• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Endogenous bioelectric fields: a putative regulator of wound repair and regeneration in the central nervous system

    2016-12-02 10:48:04MatthewBaerRaymondColello
    關鍵詞:探究護理研究

    Matthew L. Baer, Raymond J. Colello

    Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA

    How to cite this article: Baer ML, Colello RJ (2016) Endogenous bioelectric fields∶ a putative regulator of wound repair and regeneration in the central nervous system. Neural Regen Res 11(6)∶861-864.

    INVITED REVIEW

    Endogenous bioelectric fields: a putative regulator of wound repair and regeneration in the central nervous system

    Matthew L. Baer, Raymond J. Colello*

    Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA

    How to cite this article: Baer ML, Colello RJ (2016) Endogenous bioelectric fields∶ a putative regulator of wound repair and regeneration in the central nervous system. Neural Regen Res 11(6)∶861-864.

    Studies on a variety of highly regenerative tissues, including the central nervous system (CNS) in non-mammalian vertebrates, have consistently demonstrated that tissue damage induces the formation of an ionic current at the site of injury. These injury currents generate electric fields (EF) that are 100-fold increased in intensity over that measured for uninjured tissue. In vitro and in vivo experiments have convincingly demonstrated that these electric fields (by their orientation, intensity and duration) can drive the migration, proliferation and differentiation of a host of cell types. These cellular behaviors are all necessary to facilitate regeneration as blocking these EFs at the site of injury inhibits tissue repair while enhancing their intensity promotes repair. Consequently, injury-induced currents, and the EFs they produce, represent a potent and crucial signal to drive tissue regeneration and repair. In this review, we will discuss how injury currents are generated, how cells detect these currents and what cellular responses they can induce. Additionally, we will describe the growing evidence suggesting that EFs play a key role in regulating the cellular response to injury and may be a therapeutic target for inducing regeneration in the mammalian CNS.

    Accepted: 2016-05-09

    electric fields; injury current; regeneration; galvanotaxis; glia; traumatic brain injury; migration; proliferation

    Traumatic injury to the mammalian central nervous system (CNS) is characterized by minimal functional recovery, in large part because wound repair generally inhibits regeneration through the formation of a cystic cavity that is an anatomical barrier to regeneration, and glial scar that is enriched with extracellular matrix molecules that inhibit sprouting axons (Silver and Miller, 2004). In contrast, many non-mammalian vertebrates demonstrate profound functional recovery following spinal cord transection, cortical stab wounds, infarcts, and even the removal of large portions of the brain through the complete regeneration of the damaged tissue (Tanaka and Ferretti, 2009; Ferreira et al., 2012). These differences in regenerative potential persist in peripheral tissues, where there are examples of non-mammalian vertebrates demonstrating regeneration of the limb, tail, cardiac ventricle, jaw, lens, and cornea (McCaig et al., 2005). The regenerative potential of injured tissues is closely linked to the intensity of injury-induced direct-current bioelectric fields (EFs), which increase upon injury and reach a greater intensity in regenerating tissues than they do in non-regenerating tissues (Borgens et al., 1979a; McCaig et al., 2005). In peripheral tissues, injury-induced EFs are both necessary and sufficient to stimulate regeneration: attenuating endogenous EFs aborts spontaneous regeneration (Borgens et al., 1979b), whereas enhancing endogenous EFs can induce regeneration in those tissues of species where regeneration is normally not expressed (Becker and Spadaro, 1972; Borgens et al., 1977).

    Injury-induced EFs are an ideal signal to coordinate the cellular response to CNS injury because they are inherently directional and thus they can guide cells towards the lesion site (a process called electrotaxis), and because their intensity is proportional to the severity of the injury and thus they can stimulate an appropriately robust cellular response. Bioelectric fields are physiologically produced by all tissues because the epithelial cells lining each tissue have an asymmetric distribution of ion channels and transporters in their membrane that sustains a constitutive ionic current into the tissue (Figure 1A) (Colello and Alexander, 2003; McCaig et al., 2005). Tight junctions between epithelial cells allow Na+to accumulate within the tissue, creating a trans-epithelial electrical potential (TEP). Ohm's law quantifies the relationship between the magnitude of the TEP (V) and both the ionic current (I) produced by the electrogenic Na+current and the electrical resistance (R) of the epithelial cells and tight junctions such that V = IR. EFs, which are voltage gradients within tissues, are produced by variations in the TEP across the epithelial surface. EFs are relatively low in magnitude in intact tissues where they are a result of local variations in either the electrical resistivity or the ionic current across the epithelium. Large EFs arise when the electrochemical resistivity across the epithelium is lost, which locally grounds the TEP (i.e., TEP = 0 mV) and creates a large voltage gradient with the surrounding tissue where the TEP is sustained (Figure 1B). Moreover, disruption of the epithelial integrity allows Na+to diffuse down itsconcentration gradient and out of the tissue, and this ionic current further contributes to the induced EF. In embryonic tissues, tight junctions between epithelial cells break down at sites of high cellular activity and growth such as at the developing limb bud, creating large EFs, which have been shown to be necessary for normal limb development. In injured tissues, physical damage disrupts the epithelial barrier, creating large EFs that are sustained throughout the healing process. Interestingly, regeneration induced by high EFs recapitulates the same physiologic mechanisms of embryogenesis, suggesting that EFs regulate both of these processes through the same mechanisms (Stewart et al., 2007). As the physiology of embryogenesis is largely conserved among vertebrates, this suggests that all vertebrates may have a latent ability to regenerate, but that regeneration is only expressed in those in which injury induced EFs reach an intensity that is sufficient enough to activate these pathways.

