• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uncoupling protein 2 in the glial response to stress: implications for neuroprotection

    2016-12-01 09:23:27DanielHassColinBarnstableDepartmentofNeuralandBehavioralSciencesThePennsylvaniaStateUniversityCollegeofMedicineHersheyPAUSA
    關(guān)鍵詞:盛贊郡縣制廷尉

    Daniel T. Hass, Colin J. BarnstableDepartment of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA

    INVITED REVIEW

    Uncoupling protein 2 in the glial response to stress: implications for neuroprotection

    Daniel T. Hass, Colin J. Barnstable*
    Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA

    How to cite this article: Hass DT, Barnstable CJ (2016) Uncoupling protein 2 in the glial response to stress∶ implications for neuroprotection. Neural Regen Res 11(8)∶1197-1200.

    orcid:

    0000-0002-7011-4068

    (Colin J. Barnstable)

    Accepted: 2016-08-10

    Reactive oxygen species (ROS) are free radicals thought to mediate the neurotoxic effects of several neurodegenerative disorders. In the central nervous system, ROS can also trigger a phenotypic switch in both astrocytes and microglia that further aggravates neurodegeneration, termed reactive gliosis. Negative regulators of ROS, such as mitochondrial uncoupling protein 2 (UCP2) are neuroprotective factors that decrease neuron loss in models of stroke, epilepsy, and parkinsonism. However, it is unclear whether UCP2 acts purely to prevent ROS production, or also to prevent gliosis. In this review article, we discuss published evidence supporting the hypothesis that UCP2 is a neuroprotective factor both through its direct effects in decreasing mitochondrial ROS and through its effects in astrocytes and microglia. A major effect of UCP2 activation in glia is a change in the spectrum of secreted cytokines towards a more anti-inflammatory spectrum. There are multiple mechanisms that can control the level or activity of UCP2, including a variety of metabolites and microRNAs. Understanding these mechanisms will be key to exploitingthe protective effects of UCP2 in therapies for multiple neurodegenerative conditions.

    neuroprotection; astrocytes; microglia; reactive oxygen species; oxidative stress; mitochondrial uncoupling proteins; cytokines; neurodegeneration

    Introduction

    Reactive oxygen species (ROS) are free radicals that can damage DNA, lipids, and proteins. In neurons, elevations in ROS in neurons are associated with cell death and degeneration, while increases in glial ROS can stimulate a phenotypic change known as reactive gliosis, characterized by several alterations in homeostatic function (Sofroniew, 2009; Choi et al., 2012). While in some circumstances gliosis creates a supportive environment in the central nervous system (CNS), during neurodegeneration it more frequently inhibits neuronal survival and regeneration (Sofroniew, 2009; Tang and Le, 2016). ROS-induced cellular damage and gliosis are both pathogenic mechanisms implicated in the progression of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and stroke (Sofroniew, 2009; Tang and Le, 2016).

    Uncoupling protein 2 (UCP2) is a solute carrier protein in the inner mitochondrial membrane that regulates proton leak and consequently the production of mitochondrial ROS (Krauss et al., 2005). UCP2 activity is protective against ROS-induced cell death in the CNS (Mattiasson et al., 2003; Barnstable et al., 2016). While UCP2 can be protective by acting directly in neurons, the main objective of this article is to provide support for the hypothesis that a component of UCP2’s neuroprotective effect originates in glia, and works by reducing the inflammatory response of glia to oxidative stress. We initiated a Medline search for “UCP2 AND (astrocytes OR microglia)”, and found several key publications that support this hypothesis. We detail these findings in Table 1 and below.

    ROS and Disorders of the CNS

    ROS, such as O-2, H2O2, HO-2are anobligatory result of mitochondrial oxidative phosphorylation, and are normally detoxified by endogenous antioxidant proteins such as superoxide dismutase, catalase, and glutathione. When ROS levels exceed the protective buffer of these antioxidant defenses, cells become oxidatively stressed. Persistent oxidative stress can cause cell dysfunction and eventually death. While oxidative stress in the CNS may directly cause neuronal death, it also triggers several morphological and functional changes in astrocytes and microglia in a process known as reactive gliosis (Choi et al., 2012; Lu et al., 2014). While reactive gliosis is frequently supportive of neuronal survival after an acute injury or stroke, persistent glial reactivity is thought to contribute to neuronal death by disrupting the homeostasis of metabolism and cell signaling (Sofroniew, 2009). Although these phenomena are only reactions to an initial insult that causes neurodegeneration, both oxidative stress and reactive gliosis are hallmarks and potential therapeutic targets in several neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, ALS, and stroke (Sofroniew, 2009; Choi et al., 2012; Tang and Le, 2016).

