• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    2016-12-01 09:23:40QiujiongZhaoShaocongBaiChengChengBenzhangTaoLekaiWangShuangLiangLingYinXingyiHangAijiaShangDepartmentofNeurosurgeryChinesePLAGeneralHospitalBeijingChina2iGeneTechBiotechnologyCoLtdBeijingChinaDepartmentofNeurology

    Qiu-jiong Zhao, Shao-cong Bai, Cheng Cheng Ben-zhang Tao Le-kai Wang Shuang Liang Ling Yin, Xing-yi Hang, Ai-jia Shang Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China2 iGeneTech Biotechnology Co., Ltd., Beijing, China Department of Neurology, Chinese PLA General Hospital, Beijing, China

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    Qiu-jiong Zhao1,#, Shao-cong Bai1,#, Cheng Cheng1, Ben-zhang Tao1, Le-kai Wang1, Shuang Liang1, Ling Yin3, Xing-yi Hang2,*, Ai-jia Shang1,*
    1 Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
    2 iGeneTech Biotechnology Co., Ltd., Beijing, China
    3 Department of Neurology, Chinese PLA General Hospital, Beijing, China

    How to cite this article: Zhao QJ, Bai SC, Cheng C, Tao BZ, Wang LK, Liang S, Yin L, Hang XY, Shang AJ (2016) Association between chromosomal aberration of COX8C and tethered spinal cord syndrome∶ array-based comparative genomic hybridization analysis. Neural Regen Res 11(8)∶1333-1338.

    Ai-jia Shang, M.D., Ph.D. or Xing-yi Hang, Ph.D.,

    shangaj@163.com or

    xingyi.hang@igenetech.com.

    #These authors contributed

    equally to this study.

    orcid:

    0000-0002-4895-5442

    (Ai-jia Shang)

    0000-0002-3736-2203

    (Xing-yi Hang)

    Accepted: 2016-08-09

    Graphical Abstract

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

    nerve regeneration; neural tube defects; tethered spinal cord syndrome; comparative genomic hybridization; COX8C; gene function enrichment analysis; database of genomic variants; database of DECIPHER; copy number variations; neural regeneration

    Introduction

    Tethered spinal cord syndrome (TCS) is a neurodevelopmental disorder that results in spinal cord malformation (Payne, 2007; Cearns et al., 2016). TCS is classified as a neural tube defect, and although the incidence of neural tube defects is approximately 1% worldwide (Feuchtbaum et al., 1999; Tun?bilek et al., 1999; van der Put et al., 2001; Khoshnood et al., 2015; Atta et al., 2016), infants born with neural tube defects account for 20-25% of all congenital malformations (Laharwal et al., 2016). The causes of neural tube defects are multivariate, yet to date there is no convincing mechanistic evidence for their occurrence. Some possible contributing factors include gene mutations, chromosomal abnormalities, and environmental factors (Bassuk and Kibar, 2009; Joó, 2009a, b; Molloy et al., 2009; Wen et al., 2009). Recent studies have revealed novel risk factors for neural tube defects including heterozygous missense mutations in the genes, VANGL1 and FUZZY (Bartsch et al., 2012; Seo et al., 2015), as well as maternal folic acid deficiency (Bartsch et al., 2012; Seo et al., 2015). Altered methylation of MGMT, aDNA repair gene, is also associated with neural tube defects (Tran et al., 2012). Moreover, abnormal expression of genes coding for zinc finger proteins is reported to be risk factors (Grinberg and Millen, 2005; Costa-Lima et al., 2008).

    Previous studies have shown that chromosomal imbalances due to genomic instability are closely associated with neural developmental disorders (Au et al., 2010; Zhao et al., 2013). Copy number variations (CNVs) are found in patients with neural tube abnormalities in cerebral and spinal sections (Bassuk et al., 2013; Chen et al., 2013). Array-based comparative genomic hybridization (aCGH) is a modern technique for molecular karyotype analysis that combines conventional comparative genomic hybridization and microarray analysis (Saberi et al., 2014). In contrast to conventional hybridization, aCGH does not detect metaphase chromosomes. Instead, it targets genomic DNA to perform high-throughput screening of the whole genome for CNVs (Vissers et al., 2003). The aCGH approach can accurately locate CNVs on chromosomes, and clearly calculate CNV length and identify genes within variant fragments (Mosse et al., 2005). Nowadays, aCGH is commonly used for cancer and genetic disorder research (Kallioniemi, 2008; Sireteanu et al., 2012). In this study, we used aCGH to detect CNVs in three children with TCS and two healthy parents. In order to examine TCS pathogenesis at the chromosome and gene levels, we determined the relationship between these chromosomal aberrations and TCS, and consequently detected CNVs linked with occurrence and development of TCS.