    Just as all tissues produce EFs, all cells detect these EFs through electrostatic interactions between these EFs and charged molecules both in the extracellular matrix (ECM) and in the cellular membrane (McCaig et al., 2005). In the ECM, these electrostatic forces cause those molecules with a net charge to move (a process called electrophoresis) and thus establish a concentration gradient, and they cause neutral molecules containing electrical dipoles (i.e., the local separation of charges within the molecule but no overall charge) to align their dipoles — and thus their overall molecular orientation — to be parallel to the EF (Colello and Alexander, 2003; Levin, 2014). Thus, cells may indirectly respond to external EFs through the effect that EFs have on the orientation and concentration of molecules in the surrounding environment. Cells may also directly transduce the external EF either by creating a voltage drop across the cell that affects the resting membrane potential and thus the activity of voltage-sensitive membrane proteins, or by inducing electroosmosis of membrane proteins through which they redistribute to one side of the cell in a charge-dependent manner. Together, these mechanisms allow cells to detect both the magnitude and direction of the external EF, and the non-specific electrostatic interactions allow cell-type specific responses to these EFs based on the particular ECM molecules expressed in the given tissue and on the particular proteins expressed by each cell type. Multiple pathways have been implicated in EF transduction in a variety of cell types and the general trend is that EFs affect cellular behaviors through the same physiologic mechanisms by which these cells would otherwise respond to chemical stimuli.

    Recently, ex vivo recordings, which are made using a vibrating electrode to measure the current density across a tissues surface (Reid and Zhao, 2011), have demonstrated that the adult mouse cortex and hippocampus both produce endogenous EFs (Cao et al., 2013, 2015). In the CNS, epithelial cells lining the ventricles contribute to these endogenous EFs by sustaining an inward ionic current into the SVZ; while the surface of the cortex is not lined by an epithelium per se, the astrocytic end feet composing the glia limitans perform the same role in generating EFs. Interestingly, the cortical surface sustains an outward ionic current, which is explained by the fact that the astrocytic endfeet have a distribution of membrane proteins opposite of that in epithelial cells, such that the Na+/K+-ATPases are localized to the apical domain while the and Na+channels in the basolateral domain. As EFs in the CNS increase upon injury and demonstrate other physiologic properties that are similar to those produced in peripheral tissues, this raises the possibility that, as in the periphery, EFs may be able to activate endogenous mechanisms for regeneration in the CNS. In vitro experiments, where cells are exposed to EFs by applying a direct current through the culture chamber (Song et al., 2007; Baer et al., 2015), have shown that EFs have an intensity-dependent response on multiple cell types in the CNS, affecting neural stem cell migration, proliferation, and differentiation; astrocyte migration, proliferation, and process alignment; neuronal neurite outgrowth; and microglia cyclooxygenase-2 expression and morphologic markers of reactivity (Ariza et al., 2010; Cao et al., 2013; Pelletier et al., 2014; Baer et al., 2015). In general, these EF-induced behavioral responses emerge only at intensities associated with injured and regenerating tissues, and they become more robust at higher EF intensities. In vivo, applying EFs using implanted current-stimulating electrodes has a modest effect on promoting axon sprouting after spinal cord injury in Guinea Pigs (Borgens and Bohnert, 1997). These effects were found both when the EF orientation was constant, and when the EF polarity was reversed every 45 minutes to try and further enhance axon outgrowth towards the lesion by taking advantage of the fact that, upon EF exposure in vitro, spinal neurons extend neuritis towards the cathode faster than they retract those facing the anode (Jaffe and Poo, 1979). Taken together, these observations demonstrate that EFs can induce a behavioral phenotype that is associated with regeneration among multiple cell types from the mammalian CNS, and they suggest that EFs may be able to therapeutically induce regeneration.