    Neuroprotection by Uncoupling

    Given the interplay between oxidative stress, reactive gliosis, and neurodegeneration, we propose a therapeutic strategy that protects against neurodegeneration by decreasing ROS levels and preventing pathogenic glial activation. The majority of cellular ROS are produced in mitochondria,and ROS production is higher at greater transmembrane proton gradients (Korshunov et al., 1997). Our approach to decreasing ROS is to utilize the endogenous function of mitochondrial uncoupling proteins (UCPs). UCPs are proton transporters situated in the inner mitochondrial membrane, and are involved in diminishing the transmembrane proton gradient (Krauss et al., 2005). This activity reduces the drive for ROS production and consequently decreases cell death (Lapp et al., 2014). Mitochondrial uncoupling has been best exhibited as a neuroprotective strategy in studies of uncoupling protein 2 the activity and overexpression of which can dramatically decrease CNS cell death due to oxidative damage in vitro, as well as in mouse models of pilocarpine-induced seizures, middle cerebral artery occlusion-induced stroke, parkinsonism induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and N-methyl-D-aspartate (NMDA)-induced retinal excitotoxicity (Mattiasson et al., 2003; Lapp et al., 2014; Lu et al., 2014; Barnstable et al., 2016). Although UCP2 overexpression in mice is a well-validated strategy for protection against ROS-induced cell death, it is unclear whether this activity is the entire mechanism of UCP2-mediated neuroprotection. While many previous studies have assumed that the primary site of UCP2’s action is within neurons, we propose that mitochondrial uncoupling has an equally important effect on glial cells of the CNS. The studies we review suggest that in addition to its directly effects which protect against ROS-induced cell death, UCP2 is also able to regulate the response of astrocytes and microglia to cellular stress.

    Table 1 Relevant findings of discussed literature

    The Effects of UCP2 Activity in Astrocytes

    Astrocytes are the most abundant cell type in the CNS. They promote neuronal survival by regulating the levels of neurotransmitter, metabolites, and antioxidants in the extracellular environment (Sofroniew, 2009). In disorders of the CNS, astrocytes can adopt a reactive, pro-inflammatory phenotype, characterized by the upregulation of the intermediate filament glial fibrillary acidic protein (GFAP), a reduction in neurotransmitter uptake, metabolic changes, and the release of pro-inflammatory cytokines (Sofroniew, 2009). Although at rest UCP2 is found primarily in neurons, our recent data indicate that UCP2 is dynamically regulated and that protein levels in astrocytes rapidly increase in response to cellular stress (Lapp et al., 2014). Findings by Lu et al. suggest that UCP2 plays an important role in glial reactivity. They found that compared to control mice treated with theneurotoxin MPTP, the brains of MPTP-treated UCP2-deficient mice had greater GFAP immunoreactivity and an enhanced expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) (Lu et al., 2014). Similarly, UCP2 deficiency or inhibition in primary astrocyte cultures increased NLRP3 inflammasome activation, IL-1β production, and cell death in response to oxidative stress (Lapp et al., 2014; Lu et al., 2014). These data show that UCP2 can influence the reactive phenotype of stressed astrocytes. In addition to this role, astrocytic UCP2 may also modulate brain oxidative status through its effects on the supply of one of the most potent free-radical scavengers in the CNS, glutathione. Once produced in the brain, ROS can be detoxified either directly by glutathione in astrocytes or from neuron-derived glutathione, which is synthesized using astrocyte-supplied cysteine. UCP2 levels are positively correlated with glutathione content in several tissues (Vozza et al., 2014), suggesting that in the CNS, the activity of astrocytic UCP2 may be important for the preservation of other endogenous antioxidant systems. Functional evidence supporting the hypothesis that mitochondrial uncoupling in astrocytes increases neuronal survival comes from recent studies of the other brain uncoupling proteins. When overexpressed in primary astrocytes, the UCP family members UCP4 and UCP5 decrease basal H2O2release and increase the survival of untransfected neuronal co-cultures (Perreten Lambert et al., 2014). This neuroprotective effect of other uncoupling proteins in glia strongly implies that increases in astrocytic uncoupling proteins, such as UCP2, will similarly increase neuronal survival (Figure 1).

    Figure 1 Scheme of hypothetical changes to the function of neurons, astrocytes, and microglia due to uncoupling protein 2 (UCP2) activity.