    Subjects and Methods

    Subjects

    Three children diagnosed with typical TCS based on clinical criteria (Filippidis et al., 2010) by the Department of Neurosurgery at the Chinese PLA General Hospital and the Second Artillery General Hospital, and the healthy parents of Patient 1 were enrolled in the study. Peripheral blood samples were collected from the patients and healthy controls. Before initiation of the study, written consent was obtained from the guardians of all children. The study (Project ID: S2013-117-01) was approved by the ethics committee of the Chinese PLA General Hospital, China.

    Case 1 was a 2-year-old girl with a sacrococcygeal mass and right foot deformity. The sacrococcygeal mass was identified at birth. Physical examination revealed spina bifida. Strephenopodia of the right foot and a second enlarging sacrococcygeal mass were first observed at 8 months of age. The patient was diagnosed with TCS with myelomeningocele.

    Case 2 was a 12-year-old boy who presented with a lumbosacral mass at the age of 8 months. The patient was diagnosed with TCS with spinal cord lipoma. Surgical treatment was performed. Urinary abnormality occurred 11 years after surgery, along with urinary incontinence, nocturnal enuresis, urinary frequency, and urinary urgency. A further surgery was performed because magnetic resonance imaging showed spinal cord lipoma and recurrence of TCS.

    Case 3 was a 5-year-old girl with abnormal hair growth in the lumbosacral region at birth. Physical examination revealed a partial spinal canal defect. Because the hair growth increased, magnetic resonance imaging examination was performed. The results revealed a tethered spinal cord and split cord malformation (Type I). Surgery was performed to correct the malformation.

    aCGH analysis

    aCGH is a specific array-based genomic hybridization method that uses different fluorescent dyes to label DNA from patients and controls, to identify differences between the two groups (Sealfon and Chu, 2011; Brady and Vermeesch, 2012). By comparing the ratio of two different fluorescence signals at each target spot in the microarray, CNVs are detected in specific sequences or genes between two genomes (Gijsbers et al., 2011; Shoukier et al., 2013).

    Total DNA was extracted from peripheral whole blood using a commercially available DNA-isolation kit (BioChain Inc., Beijing, China), according to the manufacturer’s protocol. For each aCGH experiment, purified DNA and normal sex-matched DNA (1 μg each; Promega, Madison, WI, USA) were digested with AluI and RsaI (10 U each; Promega), and differentially labelled with cyanine-5 and cyanine-3 fluorescent dyes using a Genomic DNA Enzymatic Labeling Kit (Agilent, Santa Clara, CA, USA). aCGH analysis was performed using the Agilent 8 × 60K commercial array. This platform contains 60-mer oligonucleotide probes spanning the entire human genome with an overall mean probe spacing of 50 kb. After hybridization, arrays were scanned using a dual-laser scanner (Agilent), and images extracted and analyzed using the Feature Extraction (Agilent) and Workbench genomics software, respectively. Changes in test DNA copy number at specific loci were considered only if they were <-0.38 (deletion) or > 0.38 (amplification) of the log2 ratio values from at least five consecutive probes.

    TCS-related CNV analysis

    Removal of polymorphic CNVs using the Database of Genomic Variants

    CNV fragments were scanned against the Database of Genomic Variants (Iafrate et al., 2004; Wong et al., 2007). CNVs that completely matched those in the database were removed as they represent common polymorphic variants present in the normal population. Partially overlapping (< 40%) CNVs were considered non-polymorphic and retained for further analysis. In addition, discontinuous polymorphic fragments appearing within CNV sequences (total fragment length was shorter than half-lengths of detected CNVs) were not treated as common polymorphisms and were also retained for further analysis.

    Comparison of non-polymorphic CNVs with DECIPHER

    The non-polymorphic CNV fragments selected above were searched against the DECIPHER database (Firth et al., 2009). Cases were identified with CNVs similar to those reported in previously tested samples (partial overlap >60%) or containing documented CNVs. Additionally, chromosomal abnormalities, related phenotypes, and syndromes associated with these cases were identified.

    Table 1 Array-comparative genome hybridization analysis of TCS patients and controls

    Table 2 DECIPHER search results for non-polymorphic copy number variations (CNVs)

    Table 3 Syndromes and clinical phenotypes linked to non-polymorphic copy number variations

    Table 4 Genes contained in non-polymorphic copy number variations

    Figure 1 Chromosome maps of the three patients with tethered spinal cord syndrome.