    The importance of EFs is that they are an endogenous signal generated at an injury site that, upon reaching a certain threshold, may activate an innate regenerative response pre-programmed within the cells that is characterized by migration, proliferation, and changes in cellular differentiation. Once activated, the regenerative physiology occurs spontaneously and thus would require minimal — if any— subsequent therapeutic intervention. In order to demonstrate that endogenous EFs drive these physiologic responses, experimental design needs to consider not only the EF intensities both that are endogenously present in mammals and that are necessary to induce regeneration in nonmammalian vertebrates, but also the time frame over which the cellular behaviors putatively induced by EFs emerge both during the normal injury response and during a successful regenerative response in vivo. Previous research hints that EFs may induce a regenerative response in the CNS, and suggests that EFs may as have an intensity dependent effect on inducingwound repair and regeneration (Borgens et al., 1981, 1987). However, these studies are limited because they do not consider the EF-intensities found in the injured mammalian CNS in vivo, the EF-intensities associated with successful regeneration, the range of cellular behaviors necessary for a regenerative response, or the time frame over which these behaviors develop following an injury.

    Figure 1 Physiology of endogenous bioelectric fields.

    More recently, our laboratory has been exploring the physiologic role of EFs in driving the cellular response to injury in the mammalian CNS by using an in vitro approach to test a series of interrelated hypotheses: that EFs associated with intact tissues maintain a basal cellular response characteristic of that within the adult CNS, that EFs associated with injured mammalian tissues drive a cellular response that is characterized by cellular reactivity, and that EFs associated with regenerating non-mammalian vertebrate tissues induce a cellular response characteristic of regeneration. The astrocytic response to CNS injury in mammals is non-regenerative, in that astrocytes create a glial scar that inhibits sprouting axons from extending past the lesion, while the astrocytic response in regenerating non-mammalian vertebrates is regenerative, in that astrocytes form a bridge across the lesion site and actively guides regenerating axons towards their original targets (Silver and Miller, 2004; Floyd and Lyeth, 2007; Tanaka and Ferretti, 2009). Thus, we initially assessed whether EFs induce each of the behaviors associated with these responses using purified cortical astrocytes, and we compared the duration over which these behaviors emerge in vitro relative to the timeline over which these same astrocytic responses occur following injury in vivo (Baer et al., 2015). We found that EFs associated with intact tissues (4 mV/mm) had no behavioral effects as compared to unexposed controls. In contrast, EFs associated with both injured mammalian tissues (40 mV/mm) and regenerating non-mammalian vertebrate tissues (400 mV/mm) induced a robust increase in astrocyte migration and in proliferation; whereas the effects on migration were almost immediate, the increase in proliferation emerged only after 48 hours of exposure. Moreover, these effects were transient among astrocytes exposed to EFs associated with the injured mammalian CNS, while they were more robust and sustained among those cells exposed to EFs associated with regeneration. Most interestingly, only EFs associated with regeneration induced morphological changes in astrocytes whereby they developed elongated, highly aligned processes; these highly aligned bipolar astrocytes are morphologically similar to astrocytes in the regenerating CNS that guide sprouting axons. Furthermore, in previous studies, our group and others have found that these EF-exposed aligned astrocytes facilitate robust axon outgrowth in vitro as compared to cells exposed to no EF (Alexander et al., 2006). The fact that the same behaviors necessary for the normal astrocytic response to injury both in mammalian and non-mammalian vertebrates are induced by physiologic EFs associated with injury and regeneration, respectively, together with the observation that these behaviors emerge over the same time period as they do in vivo, suggests that injury-induced EFs may be a crucial regulator of repair.

    In conclusion, physiologic EFs may play an important role in the cellular response to injury and in regulating regeneration in the mammalian CNS. This hypothesis, if confirmed by further studies, suggests that the absence of significantregeneration in the mammalian CNS is due to the insufficient intensity of the injury-induced EFs. Thus, it may be possible to induce regeneration by therapeutically enhancing EFs such that they pass the threshold that is required to activate the necessary endogenous physiologic mechanisms. Moreover, as EFs are a major component of the stimulus driving a regenerative response, applied EFs should be able to induce regeneration regardless of the delay between the initial injury and the start of therapy. However, it is essential to establish a better understanding of the intensity of injury-induced EFs within the mammalian CNS in vivo and how these EFs change throughout the wound repair process. Moreover, as the mechanisms by which cells detect these EFs have yet to be elucidated, it is unclear what magnitude and duration of EF stimulation is necessary to induce regeneration. Nevertheless, growing evidence suggests that EFs play a likely role in regulating the cellular response to injury and may be a therapeutic target for inducing regeneration in the mammalian CNS.

    Author contributions: MLB wrote the initial draft of this manuscript and composed the figure. RJC was involved in editing and revising the manuscript.

    Conflicts of interest: None declared.

    References

    Alexander J, Fuss B, Colello R (2006) Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol 2:93-103.

    Ariza CA, Fleury AT, Tormos CJ, Petruk V, Chawla S, Oh J, Sakaguchi DS, Mallapragada SK (2010) The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev 6:585-600.