    The Effects of UCP2 Activity in Microglia

    Microglia are the resident immune cells of the CNS that scavenge the neural environment in order to sense infection or damage. In response to various stimuli, microglia can adopt cytotoxic (M1), or protective (M2) phenotypes. Stimulation of microglia by factors such as lipopolysaccharide (LPS), interferon-γ (IFN-γ), and ROS can induce an M1 state characterized by phagocytic activity, the secretion of pro-inflammatory cytokines IL-1β, nitric oxide, TNF-α, and the generation of ROS (Choi et al., 2012; Tang and Le, 2016). Alternatively, anti-inflammatory signals such as IL-4 can bias microglia towards an M2 state, characterized by the secretion of other anti-inflammatory cytokines such as IL-10 and IL-13 (Choi et al., 2012; Tang and Le, 2016). In many neurodegenerative disorders, microglia are persistently activated in the M1 state, which may either be the cause or consequence of high ROS levels (Choi et al., 2012). UCP2 is expressed in microglia and dynamically modulates the production of ROS in response to an infection, suggesting that it may also control microglial activation. This is best exemplified in UCP2 deficient mice, which are immune to toxoplasmosis infection due the ability of their microglia to generate excessive levels of ROS and IL-1β (Arsenijevic et al., 2000). More recent findings also support the hypothesis that UCP2 controls the activation state of microglia. De Simone et al. (2015) demonstrated that microglial UCP2 deficiency increases the LPS-stimulated secretion of the M1 markers nitrite, TNF-α, and IL-6. The same study also found a correlative relationship between levels of IL-4, which stimulates an M2 phenotype and the transcription of UCP2 (De Simone et al., 2015). Due to the causal relationship between microglial ROS and cellular phenotype (Choi et al., 2012; De Simone et al., 2015), increases in UCP2 activity may prejudice microglia towards an anti-inflammatory M2 phenotype, which may be neuroprotective in disorders characterized by persistent glial reactivity (Figure 1). However, it is important to note that the activity of UCP2 is only beneficial under certain circumstances, and based on the literature presented above, UCP2 overexpression could handicap the innate immune response to brain infection. Together, the known effects of UCP2 on astrocytic and microglial phenotypes denote asignificant role for UCP2 in the glial response to cellular stress, and imply that increases in UCP2 will be neuroprotective by reversing the secretion of inflammatory factors and increasing or preserving the supply of endogenous antioxidants.

    韓愈在他的《伯夷頌》中,盛贊伯夷“特立獨(dú)行”“信道篤而自知明”。伯夷的事有些爭(zhēng)議,且不提他。但李斯的事,還是值得一說(shuō)的。秦王朝建立以后,丞相王綰提出以分封制治國(guó),沒(méi)有人提出疑義,獨(dú)李斯區(qū)區(qū)一個(gè)廷尉,敢當(dāng)眾站出來(lái)反對(duì),并提出了一個(gè)新的制度,即郡縣制。重要的是,他舌戰(zhàn)群儒,最終使得秦始皇采納了他的意見(jiàn)。郡縣制奠定了中國(guó)兩千多年封建社會(huì)政治制度的基本格局,也為現(xiàn)代的行政區(qū)劃分提供了重要的歷史參考。

    Mitochondrial Uncoupling is Highly Regulated

    In order to exploit the protective effect of UCP2 in glia or any other cell type, we must understand the transcriptional, post-transcriptional, and post-translational mechanisms that control its activity and protein levels. Astrocytic UCP2 is transcriptionally regulated by signal transducer and activator of transcription 3 (STAT3), sterol regulatory element-binding proteins (SREBPs), sirtuins, peroxisome proliferator-activated receptor-γ coactivator 1α/β (PGC1α/β), peroxisome proliferator-activated receptors (PPARs), thyroid hormone receptors, and SMAD4 (Donadelli et al., 2014; Lapp et al., 2014). These factors are each endpoints of multiple cellular pathways that respond to a wide range of stimuli, implying that UCP2 transcription is a response to many different cellular conditions. However, as several groups have demonstrated, UCP2 transcription does not always correlate with protein expression (Lapp et al., 2014). Instead, UCP2 is regulated post-transcriptionally by several factors, including LPS, superoxide, and glutamine (Donadelli et al., 2014). These factors are thought to work through a number of ways. One is inhibition of translation through a constitutively active upstream open reading frame (uORF) in exon 2 of the UCP2 transcript (Donadelli et al., 2014). Specific microRNAs and RNA-binding proteins can also regulate UCP2 mRNA stability. For example, transcript degradation by mmu-miR-30e or has-miR-15a in kidney epithelium and colorectal cancer cells, translational inhibition mmu-miR-133a in muscle tissue, and translational enhancement by the RNA-binding protein hnRNP-K in heart tissue have all been described (Donadelli et al., 2014). The cell-type specific nature of microRNAs and other factors mentioned above may eventually allow for microRNA-based therapeutics, which can inhibit the negative regulation of UCP2 in select cell types such as microglia or astrocytes. In addition to the numerous factors that control UCP2 mRNA and protein levels, the proton transport activity of UCP2 is also dynamically regulated. The proton conductance of UCP2 is stimulated by coenzyme Q, fatty acids, and superoxides in the mitochondrial matrix, and inhibited by glutathione via a reversible covalent modification (Donadelli et al., 2014). The complexity of these regulatory mechanisms implies multiple points of intervention to manipulate UCP2 levels, especially through non-invasive molecules such as glutathione, fatty acids, glutamine, and coenzyme Q. The modulation of these molecules in the diet may be a simple way by which to increase uncoupling activity and potentially stimulate the protective effects of UCP2 in the CNS.