    Table 5 Enrichment results for gene ontology (GO) analysis

    Gene function enrichment analysis

    Entire genes incorporated in non-polymorphic CNVs were identified using the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). Gene function enrichment analyses were performed for the genes identified, including Gene Ontology (GO) (http://geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway (http://www.genome.jp/kegg/) analyses.

    Enrichment P-values for each GO term or KEGG pathway were calculated using the hyper-geometric distribution method. P-values were then corrected for multiple hypotheses testing using the false discovery rate method. A P-value of 0.05 was set as the threshold value for significant gene enrichment for each GO term or KEGG pathway.

    Results

    Gene micro-repeat fragment location in TCS patients

    Results of the aCGH analysis for all three patients and two parents are shown in Table 1. Three micro-repeat fragments were detected in DNA isolated from Patient 1. A micro-deletion fragment was detected in Patient 2, while a micro-deletion and micro-repeat were detected in Patient 3. The father of Patient 1 had a normal karyotype, whereas the mother’s chromosome map showed micro-deletion and micro-repeat fragments. The micro-deletion fragment in Patient 2 and micro-repeat fragment in Patient 3 were located in the same region: 15q11.1q11.2 (Figure 1).

    Database searching of CNVs

    The eight identified CNVs were searched against the Database of Genomic Variants. The results showed that four CNVs were normal chromosomal polymorphisms, specifically, the 1p21.2 micro-repeat in Patient 1, 2p11.2 micro-deletion in Patient 3, and 7q11.22q11.23 micro-deletion and 19p12 micro-repeat in the mother of Patient 1.

    Investigation of the other four non-polymorphic CNVsin DECIPHER revealed eight specific CNVs in these regions (Table 2). Non-polymorphic CNVs in Patients 2 and 3 (ID 4 and 6 in Table 1) shared the same chromosomal initiation site, indicating that multiple CNVs occur in the same location. Further analyses revealed that these CNVs are associated with two syndromes (Angelman and Prader-Willi) and one phenotype (microcephaly) (Table 3).

    Table 6 Gene enrichment analysis

    Gene function enrichment analysis

    Within the four non-polymorphic CNVs regions, 13 genes were identified by the UCSC Genome Browser (Table 4). Function enrichment analysis of GO terms and KEGG pathways were performed for these genes. The results included a number of biological functions (e.g., gamete generation), molecular functions (e.g., ubiquitin-protein ligase activity), two cellular components (mitochondrial inner membrane and integral membrane component), as well as eight KEGG pathways, including viral myocarditis, cardiac muscle contraction, Parkinson’s disease, oxidative phosphorylation, ubiquitin-mediated proteolysis, Alzheimer’s disease, Huntington’s disease, and olfactory transduction. From these results, we found that the COX8C gene is closely related to neural system diseases such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease (Tables 5, 6).

    Discussion

    Advantages of using aCGH for detection of rare chromosomal micro-variations

    Chromosomal sub-microscopic variations are strongly associated with human disease (Feuk et al., 2006). In clinical settings, the definite diagnosis of several diseases cannot be achieved using existing techniques. Consequently, some rare syndromes are labelled idiopathic or unexplained. Most of these syndromes are due to genomic imbalances created by chromosomal micro-variations such as micro-deletions and micro-repeats (D’Angelo et al., 2014). The aCGH approach efficiently detects chromosomal micro-aberrations and aids elucidation of idiopathic or unexplained diseases.

    Significance and limitations of aCGH analysis

    The main objective of this study was to identify non-random CNVs and evaluate their association with TCS. The main questions regarding the CNVs we identified are: (1) whether the CNVs are inherited; (2) whether they are found in the normal population; (3) whether their lengths are sufficient to contain genes with functional annotations; (4) whether they are linked to diseases in DECIPHER; and (5) whether any are unreported, unidentified, or novel. Although the Database of Genomic Variants and DECIPHER, which are globally representative databases, were used to determine the type of CNVs identified, ethnic differences are inevitable when using international databases.

    Diseases similar to TCS that are associated with COX8C

    CNVs similar to the ones we detected are found in the DECIPHER database. These CNVs are associated with Angelman and Prader-Willi syndromes, and microcephaly. All of these disorders involve significant neural abnormalities (Mabb et al., 2011; Mahmood et al., 2011; Cassidy et al., 2012). Furthermore, gene function analysis indicated a close association between COX8C and certain diseases including Parkinson’s, Alzheimer’s, and Huntington’s diseases, all of which are typical nervous system diseases (Bassil and Mollaei, 2012; Pogledi? and Relja, 2012; Gazewood et al., 2013). By comparing the CNVs from Patient 1 with those identified in her parents, we excluded the possibility of TCS being hereditary. Thus, we propose that the condition may be acquired during neural development.