    Baer ML, Henderson SC, Colello RJ (2015) Elucidating the role of injury-induced electric fields (EFs) in regulating the astrocytic response to injury in the mammalian central nervous system. PLoS One 10:e0142740.

    不同于正常人,人格障礙患者人際關系、生活風格較為異常,異常程度往往超過了正常變動范圍,時常同社會發(fā)生激烈沖突。同時,人格障礙疾病不穩(wěn)定,嚴重影響到患者的生活品質(zhì),且對社會造成了嚴重的危害。臨床上,我們不僅要采取有效的治療方法,還應探究針對性護理干預方式,改善患者人格障礙癥,盡早步入社會。本研究提出采用綜合性護理干預方式,并同常規(guī)護理進行分組對比,現(xiàn)將整個研究匯報如下。

    Becker RO, Spadaro JA (1972) Electrical stimulation of partial limb regeneration in mammals. Bull N Y Acad Med 48:627-641.

    Borgens RB, Bohnert DM (1997) The responses of mammalian spinal axons to an applied DC voltage gradient. Exp Neurol 145:376-389.

    Borgens RB, Blight AR, McGinnis ME (1987) Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig. Science 238:366-369.

    Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611-617.

    Borgens RB, Vanable JW,Jr, Jaffe LF (1979a) Role of subdermal current shunts in the failure of frogs to regenerate. J Exp Zool 209:49-56.

    Borgens RB, Vanable JW, Jr, Jaffe LF (1979b) Reduction of sodium dependent stump currents disturbs urodele limb regeneration. J Exp Zool 209:377-386.

    Cao L, Pu J, Scott RH, Ching J, McCaig CD (2015) Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion. Stem Cell Rev 11:75-86.

    Cao L, Wei D, Reid B, Zhao S, Pu J, Pan T, Yamoah E, Zhao M (2013) Endogenous electric currents might guide rostral migration of neuroblasts. EMBO Rep 14:184-190.

    Colello RJ, Alexander JK (2003) Chapter 6 - electrical fields: Their nature and influence on biological systems. In: Advanced semiconductor and organic nano-techniques (Morkoc H, ed), pp319. San Diego: Academic Press.

    Ferreira LM, Floriddia E, Quadrato G, Di Giovanni S (2012) Neural regeneration: Lessons from regenerating and non-regenerating systems. Mol Neurobiol 46:227-241.

    Floyd CL, Lyeth BG (2007) Astroglia: Important mediators of traumatic brain injury. Prog Brain Res 161:61-79.

    Jaffe LF, Poo MM (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209:115-128.

    Levin M (2014) Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 592:2295-2305.

    McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: Current views and future potential. Physiol Rev 85:943-978.

    Pelletier SJ, Lagace M, St-Amour I, Arsenault D, Cisbani G, Chabrat A, Fecteau S, Levesque M, Cicchetti F (2014) The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int J Neuropsychopharmacol 18:pyu090.

    Reid B, Zhao M (2011) Measurement of bioelectric current with a vibrating probe. J Vis Exp 47:e2358.

    Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146-156.

    Song B, Gu Y, Pu J, Reid B, Zhao Z, Zhao M (2007) Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat Protoc 2:1479-1489.

    Stewart S, Rojas-Mu?oz A, Izpisúa Belmonte JC (2007) Bioelectricity and epimorphic regeneration. Bioessays 29:1133-1137.

    Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10:713-723.

    10.4103/1673-5374.184446

    *Correspondence to: Raymond J. Colello, Ph.D., raymond.colello@vcuhealth.org.