    Conclusions

    Current therapeutic efforts directed at reducing oxidative stress in neurodegenerative disorders have yet to be successful in clinical trials, implying the need for more potent regulators of ROS levels. Despite substantial evidence implying that the modulation of oxidative stress by UCP2 will be protective across a wide spectrum of disorders, UCP2-based therapeutics have yet to be developed for humans. Given the many ways in which endogenous regulatory machinery can regulate the levels and activity of UCP2, we believe there are many opportunities to design therapeutic agents that can manipulate this machinery. Since the UCP2 plays a critical role in the response of astrocytes and microglia to damage, we propose that increasing glial UCP2 activity may be therapeutic by decreasing the secretion of inflammatory factors and increasing or preserving the supply of endogenous antioxidants to increase neuronal survival (Figure 1).

    Author contributions: DTH and CJB each contributed to the preparation and editing of this manuscript.

    Conflicts of interest: None declared.

    References

    Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26:435-439.

    Barnstable CJ, Reddy R, Li H, Horvath TL (2016) Mitochondrial uncoupling protein 2 (UCP2) regulates retinal ganglion cell number and survival. J Mol Neurosci 58:461-469.

    Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F (2012) Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem 120:292-301.

    De Simone R, Ajmone-Cat MA, Pandolfi M, Bernardo A, De Nuccio C, Minghetti L, Visentin S (2015) The mitochondrial uncoupling protein-2 is a master regulator of both M1 and M2 microglial responses. J Neurochem 135:147-156.

    Donadelli M, Dando I, Fiorini C, Palmieri M (2014) UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 71:1171-1190.

    Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15-18.

    Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6:248-261.

    Lapp DW, Zhang SS, Barnstable CJ (2014) Stat3 mediates LIF-induced protection of astrocytes against toxic ROS by upregulating the UPC2 mRNA pool. Glia 62:159-170.

    Lu M, Sun XL, Qiao C, Liu Y, Ding JH, Hu G (2014) Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging 35:421-430.

    Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062-1068.

    Perreten Lambert H, Zenger M, Azarias G, Chatton JY, Magistretti PJ, Lengacher S (2014) Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival. J Biol Chem 289:31014-31028.

    Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638-647.

    Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181-1194.

    Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A 111:960-965.

    10.4103/1673-5374.189159

    *Correspondence to: Colin J. Barnstable, D.Phil., cbarnstable@psu.edu.