    Conclusion

    In this study, we used high-resolution aCGH to identify pathogenic CNVs in samples from patients with typical TCS. Our findings suggest an association between certain CNVs and nervous system disease. Our data may be used in the future as a reference for the integration of available data, or for further studies with larger sample sizes. Ours study demonstrates specific transformation research, and shows that a molecular method can be used to clinically diagnose TCS. Our findings may help to shed new light on the pathogenesis of TCS.

    Acknowledgments: We are very grateful to the staffs of iGene-Tech Biotechnology Co., Ltd. in China for some of the experiment operations.

    Author contributions: QJZ and SCB performed the experiment. CC, BZT and LKW collected patients, and conducted clinical communication and treatment. SL and LY provided technical and capital supports. QJZ and XYH analyzed and explained data. AJS and XYH served as principle investigators. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, Rajapakse T, Kaplan GG, Metcalfe A (2016) Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. Am J Public Health 106:e24-34.

    Au KS, Ashley-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 16:6-15.

    Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F (2012) Novel VANGL1 gene mutations in 144 Slovakian, Romanian and German patients with neural tube defects. Mol Syndromol 3:76-81.

    Bassil N, Mollaei C (2012) Alzheimer’s dementia: a brief review. J Med Liban 60:192-199.

    Bassuk AG, Kibar Z (2009) Genetic basis of neural tube defects. Semin Pediatr Neurol 16:101-110.

    Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, Hakeman M, Dierdorff JM, Yung CK, Long A, Brouillette RB, Au KS, Gurnett C, Houston DW, Cornell RA, Manak JR (2013) Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet 22:1097-1111.

    Brady PD, Vermeesch JR (2012) Genomic microarrays: a technology overview. Prenat Diagn 32:336-343.

    Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) Prader-Willi syndrome. Genet Med 14:10-26.

    Cearns MD, Escuin S, Alexandre P, Greene ND, Copp AJ (2016) Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 229:63-74.

    Chen X, Shen Y, Gao Y, Zhao H, Sheng X, Zou J, Lip V, Xie H, Guo J, Shao H, Bao Y, Shen J, Niu B, Gusella JF, Wu BL, Zhang T (2013) Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One 8:e54492.

    Costa-Lima MA, Meneses HN, El-Jaick KB, Amorim MR, Castilla EE, Orioli IM (2008) No association of the polyhistidine tract polymorphism of the ZIC2 gene with neural tube defects in a South American (ECLAMC) population. Mol Med Rep 1:443-446.

    D’Angelo CS, Varela MC, de Castro CI, Kim CA, Bertola DR, Louren?o CM, Perez ABA, Koiffmann CP (2014) Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol Cytogenet 7:75.

    Feuchtbaum LB, Currier RJ, Riggle S, Roberson M, Lorey FW, Cunningham GC (1999) Neural tube defect prevalence in California (1990-1994): eliciting patterns by type of defect and maternal race/ ethnicity. Genet Test 3:265-272.

    Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15:R57-66.

    Filippidis AS, Kalani MY, Theodore N, Rekate HL (2010) Spinal cord traction, vascular compromise, hypoxia, and metabolic derangements in the pathophysiology of tethered cord syndrome. Neurosurg Focus 29:E9.

    Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Vooren SV, Moreau Y, Pettett RM, Carter NP (2009) DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 84:524-533.

    Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Physician 87:267-273.

    Gijsbers AC, Schoumans J, Ruivenkamp CA (2011) Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res 135:222-227.

    Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290-296.

    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949-951.

    Joó JG (2009a) Recent perspectives on the development of the central nervous system and the genetic background of neural tube defects. Orv Hetil 150:873-882.

    Joó JG (2009b) Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 9:281-293.

    Kallioniemi A (2008) CGH microarrays and cancer. Curr Opin Biotechnol 19:36-40.

    Khoshnood B, Loane M, de Walle H, Arriola L, Addor MC, Barisic I, Beres J, Bianchi F, Dias C, Draper E, Garne E, Gatt M, Haeusler M, Klungsoyr K, Latos-Bielenska A, Lynch C, McDonnell B, Nelen V, Neville AJ, O’Mahony MT, et al. (2015) Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ 351:h5949.

    Laharwal MA, Sarmast AH, Ramzan AU, Wani AA, Malik NK, Arif SH, Rizvi M (2016) Epidemiology of the neural tube defects in Kashmir Valley. Surg Neurol Int 7:35.

    Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 34:293-303.

    Mahmood S, Ahmad W, Hassan MJ (2011) Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39-39.

    Molloy AM, Brody LC, Mills JL, Scott JM, Kirke PN (2009) The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 85:285-294.

    Mosse YP, Greshock J, Weber BL, Maris JM (2005) Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett 228:83-90.

    Payne J (2007) Tethered spinal cord syndrome. BMJ 335:42-43.

    Pogledi? I, Relja M (2012) Huntington’s disease. Lijec Vjesn 134:346-350.

    Saberi A, Shariati G, Hamid M, Galehdari H, Abdorasouli N (2014) Wolf-Hirschhorn syndrome: a case with normal karyotype, demonstrated by array CGH (aCGH). Arch Iran Med 17:642-644.

    Sealfon SC, Chu TT (2011) RNA and DNA Microarrays. Methods Mol Biol 671:3-34.

    Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E (2015) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 24:3893.

    Shoukier M, Klein N, Auber B, Wickert J, Schr?der J, Zoll B, Burfeind P, Bartels I, Alsat EA, Lingen M, Grzmil P, Schulze S, Keyser J, Weise D, Borchers M, Hobbiebrunken E, R?bl M, G?rtner J, Brockmann K, Zirn B (2013) Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet 83:53-65.

    Sireteanu A, Covic M, Gorduza EV (2012) Array CGH: technical considerations and applications. Rev Med Chir Soc Med Nat Iasi 116:545-551.

    Tran S, Wang L, Le J, Guan J, Wu L, Zou J, Wang Z, Wang J, Wang F, Chen X, Cai L, Lu X, Zhao H, Guo J, Bao Y, Zheng X, Zhang T (2012) Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci 47:42-51.

    Tun?bilek E, Boduro lu K, Alika ifo lu M (1999) Neural tube defects in Turkey: prevalence, distribution and risk factors. Turk J Pediatr 41:299-305.

    van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ (2001) Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood) 226:243-270.

    Vissers Lisenka E, de Vries Bert B, Osoegawa K, Janssen Irene M, Feuth T, Choy Chik O, Straatman H, van der Vliet W, Huys Erik H, van Rijk A, Smeets D, van Ravenswaaij-Arts Conny M, Knoers Nine V, van der Burgt I, de Jong Pieter J, Brunner Han G, van Kessel Ad G, Schoenmakers Eric F, Veltman Joris A (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261-1270.

    Wen S, Lu W, Zhu H, Yang W, Shaw GM, Lammer EJ, Islam A, Finnell RH (2009) Genetic polymorphisms in the thioredoxin 2 (TXN2) gene and risk for spina bifida. Am J Med Genet A 149A:155-160.

    Wong Kendy K, deLeeuw Ronald J, Dosanjh Nirpjit S, Kimm Lindsey R, Cheng Z, Horsman Douglas E, MacAulay C, Ng Raymond T, Brown Carolyn J, Eichler Evan E, Lam Wan L (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91-104.

    Zhao J, Guan T, Wang J, Xiang Q, Wang M, Wang X, Guan Z, Xie Q, Niu B, Zhang T (2013) Influence of the antifolate drug Methotrexate on the development of murine neural tube defects and genomic instability. J Appl Toxicol 33:915-923.

    Copyedited by James R, Frenchman B, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.189200

    *Correspondence to:

