微露脸| 搡老熟女国产l中国老女人| 欧美日韩亚洲综合一区二区三区_| 无限看片的www在线观看| 国产免费福利视频在线观看| 国产精品免费视频内射| 欧美乱妇无乱码| 国产一区有黄有色的免费视频| 亚洲综合色网址| 久久精品国产亚洲av香蕉五月 | 国产视频一区二区在线看| 久久性视频一级片| 自线自在国产av| 操美女的视频在线观看| 国产不卡一卡二| 欧美国产精品一级二级三级| 亚洲成av片中文字幕在线观看| 亚洲色图综合在线观看| 成在线人永久免费视频| 欧美国产精品va在线观看不卡| 亚洲av欧美aⅴ国产| 麻豆成人av在线观看| 久久性视频一级片| 久久人人97超碰香蕉20202| av片东京热男人的天堂| h视频一区二区三区| 最新美女视频免费是黄的| 深夜精品福利| 精品卡一卡二卡四卡免费| 狠狠婷婷综合久久久久久88av| 岛国在线观看网站| 大香蕉久久成人网| 大型黄色视频在线免费观看| 可以免费在线观看a视频的电影网站| 男女无遮挡免费网站观看| www.熟女人妻精品国产| 一二三四社区在线视频社区8| 99国产精品99久久久久| 精品免费久久久久久久清纯 | 在线永久观看黄色视频| 国产99久久九九免费精品| 90打野战视频偷拍视频| 五月天丁香电影| 午夜福利在线观看吧| 不卡一级毛片| 两人在一起打扑克的视频| 国产精品av久久久久免费| 国产在视频线精品| 亚洲精华国产精华精| 精品国产超薄肉色丝袜足j| 欧美日韩一级在线毛片| tube8黄色片| 多毛熟女@视频| 亚洲久久久国产精品| 色播在线永久视频| 久久久久久久精品吃奶| 不卡一级毛片| 亚洲免费av在线视频| 亚洲国产看品久久| 国产在线精品亚洲第一网站| 国产成人精品在线电影| 成年版毛片免费区| 免费观看a级毛片全部| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 深夜精品福利| 在线观看舔阴道视频| 国产精品久久久久久人妻精品电影 | 日韩视频一区二区在线观看| 手机成人av网站| 成年人黄色毛片网站| 国产深夜福利视频在线观看| 国产男女内射视频| 99在线人妻在线中文字幕 | 亚洲成人免费av在线播放| 夫妻午夜视频| 99在线人妻在线中文字幕 | 亚洲欧美色中文字幕在线| 久久久久精品国产欧美久久久| 亚洲精品美女久久av网站| 国产在视频线精品| 最新的欧美精品一区二区| 亚洲专区中文字幕在线| 一级片'在线观看视频| 人妻一区二区av| 丝袜美足系列| 久久亚洲真实| 999久久久国产精品视频| 在线av久久热| 宅男免费午夜| 欧美日韩国产mv在线观看视频| 欧美精品一区二区大全| 欧美 日韩 精品 国产| 少妇的丰满在线观看| 一进一出好大好爽视频| 丝袜美足系列| 国产精品 国内视频| 午夜视频精品福利| 中文字幕色久视频| 一本一本久久a久久精品综合妖精| 精品卡一卡二卡四卡免费| av网站免费在线观看视频| 亚洲国产欧美日韩在线播放| 精品欧美一区二区三区在线| 亚洲久久久国产精品| 午夜福利影视在线免费观看| 欧美亚洲 丝袜 人妻 在线| 日韩欧美国产一区二区入口| 欧美国产精品一级二级三级| 成人免费观看视频高清| 午夜激情av网站| 亚洲人成电影免费在线| 国产淫语在线视频| 久久青草综合色| 国产免费福利视频在线观看| 国产精品久久久久久精品古装| 欧美黄色淫秽网站| 久久av网站| 美国免费a级毛片| 亚洲av国产av综合av卡| 亚洲精品在线观看二区| 国产人伦9x9x在线观看| 免费高清在线观看日韩| 亚洲五月色婷婷综合| 一进一出抽搐动态| 久久精品国产亚洲av香蕉五月 | 国产在线一区二区三区精| 色尼玛亚洲综合影院| videosex国产| 一级黄色大片毛片| 色婷婷av一区二区三区视频| 欧美午夜高清在线| 天天躁日日躁夜夜躁夜夜| 久久精品成人免费网站| 亚洲精品在线观看二区| 国产精品一区二区在线不卡| 久久中文字幕人妻熟女| 国产亚洲一区二区精品| 少妇的丰满在线观看| 亚洲久久久国产精品| 不卡av一区二区三区| 成人黄色视频免费在线看| 国产又爽黄色视频| 啦啦啦在线免费观看视频4| 男女下面插进去视频免费观看| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 亚洲精品国产精品久久久不卡| 欧美日韩av久久| 热99re8久久精品国产| av视频免费观看在线观看| netflix在线观看网站| 十八禁人妻一区二区| 丁香六月天网| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| www.精华液| 国产精品一区二区在线观看99| 亚洲精品成人av观看孕妇| 操美女的视频在线观看| 一本一本久久a久久精品综合妖精| 亚洲自偷自拍图片 自拍| 一区在线观看完整版| 一区福利在线观看| 精品卡一卡二卡四卡免费| 欧美亚洲 丝袜 人妻 在线| 丝袜喷水一区| 脱女人内裤的视频| 亚洲国产欧美一区二区综合| 午夜免费成人在线视频| 久久久久久久久免费视频了| 天堂中文最新版在线下载| 少妇粗大呻吟视频| 成人18禁在线播放| 国产有黄有色有爽视频| 欧美日韩黄片免| 熟女少妇亚洲综合色aaa.| 国产在线免费精品| 国产精品1区2区在线观看. | 亚洲精品国产色婷婷电影| 精品国产一区二区三区久久久樱花| 热re99久久精品国产66热6| 人妻久久中文字幕网| 日韩熟女老妇一区二区性免费视频| 亚洲五月色婷婷综合| 亚洲精品乱久久久久久| 欧美激情极品国产一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成a人片在线一区二区| www.999成人在线观看| 黄色视频在线播放观看不卡| 免费不卡黄色视频| 十八禁网站网址无遮挡| 国产精品1区2区在线观看. | 久久人妻av系列| 亚洲国产精品一区二区三区在线| 好男人电影高清在线观看| 成人18禁高潮啪啪吃奶动态图| 少妇裸体淫交视频免费看高清 | 大片免费播放器 马上看| 一区二区三区精品91| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区免费| 黄片大片在线免费观看| 国产又色又爽无遮挡免费看| 丝袜美足系列| 制服诱惑二区| 考比视频在线观看| 欧美人与性动交α欧美软件| 99热国产这里只有精品6| 久久中文看片网| 美女国产高潮福利片在线看| 色婷婷av一区二区三区视频| 国产在线视频一区二区| 亚洲欧美日韩另类电影网站|