    猜你喜歡
    盛贊郡縣制廷尉
    采桑子·陽(yáng)信萬(wàn)畝秋梨香(新韻)
    中醫(yī)藥堂傳奇 第五十一回 李德全考察中醫(yī)藥 馮玉祥盛贊雷允上
    徐慶華
    從王朝興替看大型企業(yè)經(jīng)營(yíng)管理
    從王朝興替看大型企業(yè)經(jīng)營(yíng)管理
    茅盾文學(xué)獎(jiǎng)評(píng)委高海濤盛贊《嶺南創(chuàng)作文叢》
    淺論吐魯番郡王統(tǒng)治下維吾爾族的經(jīng)濟(jì)情況
    黑龍江史志(2014年1期)2014-11-11 03:32:12
    國(guó)法大于皇權(quán)
    月讀(2014年10期)2014-09-18 13:05:26
    當(dāng)眾出丑的真意
    如何調(diào)動(dòng)學(xué)生主動(dòng)發(fā)言的積極性
    考試周刊(2013年74期)2013-04-29 13:29:38
    久久久久久亚洲精品国产蜜桃av| 精品一区二区三区av网在线观看| 99国产精品99久久久久| 午夜成年电影在线免费观看| 国产三级黄色录像| 亚洲狠狠婷婷综合久久图片| 久久久久久大精品| 99精品欧美一区二区三区四区| 亚洲,欧美精品.| 亚洲精品美女久久久久99蜜臀| 99热只有精品国产| 久久久水蜜桃国产精品网| 变态另类丝袜制服| 日韩欧美免费精品| 免费看美女性在线毛片视频| 99久久无色码亚洲精品果冻| 亚洲成av人片免费观看| 后天国语完整版免费观看| 中文字幕精品亚洲无线码一区| 久久精品国产99精品国产亚洲性色| 很黄的视频免费| 日韩有码中文字幕| 成年女人毛片免费观看观看9| 日韩欧美在线二视频| 精品久久久久久久久久免费视频| 久久久久久久久中文| 日韩国内少妇激情av| 国产精品1区2区在线观看.| 亚洲一区二区三区色噜噜| 亚洲精品在线观看二区| 色噜噜av男人的天堂激情| 岛国视频午夜一区免费看| videosex国产| 大型av网站在线播放| 一本久久中文字幕| 在线观看日韩欧美| 国产成人av教育| 亚洲男人的天堂狠狠| 免费观看精品视频网站| 国产午夜精品论理片| 国产视频一区二区在线看| 女同久久另类99精品国产91| 亚洲熟女毛片儿| 久久国产精品影院| 国产一区二区三区视频了| 999久久久国产精品视频| 亚洲熟女毛片儿| 99国产极品粉嫩在线观看| 亚洲av成人av| 欧美日韩福利视频一区二区| 亚洲av片天天在线观看| 一进一出抽搐gif免费好疼| 欧美黄色片欧美黄色片| 午夜福利视频1000在线观看| 亚洲欧美日韩高清在线视频| 久久久久久免费高清国产稀缺| 亚洲精品久久成人aⅴ小说| 狠狠狠狠99中文字幕| 麻豆av在线久日| 老司机午夜十八禁免费视频| 国产伦一二天堂av在线观看| 男女午夜视频在线观看| 欧美日韩乱码在线| 国产精品久久电影中文字幕| 全区人妻精品视频| 久久久水蜜桃国产精品网| 午夜精品久久久久久毛片777| 午夜精品一区二区三区免费看| 久久香蕉精品热| 一进一出好大好爽视频| tocl精华| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 中文字幕熟女人妻在线| 999精品在线视频| 亚洲中文字幕日韩| 国产精品亚洲av一区麻豆| 国产区一区二久久| 最近在线观看免费完整版| 国产视频内射| 少妇的丰满在线观看| 欧美大码av| 看黄色毛片网站| 老司机在亚洲福利影院| 国产爱豆传媒在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品影院| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| 999久久久国产精品视频| 久久久久久大精品| 99热这里只有精品一区 | 黄色 视频免费看| 免费高清视频大片| av片东京热男人的天堂| 老熟妇乱子伦视频在线观看| 亚洲国产精品sss在线观看| 欧美性猛交黑人性爽| 亚洲免费av在线视频| 国产伦一二天堂av在线观看| 亚洲激情在线av| 日本 欧美在线| 观看免费一级毛片| 身体一侧抽搐| av在线天堂中文字幕| 成人国语在线视频| av福利片在线观看| 亚洲激情在线av| 好男人在线观看高清免费视频| 国产1区2区3区精品| 好男人电影高清在线观看| 久久精品综合一区二区三区| 久久草成人影院| 欧美激情久久久久久爽电影| 丰满人妻一区二区三区视频av | 天堂动漫精品| 欧美色欧美亚洲另类二区| 少妇熟女aⅴ在线视频| 国产成人系列免费观看| 嫁个100分男人电影在线观看| 最新美女视频免费是黄的| 999久久久精品免费观看国产| 久久久久久国产a免费观看| 老司机午夜十八禁免费视频| 精品少妇一区二区三区视频日本电影| av有码第一页| 成年女人毛片免费观看观看9| 在线观看舔阴道视频| 欧美性长视频在线观看| 欧美极品一区二区三区四区| 欧美最黄视频在线播放免费| 丝袜美腿诱惑在线| 欧美日韩亚洲综合一区二区三区_| av超薄肉色丝袜交足视频| av欧美777| 