    精品国产乱子伦一区二区三区| 精品一区二区三区av网在线观看 | 女人久久www免费人成看片| 日韩中文字幕欧美一区二区| 免费在线观看日本一区| 欧美日韩一级在线毛片| 精品国产乱码久久久久久男人| 免费少妇av软件| 黄色 视频免费看| 王馨瑶露胸无遮挡在线观看| 高清在线国产一区| 两人在一起打扑克的视频| 免费看十八禁软件| 精品久久久久久久毛片微露脸| 18禁国产床啪视频网站| 国产欧美日韩一区二区三区在线| 下体分泌物呈黄色| 亚洲欧美一区二区三区久久| svipshipincom国产片| 18禁黄网站禁片午夜丰满| 亚洲av欧美aⅴ国产| 在线永久观看黄色视频| 国产精品免费大片| 无人区码免费观看不卡 | www.精华液| 黄色片一级片一级黄色片| 免费看十八禁软件| 欧美在线一区亚洲| 91av网站免费观看| 18禁国产床啪视频网站| 国产不卡av网站在线观看| 国产高清激情床上av| 天天影视国产精品| 欧美亚洲日本最大视频资源| 国精品久久久久久国模美| 免费在线观看黄色视频的| 中国美女看黄片| 纵有疾风起免费观看全集完整版| 肉色欧美久久久久久久蜜桃| 久久精品人人爽人人爽视色| 久久久水蜜桃国产精品网| 亚洲,欧美精品.| 国产亚洲精品第一综合不卡| 婷婷成人精品国产| 国产亚洲av高清不卡| 欧美国产精品va在线观看不卡| 精品国内亚洲2022精品成人 | 久久人妻福利社区极品人妻图片| 国产欧美日韩精品亚洲av| 日本欧美视频一区| 精品亚洲成a人片在线观看| 不卡一级毛片| 国产精品亚洲一级av第二区| 不卡av一区二区三区| 美国免费a级毛片| 9191精品国产免费久久| 啦啦啦在线免费观看视频4| 久久影院123| 亚洲精品乱久久久久久| 国产精品秋霞免费鲁丝片| 国产成人欧美在线观看 | 国产精品亚洲av一区麻豆| av福利片在线| 免费看十八禁软件| 亚洲精品自拍成人| 一级,二级,三级黄色视频| 黄频高清免费视频| 黄色视频,在线免费观看| 老汉色av国产亚洲站长工具| 人妻 亚洲 视频| 日本欧美视频一区| 欧美黑人精品巨大| 蜜桃在线观看..| 亚洲人成77777在线视频| 中文字幕人妻丝袜一区二区| 18禁国产床啪视频网站| 热99久久久久精品小说推荐| 丝袜在线中文字幕| 亚洲一区中文字幕在线| 成人永久免费在线观看视频 | 亚洲熟妇熟女久久| 亚洲av第一区精品v没综合| 男女边摸边吃奶| 国产精品 国内视频| 国产黄频视频在线观看| 十八禁人妻一区二区| 国产精品偷伦视频观看了| 成年人黄色毛片网站| 老司机午夜福利在线观看视频 | 超碰成人久久| 激情在线观看视频在线高清 | 欧美激情久久久久久爽电影 | 亚洲欧美激情在线| 激情视频va一区二区三区| 韩国精品一区二区三区| 人人妻,人人澡人人爽秒播| 久久久久久人人人人人| 在线观看www视频免费| 嫩草影视91久久| 国产xxxxx性猛交| 少妇被粗大的猛进出69影院| 人人妻人人爽人人添夜夜欢视频| 亚洲第一青青草原| 国产淫语在线视频| 欧美变态另类bdsm刘玥| 日韩欧美一区二区三区在线观看 | 天堂8中文在线网| 亚洲色图综合在线观看| 国产精品一区二区免费欧美| 伦理电影免费视频| 狠狠精品人妻久久久久久综合| 午夜两性在线视频| 久久久久久免费高清国产稀缺| 国产视频一区二区在线看| 变态另类成人亚洲欧美熟女 | 亚洲欧美日韩另类电影网站| 国产精品一区二区精品视频观看| 国产成+人综合+亚洲专区| 久久国产精品人妻蜜桃| 国产男女内射视频| 日韩有码中文字幕| 久久久久久久久久久久大奶| 精品免费久久久久久久清纯 | 国产亚洲欧美在线一区二区| 亚洲男人天堂网一区| h视频一区二区三区| 成年动漫av网址| 黄片小视频在线播放| 男女床上黄色一级片免费看| 日本欧美视频一区| 巨乳人妻的诱惑在线观看| 精品一区二区三卡| 亚洲成人国产一区在线观看| 久久久欧美国产精品| 两个人免费观看高清视频| 人人妻人人爽人人添夜夜欢视频| 十八禁网站免费在线| 一二三四社区在线视频社区8| 国产精品一区二区在线观看99| 国产在线视频一区二区| 视频区欧美日本亚洲| 久久久久精品人妻al黑| 老司机影院毛片| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| 9色porny在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 19禁男女啪啪无遮挡网站| 免费观看人在逋| 国产精品美女特级片免费视频播放器 | 香蕉久久夜色| 不卡av一区二区三区| 飞空精品影院首页| 欧美在线黄色| 亚洲精品美女久久久久99蜜臀| 12—13女人毛片做爰片一| 91成人精品电影| 亚洲,欧美精品.