    猜你喜歡
    探究護理研究
    一道探究題的解法及應用
    FMS與YBT相關性的實證研究
    遼代千人邑研究述論
    一道IMO預選題的探究
    視錯覺在平面設計中的應用與研究
    科技傳播(2019年22期)2020-01-14 03:06:54
    EMA伺服控制系統(tǒng)研究
    急腹癥的急診觀察與護理
    探究式學習在國外
    快樂語文(2018年13期)2018-06-11 01:18:16
    一道IMO預選題的探究及思考
    建立長期護理險迫在眉睫
    老司机福利观看| 亚洲午夜精品一区,二区,三区| 久久影院123| 热99久久久久精品小说推荐| 高潮久久久久久久久久久不卡| 国产男女超爽视频在线观看| 夜夜骑夜夜射夜夜干| 大香蕉久久成人网| 他把我摸到了高潮在线观看 | 久久久久精品人妻al黑| 一本久久精品| 菩萨蛮人人尽说江南好唐韦庄| 人妻一区二区av| 亚洲中文日韩欧美视频| 久久免费观看电影| 99国产极品粉嫩在线观看| 国产精品熟女久久久久浪| 免费av中文字幕在线| 午夜福利在线免费观看网站| 自线自在国产av| 精品高清国产在线一区| 两性夫妻黄色片| 亚洲精品国产精品久久久不卡| 日本91视频免费播放| 丰满少妇做爰视频| 中文字幕色久视频| 这个男人来自地球电影免费观看| 色94色欧美一区二区| 在线观看一区二区三区激情| 一本久久精品| 9色porny在线观看| 亚洲第一欧美日韩一区二区三区 | 一级a爱视频在线免费观看| 国产精品欧美亚洲77777| 嫁个100分男人电影在线观看| 亚洲精品国产精品久久久不卡| 免费黄频网站在线观看国产| 在线观看www视频免费| 精品久久久精品久久久| 久久久久国产一级毛片高清牌| 国产精品秋霞免费鲁丝片| 最近最新免费中文字幕在线| 国产欧美亚洲国产| 丁香六月天网| 美女国产高潮福利片在线看| 日日摸夜夜添夜夜添小说| 一本色道久久久久久精品综合| 母亲3免费完整高清在线观看| 成人亚洲精品一区在线观看| 91麻豆精品激情在线观看国产 | av网站在线播放免费| 亚洲激情五月婷婷啪啪| videosex国产| 80岁老熟妇乱子伦牲交| 啦啦啦啦在线视频资源| 咕卡用的链子| 日日爽夜夜爽网站| av片东京热男人的天堂| 美女主播在线视频| 亚洲激情五月婷婷啪啪| 国产伦理片在线播放av一区| 丝瓜视频免费看黄片| 午夜福利影视在线免费观看| 午夜激情久久久久久久| 欧美黄色淫秽网站| 黄色片一级片一级黄色片| 母亲3免费完整高清在线观看| 国产一区二区三区在线臀色熟女 | 国产99久久九九免费精品| 久久久国产成人免费| 中文字幕人妻丝袜制服| 热99久久久久精品小说推荐| 不卡一级毛片| 国产亚洲一区二区精品| 亚洲欧美激情在线| 国产精品 欧美亚洲| 免费人妻精品一区二区三区视频| 日韩三级视频一区二区三区| 国产又色又爽无遮挡免| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产a三级三级三级| 亚洲一区中文字幕在线| 王馨瑶露胸无遮挡在线观看| 9色porny在线观看| 男女高潮啪啪啪动态图| 日本撒尿小便嘘嘘汇集6| 91av网站免费观看| 久久中文看片网| 丝瓜视频免费看黄片| 在线 av 中文字幕| 亚洲av片天天在线观看| 黄色毛片三级朝国网站| av网站在线播放免费| 最黄视频免费看| 少妇裸体淫交视频免费看高清 | 午夜老司机福利片| 免费黄频网站在线观看国产| 久久综合国产亚洲精品| 国产一区二区在线观看av| 国产成人影院久久av| 午夜福利免费观看在线| 天天躁狠狠躁夜夜躁狠狠躁| 男男h啪啪无遮挡| 日本猛色少妇xxxxx猛交久久| 大香蕉久久成人网| 亚洲性夜色夜夜综合| 国产欧美日韩一区二区三 | 亚洲精品久久成人aⅴ小说| 日韩一区二区三区影片| 丁香六月欧美| 黑人欧美特级aaaaaa片| 亚洲欧洲精品一区二区精品久久久| 99热网站在线观看| 免费在线观看黄色视频的| 嫁个100分男人电影在线观看| 亚洲性夜色夜夜综合| 欧美激情 高清一区二区三区| 精品亚洲成国产av| 妹子高潮喷水视频| 老司机亚洲免费影院| 久久影院123| 各种免费的搞黄视频| 日韩制服骚丝袜av| 99热国产这里只有精品6| 亚洲九九香蕉| 精品一品国产午夜福利视频| 老汉色∧v一级毛片| 国产精品熟女久久久久浪| 窝窝影院91人妻| 成人影院久久| 国产熟女午夜一区二区三区| 中亚洲国语对白在线视频| 51午夜福利影视在线观看| 天堂中文最新版在线下载| 国产精品自产拍在线观看55亚洲 | 日韩人妻精品一区2区三区| 亚洲国产日韩一区二区| 精品人妻在线不人妻| 精品亚洲成a人片在线观看| 新久久久久国产一级毛片| 一区二区三区激情视频| 国产老妇伦熟女老妇高清| 日日夜夜操网爽| √禁漫天堂资源中文www| 成人三级做爰电影| 少妇的丰满在线观看| 国产av又大| 