女生性感内裤真人,穿戴方法视频| 午夜福利在线观看吧| 又爽又黄无遮挡网站| 亚洲午夜理论影院| 婷婷精品国产亚洲av在线| 午夜福利欧美成人| 国产精品免费一区二区三区在线| 黄色视频不卡| 俺也久久电影网| 亚洲欧美精品综合久久99| 亚洲男人的天堂狠狠| 成人国产综合亚洲| 久久欧美精品欧美久久欧美| 波多野结衣高清作品| 精品久久久久久久末码| 人妻久久中文字幕网| 国产成人精品久久二区二区免费| 夜夜看夜夜爽夜夜摸| 国产精品久久久人人做人人爽| 巨乳人妻的诱惑在线观看| 亚洲九九香蕉| 久久精品成人免费网站| 婷婷丁香在线五月| 又黄又爽又免费观看的视频| 亚洲国产精品sss在线观看| 午夜免费观看网址| 91av网站免费观看| 亚洲国产欧美人成| 国产伦一二天堂av在线观看| 亚洲,欧美精品.| 欧美成人免费av一区二区三区| 国产成人精品久久二区二区91| 母亲3免费完整高清在线观看| 国产高清有码在线观看视频 | 免费一级毛片在线播放高清视频| ponron亚洲| 丁香六月欧美| 无限看片的www在线观看| 熟女电影av网| 嫩草影视91久久| 男女下面进入的视频免费午夜| 天堂√8在线中文| 天堂动漫精品| 亚洲成人国产一区在线观看| 在线免费观看的www视频| 婷婷六月久久综合丁香| 久久天堂一区二区三区四区| 国产午夜精品久久久久久| 国内揄拍国产精品人妻在线| 亚洲专区中文字幕在线| 免费看a级黄色片| 国产一区在线观看成人免费| 欧美一级a爱片免费观看看 | 午夜日韩欧美国产| 一边摸一边抽搐一进一小说| 老司机午夜十八禁免费视频| 两个人看的免费小视频| 99国产精品99久久久久| 女同久久另类99精品国产91| 午夜福利在线观看吧| 久热爱精品视频在线9| 久久久久久久久中文| 中文字幕av在线有码专区| 不卡av一区二区三区| 久久久久久人人人人人| 亚洲一区二区三区色噜噜| 一区二区三区国产精品乱码| 岛国在线免费视频观看| 国产精品久久视频播放| 波多野结衣高清作品| 亚洲av美国av| 国产一区二区激情短视频| 国产亚洲精品久久久久5区| 欧美成人一区二区免费高清观看 | 亚洲熟妇熟女久久| 国产精品一区二区三区四区久久| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 少妇的丰满在线观看| 国产精品野战在线观看| 亚洲国产高清在线一区二区三| 黄色a级毛片大全视频| 一本久久中文字幕| 桃色一区二区三区在线观看| 校园春色视频在线观看| 日韩国内少妇激情av| 午夜a级毛片| 久久精品91无色码中文字幕| 欧美久久黑人一区二区| 天天一区二区日本电影三级| 国产午夜福利久久久久久| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 午夜福利成人在线免费观看| 亚洲人成网站高清观看| 999久久久精品免费观看国产| 免费电影在线观看免费观看| 视频区欧美日本亚洲| 最近最新中文字幕大全免费视频| 两个人视频免费观看高清| 亚洲精华国产精华精| 后天国语完整版免费观看| 亚洲男人的天堂狠狠| 激情在线观看视频在线高清| 在线永久观看黄色视频| 人成视频在线观看免费观看| 精品欧美一区二区三区在线| 韩国av一区二区三区四区| 欧美+亚洲+日韩+国产| 国产精品av久久久久免费| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| www.自偷自拍.com| 深夜精品福利| 两性夫妻黄色片| 怎么达到女性高潮| 久久久久久免费高清国产稀缺| 久久午夜综合久久蜜桃| 久久香蕉激情| 夜夜躁狠狠躁天天躁| 国产激情偷乱视频一区二区| 亚洲专区国产一区二区| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| tocl精华| 精品高清国产在线一区| 亚洲自拍偷在线| 亚洲性夜色夜夜综合| 国产日本99.免费观看| 亚洲国产欧美网| av免费在线观看网站| 久久99热这里只有精品18| 两个人视频免费观看高清| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 久久久精品欧美日韩精品| 97超级碰碰碰精品色视频在线观看| 黑人操中国人逼视频| 男人舔奶头视频| 香蕉av资源在线| 久久婷婷成人综合色麻豆| 亚洲成人久久性| 99在线人妻在线中文字幕| 国产成人av教育| 中文字幕av在线有码专区| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 69av精品久久久久久| 最新美女视频免费是黄的| 午夜免费成人在线视频| 岛国在线免费视频观看| 亚洲在线自拍视频| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 日本 欧美在线| 精品久久久久久久久久久久久| 黄色成人免费大全| 一二三四社区在线视频社区8| а√天堂www在线а√下载| 精品久久久久久成人av| 在线看三级毛片| 