| 天天添夜夜摸| 色婷婷av一区二区三区视频| 精品第一国产精品| 啦啦啦中文免费视频观看日本| 国产国语露脸激情在线看| 免费av中文字幕在线| 黄色怎么调成土黄色| 亚洲欧美一区二区三区久久| 日韩一区二区三区影片| 国产不卡一卡二| 久久中文字幕人妻熟女| 国产精品 国内视频| 久久午夜亚洲精品久久| 女警被强在线播放| 国产成人av教育| 久久久久国产一级毛片高清牌| 国产aⅴ精品一区二区三区波| 9色porny在线观看| 夜夜骑夜夜射夜夜干| 亚洲中文字幕日韩| 男人舔女人的私密视频| 另类亚洲欧美激情| 最近最新免费中文字幕在线| 午夜老司机福利片| 亚洲av日韩在线播放| 久久久国产成人免费| 熟女少妇亚洲综合色aaa.| 99国产精品一区二区三区| 日本欧美视频一区| 亚洲久久久国产精品| 亚洲精品一二三| 色在线成人网| 亚洲精品在线观看二区| 天天躁狠狠躁夜夜躁狠狠躁| 在线天堂中文资源库| 男女下面插进去视频免费观看| 一区在线观看完整版| 国产片内射在线| 高清欧美精品videossex| 三上悠亚av全集在线观看| 国产免费av片在线观看野外av| 热99久久久久精品小说推荐| 国产成人精品在线电影| 视频在线观看一区二区三区| 国产成人免费观看mmmm| 国精品久久久久久国模美| 黄网站色视频无遮挡免费观看| 国产真人三级小视频在线观看| 露出奶头的视频| 一级,二级,三级黄色视频| 国产一区二区在线观看av| 高清在线国产一区| 亚洲欧美一区二区三区久久| 日韩一区二区三区影片| 在线观看一区二区三区激情| 在线天堂中文资源库| 十八禁人妻一区二区| 人妻久久中文字幕网| 午夜福利视频精品| 欧美成人午夜精品| 午夜免费成人在线视频| 成年动漫av网址| 国产免费现黄频在线看| 色精品久久人妻99蜜桃| 亚洲伊人久久精品综合| 国产激情久久老熟女| 精品国内亚洲2022精品成人 | 久久中文字幕人妻熟女| 亚洲国产av影院在线观看| 在线观看免费高清a一片| 少妇粗大呻吟视频| 国产不卡av网站在线观看| 欧美日韩成人在线一区二区| 久久久精品国产亚洲av高清涩受| 国产亚洲欧美精品永久| 一级毛片精品| 国产老妇伦熟女老妇高清| 国产精品免费视频内射| 亚洲av成人不卡在线观看播放网| 两个人免费观看高清视频| 黄色视频不卡| 免费女性裸体啪啪无遮挡网站| 最近最新免费中文字幕在线| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区免费| 在线亚洲精品国产二区图片欧美| 久久久久精品人妻al黑| 精品福利永久在线观看| 波多野结衣一区麻豆| 亚洲精品乱久久久久久| 亚洲精品av麻豆狂野| 一本大道久久a久久精品| 亚洲 国产 在线| 他把我摸到了高潮在线观看 | svipshipincom国产片| 精品一区二区三区av网在线观看 | 久久人人97超碰香蕉20202| 久久精品aⅴ一区二区三区四区| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 午夜激情久久久久久久| 亚洲av成人一区二区三| 热re99久久精品国产66热6| 十八禁高潮呻吟视频| 1024香蕉在线观看| 色94色欧美一区二区| 黄片大片在线免费观看| 国产单亲对白刺激| 女性被躁到高潮视频| 日韩免费av在线播放| 欧美激情极品国产一区二区三区| 1024视频免费在线观看| 亚洲第一欧美日韩一区二区三区 | 美国免费a级毛片| 超碰97精品在线观看| 欧美黑人精品巨大| 一夜夜www| 两人在一起打扑克的视频| 天堂8中文在线网| 一级黄色大片毛片| 国产xxxxx性猛交| 91成年电影在线观看| 成人黄色视频免费在线看| 国产人伦9x9x在线观看| 国产成+人综合+亚洲专区| 久久久久久久大尺度免费视频| 欧美变态另类bdsm刘玥| 久久亚洲真实| 成年女人毛片免费观看观看9 | 亚洲天堂av无毛| 成人影院久久| 欧美 亚洲 国产 日韩一| 亚洲国产av影院在线观看| 亚洲avbb在线观看| 午夜91福利影院| 成人国产一区最新在线观看| 国产亚洲欧美在线一区二区| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 手机成人av网站| tube8黄色片| 中文欧美无线码| 黄色丝袜av网址大全| 国产精品熟女久久久久浪| 涩涩av久久男人的天堂| 99在线人妻在线中文字幕 | 亚洲国产精品一区二区三区在线| 国产精品美女特级片免费视频播放器 | 免费在线观看影片大全网站| 人人妻人人爽人人添夜夜欢视频| 久久天躁狠狠躁夜夜2o2o| 2018国产大陆天天弄谢| 免费在线观看视频国产中文字幕亚洲| 成人国产一区最新在线观看| 久久久水蜜桃国产精品网| 国产精品成人在线| 最新美女视频免费是黄的| 亚洲专区国产一区二区| 精品视频人人做人人爽| 中文字幕人妻丝袜制服| 