亚洲人成电影观看| 伊人亚洲综合成人网| 亚洲性夜色夜夜综合| 黄片小视频在线播放| 搡老岳熟女国产| av天堂在线播放| 亚洲精品中文字幕在线视频| 一边摸一边做爽爽视频免费| 中文字幕精品免费在线观看视频| 精品少妇内射三级| 搡老熟女国产l中国老女人| 日韩中文字幕欧美一区二区| 亚洲成人免费电影在线观看| a 毛片基地| 午夜日韩欧美国产| 国产精品熟女久久久久浪| 狠狠婷婷综合久久久久久88av| 美女高潮到喷水免费观看| 久久久久久久精品精品| 纵有疾风起免费观看全集完整版| 999久久久精品免费观看国产| 中文字幕av电影在线播放| 啦啦啦中文免费视频观看日本| 99国产精品99久久久久| 在线观看免费高清a一片| 久久国产亚洲av麻豆专区| 热re99久久国产66热| 国产1区2区3区精品| 一本综合久久免费| 高清欧美精品videossex| 亚洲av成人一区二区三| 王馨瑶露胸无遮挡在线观看| 91精品国产国语对白视频| 日韩免费高清中文字幕av| 美国免费a级毛片| 欧美人与性动交α欧美软件| 岛国在线观看网站| 黄网站色视频无遮挡免费观看| 激情视频va一区二区三区| 18禁观看日本| 男女午夜视频在线观看| 九色亚洲精品在线播放| 999久久久精品免费观看国产| 国产日韩欧美视频二区| 欧美日韩黄片免| 成年av动漫网址| 日本91视频免费播放| 91麻豆精品激情在线观看国产 | 亚洲国产成人一精品久久久| 婷婷成人精品国产| www.自偷自拍.com| 午夜精品国产一区二区电影| 亚洲av成人不卡在线观看播放网 | 国产精品自产拍在线观看55亚洲 | 国产麻豆69| 欧美人与性动交α欧美精品济南到| 亚洲激情五月婷婷啪啪| 超色免费av| 欧美亚洲 丝袜 人妻 在线| 又大又爽又粗| 欧美日韩福利视频一区二区| 中文字幕色久视频| 一本色道久久久久久精品综合| 777米奇影视久久| 久久影院123| 一区二区三区四区激情视频| 国产免费一区二区三区四区乱码| 欧美人与性动交α欧美软件| 亚洲精品第二区| 三上悠亚av全集在线观看| 男人舔女人的私密视频| av线在线观看网站| 欧美精品高潮呻吟av久久| 国产成人系列免费观看| 久久精品人人爽人人爽视色| 国产精品久久久久久人妻精品电影 | 两个人看的免费小视频| 色播在线永久视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品国产av蜜桃| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜一区二区| 性高湖久久久久久久久免费观看| 美女大奶头黄色视频| 美女主播在线视频| 黑人猛操日本美女一级片| 日日爽夜夜爽网站| 国产老妇伦熟女老妇高清| 国产一级毛片在线| 国产精品久久久人人做人人爽| videosex国产| 一级片免费观看大全| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲欧美在线一区二区| 精品免费久久久久久久清纯 | 看免费av毛片| 免费在线观看视频国产中文字幕亚洲 | 手机成人av网站| 97在线人人人人妻| 一个人免费看片子| 国产日韩欧美在线精品| 男女床上黄色一级片免费看| www.999成人在线观看| 国产91精品成人一区二区三区 | 爱豆传媒免费全集在线观看| 中文字幕人妻熟女乱码| 波多野结衣一区麻豆| 欧美黄色淫秽网站| 午夜久久久在线观看| 国产av国产精品国产| 亚洲精品国产av成人精品| 在线 av 中文字幕| 久久久久网色| 日韩中文字幕欧美一区二区| 三上悠亚av全集在线观看| 欧美精品高潮呻吟av久久| 两个人免费观看高清视频| 一本一本久久a久久精品综合妖精| 国产免费现黄频在线看| 黑丝袜美女国产一区| 久久精品国产亚洲av高清一级| 汤姆久久久久久久影院中文字幕| 精品国产一区二区久久| 国产激情久久老熟女| 久久国产精品人妻蜜桃| 日日夜夜操网爽| 国产在视频线精品| 国产精品一二三区在线看| 国产欧美日韩一区二区三区在线| 涩涩av久久男人的天堂| 午夜免费成人在线视频| 午夜福利,免费看| 欧美激情高清一区二区三区| 国产av又大| 久久久久国产一级毛片高清牌| 久久久久精品国产欧美久久久 | 五月天丁香电影| 黑人巨大精品欧美一区二区mp4| 自线自在国产av| 欧美在线黄色| 男人添女人高潮全过程视频| 两个人免费观看高清视频| 国产精品一区二区在线观看99| 人成视频在线观看免费观看| 国产欧美日韩一区二区精品| 操美女的视频在线观看| 免费在线观看日本一区| 美国免费a级毛片| 午夜两性在线视频| av线在线观看网站| kizo精华| 久久精品国产亚洲av高清一级| 欧美日韩成人在线一区二区| 久久这里只有精品19| 成年女人毛片免费观看观看9 | 一级片'在线观看视频| 啦啦啦在线免费观看视频4| 国产精品免费视频内射| av在线老鸭窝| 人人妻人人爽人人添夜夜欢视频| 