啦啦啦观看免费观看视频高清| 十八禁人妻一区二区| 久久人妻福利社区极品人妻图片| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2| 国产一区二区激情短视频| 亚洲男人的天堂狠狠| 午夜两性在线视频| 在线永久观看黄色视频| 在线观看免费午夜福利视频| 久久国产精品影院| 国产精品自产拍在线观看55亚洲| 久久人妻av系列| 人人妻人人澡欧美一区二区| 老汉色av国产亚洲站长工具| 亚洲人与动物交配视频| 一级毛片女人18水好多| 天天躁夜夜躁狠狠躁躁| 日本a在线网址| 国产精品久久电影中文字幕| 国产黄片美女视频| 国产精品免费一区二区三区在线| 大型av网站在线播放| 成熟少妇高潮喷水视频| 日本黄大片高清| 嫩草影院精品99| 欧美成人免费av一区二区三区| 久久香蕉精品热| 久久精品影院6| 亚洲国产中文字幕在线视频| 午夜视频精品福利| 亚洲九九香蕉| 精品久久久久久久久久免费视频| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 国产成人一区二区三区免费视频网站| 久久久精品大字幕| 国产成人精品久久二区二区免费| 悠悠久久av| 99热只有精品国产| 午夜精品在线福利| 成人18禁高潮啪啪吃奶动态图| 999久久久精品免费观看国产| 精品国产乱码久久久久久男人| 午夜久久久久精精品| 午夜激情av网站| 国产精品电影一区二区三区| 伦理电影免费视频| 久久精品91蜜桃| 床上黄色一级片| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| www.999成人在线观看| 无人区码免费观看不卡| 曰老女人黄片| 欧美性猛交黑人性爽| 中文在线观看免费www的网站 | 18禁裸乳无遮挡免费网站照片| 久久 成人 亚洲| 久久这里只有精品中国| 久久久久国内视频| 免费在线观看日本一区| 久久99热这里只有精品18| 欧美3d第一页| 999精品在线视频| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 精品福利观看| 亚洲美女黄片视频| 欧美在线一区亚洲| 可以在线观看的亚洲视频| 特级一级黄色大片| 97碰自拍视频| 狠狠狠狠99中文字幕| 99热这里只有是精品50| 欧美av亚洲av综合av国产av| 丝袜人妻中文字幕| 免费观看人在逋| 90打野战视频偷拍视频| 熟女少妇亚洲综合色aaa.| 免费在线观看影片大全网站| 国产高清有码在线观看视频 | 国产激情欧美一区二区| 精品久久久久久,| 一本久久中文字幕| 中文资源天堂在线| 国产精品久久久久久精品电影| 国产成人aa在线观看| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 亚洲乱码一区二区免费版| a级毛片在线看网站| 中文在线观看免费www的网站 | 成人国语在线视频| 亚洲电影在线观看av| 国产成人欧美在线观看| 在线国产一区二区在线| 日韩精品免费视频一区二区三区| 日本撒尿小便嘘嘘汇集6| 色哟哟哟哟哟哟| 日韩av在线大香蕉| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 在线观看午夜福利视频| 岛国在线观看网站| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频 | 国产又色又爽无遮挡免费看| 亚洲五月天丁香| 男女那种视频在线观看| 美女午夜性视频免费| 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 国产精品一及| 首页视频小说图片口味搜索| 老汉色∧v一级毛片| 国产私拍福利视频在线观看| 亚洲乱码一区二区免费版| 国产精品av久久久久免费| 伦理电影免费视频| 亚洲精品一区av在线观看| 久久久久久久精品吃奶| xxx96com| 日韩欧美一区二区三区在线观看| 国产激情久久老熟女| 国产亚洲精品第一综合不卡| 国产成人aa在线观看| 精品国产亚洲在线| 听说在线观看完整版免费高清| 脱女人内裤的视频| 国产男靠女视频免费网站| 亚洲欧美日韩高清专用| 一区二区三区激情视频| 亚洲黑人精品在线| 亚洲国产欧美网| 亚洲精品色激情综合| 欧美中文综合在线视频| 久久欧美精品欧美久久欧美| 久久中文字幕一级| 欧美黑人精品巨大| bbb黄色大片| 国产伦在线观看视频一区| 黄色视频不卡| 亚洲一区高清亚洲精品| 午夜影院日韩av| 欧美丝袜亚洲另类 | 亚洲成a人片在线一区二区| 熟女电影av网| 成人午夜高清在线视频| 香蕉久久夜色| av在线天堂中文字幕| 国产精品电影一区二区三区| 十八禁网站免费在线| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 精品熟女少妇八av免费久了| 少妇熟女aⅴ在线视频| 黄色视频不卡| 国产精品自产拍在线观看55亚洲| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 