亚洲人成77777在线视频| 两性夫妻黄色片| 法律面前人人平等表现在哪些方面 | 50天的宝宝边吃奶边哭怎么回事| av不卡在线播放| 国产高清视频在线播放一区 | 色婷婷av一区二区三区视频| 午夜免费鲁丝| 黑人巨大精品欧美一区二区mp4| 欧美97在线视频| 成在线人永久免费视频| 日韩有码中文字幕| 久久午夜综合久久蜜桃| 色老头精品视频在线观看| 国产日韩欧美亚洲二区| 亚洲精品粉嫩美女一区| 免费人妻精品一区二区三区视频| av网站在线播放免费| 一区二区三区四区激情视频| 久久久久网色| 午夜免费成人在线视频| 日韩三级视频一区二区三区| 伊人亚洲综合成人网| 日本vs欧美在线观看视频| av国产精品久久久久影院| 久热爱精品视频在线9| 久久国产精品男人的天堂亚洲| 大陆偷拍与自拍| 久久精品亚洲av国产电影网| √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 人人妻人人爽人人添夜夜欢视频| 别揉我奶头~嗯~啊~动态视频 | 丝袜喷水一区| 国产一区有黄有色的免费视频| 亚洲精品日韩在线中文字幕| 黑人操中国人逼视频| 精品人妻1区二区| 麻豆av在线久日| 美国免费a级毛片| 久久久欧美国产精品| 国产麻豆69| 韩国高清视频一区二区三区| 国产伦理片在线播放av一区| 美女午夜性视频免费| 久久精品亚洲av国产电影网| av电影中文网址| 在线永久观看黄色视频| 亚洲伊人久久精品综合| 不卡av一区二区三区| tube8黄色片| 51午夜福利影视在线观看| 制服人妻中文乱码| 丝瓜视频免费看黄片| 99在线视频只有这里精品首页| 可以在线观看毛片的网站| av国产免费在线观看| 亚洲五月婷婷丁香| 色综合婷婷激情| 在线观看一区二区三区| 麻豆成人午夜福利视频| 欧美日本视频| 91麻豆精品激情在线观看国产| 99热6这里只有精品| 老熟妇乱子伦视频在线观看| 亚洲精品美女久久久久99蜜臀| 久久这里只有精品19| 精品福利观看| 亚洲精品国产精品久久久不卡| 中出人妻视频一区二区| 亚洲中文字幕日韩| 天天添夜夜摸| 午夜久久久久精精品| 国产精品久久久久久亚洲av鲁大| 岛国在线免费视频观看| 久久久精品大字幕| 无遮挡黄片免费观看| 禁无遮挡网站| 免费在线观看视频国产中文字幕亚洲| 国产成年人精品一区二区| 色av中文字幕| 12—13女人毛片做爰片一| 国产精华一区二区三区| 又黄又粗又硬又大视频| 2021天堂中文幕一二区在线观| 我的老师免费观看完整版| 男女下面进入的视频免费午夜| 精品乱码久久久久久99久播| 精品久久久久久久末码| 蜜桃久久精品国产亚洲av| 久久久久亚洲av毛片大全| 久久久久国内视频| 男女那种视频在线观看| 黄色a级毛片大全视频| 午夜福利18| www.www免费av| 真人做人爱边吃奶动态| 丰满人妻一区二区三区视频av | 久久精品综合一区二区三区| 夜夜爽天天搞| 午夜成年电影在线免费观看| 精品福利观看| 久久精品影院6| aaaaa片日本免费| av免费在线观看网站| 一二三四社区在线视频社区8| 久久香蕉激情| 中文字幕av在线有码专区| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 欧美中文日本在线观看视频| 国产精品乱码一区二三区的特点| 亚洲成人精品中文字幕电影| av欧美777| 婷婷六月久久综合丁香| 亚洲精品美女久久久久99蜜臀| 极品教师在线免费播放| 一个人观看的视频www高清免费观看 | 婷婷精品国产亚洲av在线| 午夜免费观看网址| 国产精品精品国产色婷婷| 黑人巨大精品欧美一区二区mp4| 免费无遮挡裸体视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人成人乱码亚洲影| 哪里可以看免费的av片| cao死你这个sao货| 狂野欧美白嫩少妇大欣赏| 日本三级黄在线观看| 亚洲成av人片在线播放无| 无遮挡黄片免费观看| 亚洲aⅴ乱码一区二区在线播放 | 久久久久亚洲av毛片大全| 国产三级黄色录像| 成人三级做爰电影| 精品少妇一区二区三区视频日本电影| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 国产午夜精品论理片| 久久精品国产清高在天天线| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 大型黄色视频在线免费观看| 九九热线精品视视频播放| 欧美3d第一页| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 国内精品久久久久久久电影| 老司机深夜福利视频在线观看| 在线永久观看黄色视频| 亚洲人成电影免费在线| 不卡av一区二区三区| 国产91精品成人一区二区三区| 一进一出抽搐动态| 免费无遮挡裸体视频| 久久精品综合一区二区三区| 