熟女电影av网| 这个男人来自地球电影免费观看| 搡老熟女国产l中国老女人| 淫秽高清视频在线观看| 黄色毛片三级朝国网站| 女生性感内裤真人,穿戴方法视频| 黑人欧美特级aaaaaa片| 亚洲真实伦在线观看| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 亚洲国产精品成人综合色| 一级毛片精品| 亚洲男人天堂网一区| 亚洲第一电影网av| 人人妻,人人澡人人爽秒播| 黄片大片在线免费观看| av免费在线观看网站| 听说在线观看完整版免费高清| 日韩大尺度精品在线看网址| 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 午夜福利在线在线| 最近在线观看免费完整版| 身体一侧抽搐| 国产精品久久视频播放| 久久久久免费精品人妻一区二区| 麻豆国产97在线/欧美 | 国产精品乱码一区二三区的特点| 国产黄a三级三级三级人| 国产aⅴ精品一区二区三区波| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影免费在线| 动漫黄色视频在线观看| 18美女黄网站色大片免费观看| 亚洲自偷自拍图片 自拍| 国产一区二区三区在线臀色熟女| 真人做人爱边吃奶动态| 99精品欧美一区二区三区四区| 久久久久精品国产欧美久久久| 久久亚洲精品不卡| 在线播放国产精品三级| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 久久 成人 亚洲| 波多野结衣高清作品| 黄色片一级片一级黄色片| av免费在线观看网站| 一级片免费观看大全| 欧美大码av| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 久久草成人影院| 日韩欧美精品v在线| 特大巨黑吊av在线直播| av国产免费在线观看| 狂野欧美激情性xxxx| 色在线成人网| 两人在一起打扑克的视频| 一本大道久久a久久精品| 亚洲av日韩精品久久久久久密| 亚洲av成人一区二区三| 99国产综合亚洲精品| 国产亚洲精品综合一区在线观看 | 亚洲国产中文字幕在线视频| 中文字幕人成人乱码亚洲影| 又爽又黄无遮挡网站| 国产野战对白在线观看| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 18美女黄网站色大片免费观看| 国产精品一区二区精品视频观看| 在线观看午夜福利视频| 999精品在线视频| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 首页视频小说图片口味搜索| 美女大奶头视频| 99热这里只有精品一区 | 日韩欧美在线乱码| 麻豆国产97在线/欧美 | 午夜激情av网站| 色播亚洲综合网| 老司机在亚洲福利影院| 男女视频在线观看网站免费 | 叶爱在线成人免费视频播放| 国产亚洲精品一区二区www| 91av网站免费观看| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av| 少妇熟女aⅴ在线视频| 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕一二三四区| 熟妇人妻久久中文字幕3abv| 欧美性猛交╳xxx乱大交人| 亚洲av片天天在线观看| 亚洲性夜色夜夜综合| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| 白带黄色成豆腐渣| 18美女黄网站色大片免费观看| 亚洲国产高清在线一区二区三| 久久午夜亚洲精品久久| 18禁观看日本| xxxwww97欧美| 丁香欧美五月| 色av中文字幕| www日本黄色视频网| 色综合欧美亚洲国产小说| 亚洲美女视频黄频| 一级毛片高清免费大全| 免费观看人在逋| 国产乱人伦免费视频| 久久久久国内视频| 不卡一级毛片| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看 | 免费在线观看影片大全网站| 国产麻豆成人av免费视频| 午夜福利在线在线| 欧美3d第一页| 99re在线观看精品视频| 国产亚洲av嫩草精品影院| 制服诱惑二区| 夜夜看夜夜爽夜夜摸| 国产精华一区二区三区| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 岛国在线观看网站| 两性夫妻黄色片| 亚洲真实伦在线观看| 色综合欧美亚洲国产小说| 香蕉av资源在线| 99国产精品99久久久久| 国产成人精品无人区| 国产精品免费视频内射| 1024视频免费在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 久久草成人影院| 国产91精品成人一区二区三区| 久久久久久久久免费视频了| 国产精品精品国产色婷婷| 国产精品亚洲美女久久久| 两个人视频免费观看高清| 国产亚洲精品一区二区www| 听说在线观看完整版免费高清| netflix在线观看网站|