色综合欧美亚洲国产小说| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看| 久久这里只有精品19| 变态另类成人亚洲欧美熟女| 亚洲中文av在线| 免费看日本二区| 全区人妻精品视频| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 美女免费视频网站| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影| 中文字幕人妻丝袜一区二区| 很黄的视频免费| 精品不卡国产一区二区三区| 亚洲精品久久成人aⅴ小说| 制服丝袜大香蕉在线| 欧美成人午夜精品| 国产免费男女视频| 国产成人av激情在线播放| 色尼玛亚洲综合影院| 日本一区二区免费在线视频| 国内精品久久久久精免费| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 男男h啪啪无遮挡| 色在线成人网| 亚洲欧美一区二区三区黑人| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 丝袜人妻中文字幕| 国产精品亚洲美女久久久| 18禁国产床啪视频网站| 亚洲人成伊人成综合网2020| 国产精品98久久久久久宅男小说| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| ponron亚洲| 亚洲国产精品成人综合色| 黄色毛片三级朝国网站| 国产蜜桃级精品一区二区三区| 精品免费久久久久久久清纯| www.精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 嫁个100分男人电影在线观看| 欧美一级毛片孕妇| 久久精品亚洲精品国产色婷小说| 我的老师免费观看完整版| 国产精品免费一区二区三区在线| 在线观看午夜福利视频| 一本精品99久久精品77| 亚洲色图av天堂| 国产在线观看jvid| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 人人妻人人看人人澡| 色哟哟哟哟哟哟| 中文字幕人妻丝袜一区二区| 一边摸一边抽搐一进一小说| 国产人伦9x9x在线观看| 亚洲人成网站在线播放欧美日韩| 免费在线观看完整版高清| 毛片女人毛片| 可以在线观看毛片的网站| 国产三级中文精品| 亚洲av熟女| 一级毛片高清免费大全| 色综合亚洲欧美另类图片| 又爽又黄无遮挡网站| 久久久久久人人人人人| 日本a在线网址| 一级毛片高清免费大全| 国产av一区二区精品久久| 夜夜夜夜夜久久久久| 三级男女做爰猛烈吃奶摸视频| videosex国产| 亚洲精品国产一区二区精华液| 免费看a级黄色片| 这个男人来自地球电影免费观看| 在线观看舔阴道视频| av福利片在线| 国产亚洲精品综合一区在线观看 | 日韩精品青青久久久久久| 久久99热这里只有精品18| 亚洲国产精品成人综合色| 国产亚洲精品一区二区www| 国产精品免费一区二区三区在线| 在线看三级毛片| 久久久久久人人人人人| 日韩高清综合在线| 成人国产综合亚洲| or卡值多少钱| 亚洲 欧美一区二区三区| 无遮挡黄片免费观看| 99久久国产精品久久久| 国产视频一区二区在线看| 一个人免费在线观看电影 | 观看免费一级毛片| 久久99热这里只有精品18| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 三级毛片av免费| 色哟哟哟哟哟哟| 成年人黄色毛片网站| 国产精品亚洲一级av第二区| 久久精品成人免费网站| 一二三四在线观看免费中文在| cao死你这个sao货| 岛国在线观看网站| 俄罗斯特黄特色一大片| 人人妻人人看人人澡| 亚洲中文av在线| 看片在线看免费视频| 99re在线观看精品视频| 午夜激情福利司机影院| 亚洲熟女毛片儿| 男女视频在线观看网站免费 | 国产一区二区在线av高清观看| 高潮久久久久久久久久久不卡| 99精品欧美一区二区三区四区| 国产成人av激情在线播放| 久久精品国产清高在天天线| 最新美女视频免费是黄的| 亚洲av美国av| 国产人伦9x9x在线观看| 久久婷婷人人爽人人干人人爱| 亚洲av电影不卡..在线观看| 丁香欧美五月| 国产成人欧美在线观看| 久久久国产欧美日韩av| 三级毛片av免费| 亚洲自拍偷在线| 免费看日本二区| 美女大奶头视频| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| 美女免费视频网站| www.熟女人妻精品国产| www.999成人在线观看| 人人妻人人看人人澡| 亚洲一码二码三码区别大吗| 啦啦啦韩国在线观看视频| 老司机靠b影院| 国产成人精品无人区| 手机成人av网站| 午夜福利在线观看吧| 日本黄大片高清| 亚洲精品一区av在线观看| 18美女黄网站色大片免费观看|