亚洲免费av在线视频| 美国免费a级毛片| 久久精品国产a三级三级三级| 岛国毛片在线播放| 中文字幕人妻熟女乱码| 黄色怎么调成土黄色| 超碰97精品在线观看| 久久av网站| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 国产亚洲av高清不卡| 亚洲精品一二三| a在线观看视频网站| 高清在线国产一区| 侵犯人妻中文字幕一二三四区| 精品一区二区三卡| 男女免费视频国产| 大码成人一级视频| 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女 | 黄片小视频在线播放| 久9热在线精品视频| 18禁裸乳无遮挡动漫免费视频| 国产精品欧美亚洲77777| 一边摸一边抽搐一进一出视频| 在线永久观看黄色视频| 国产精品久久久久久人妻精品电影 | 国产国语露脸激情在线看| 高潮久久久久久久久久久不卡| 黄色 视频免费看| 亚洲精品粉嫩美女一区| 欧美成狂野欧美在线观看| 久久国产精品人妻蜜桃| 999精品在线视频| 亚洲av日韩精品久久久久久密| 女人精品久久久久毛片| 老司机亚洲免费影院| 另类亚洲欧美激情| 亚洲色图 男人天堂 中文字幕| netflix在线观看网站| 国产不卡一卡二| a在线观看视频网站| 国产精品电影一区二区三区 | 9热在线视频观看99| 久久亚洲精品不卡| 男女边摸边吃奶| 久久影院123| 在线观看人妻少妇| a在线观看视频网站| 午夜福利视频精品| 欧美av亚洲av综合av国产av| 俄罗斯特黄特色一大片| 国产精品免费大片| 日本黄色视频三级网站网址 | 久久久欧美国产精品| 国产欧美日韩综合在线一区二区| 美国免费a级毛片| 人妻一区二区av| 久久香蕉激情| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 国产成人精品在线电影| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 后天国语完整版免费观看| 亚洲专区字幕在线| 捣出白浆h1v1| 日韩有码中文字幕| 99九九在线精品视频| 国产精品久久久av美女十八| 丝袜人妻中文字幕| av国产精品久久久久影院| 黑人巨大精品欧美一区二区蜜桃| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 国产精品一区二区在线观看99| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| 日韩精品免费视频一区二区三区| 1024视频免费在线观看| 黄色怎么调成土黄色| 丁香六月天网| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 久久婷婷成人综合色麻豆| 免费高清在线观看日韩| 18禁裸乳无遮挡动漫免费视频| 国产亚洲av高清不卡| av有码第一页| 精品久久蜜臀av无| 亚洲精品国产区一区二| 人成视频在线观看免费观看| 正在播放国产对白刺激| 国产欧美日韩一区二区三区在线| 天堂中文最新版在线下载| √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| av有码第一页| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 一级片免费观看大全| 国产av国产精品国产| 999久久久国产精品视频| 满18在线观看网站| 亚洲精品国产色婷婷电影| 每晚都被弄得嗷嗷叫到高潮| 国产三级黄色录像| 2018国产大陆天天弄谢| 91字幕亚洲| 亚洲一码二码三码区别大吗| 欧美成人免费av一区二区三区 | 老司机福利观看| 欧美日韩亚洲高清精品| 男女免费视频国产| 真人做人爱边吃奶动态| 男女无遮挡免费网站观看| 麻豆国产av国片精品| 激情在线观看视频在线高清 | 少妇裸体淫交视频免费看高清 | 欧美中文综合在线视频| 飞空精品影院首页| 国产福利在线免费观看视频| 欧美久久黑人一区二区| 亚洲少妇的诱惑av| 一区二区三区精品91| 男男h啪啪无遮挡| 在线永久观看黄色视频| 日本vs欧美在线观看视频| 国产视频一区二区在线看| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区黑人| 69精品国产乱码久久久| 一本久久精品| 深夜精品福利| 少妇的丰满在线观看| 欧美日韩亚洲高清精品| 日本a在线网址| av国产精品久久久久影院| 成年动漫av网址| 99热国产这里只有精品6| 9热在线视频观看99| 色94色欧美一区二区| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 亚洲综合色网址| 蜜桃国产av成人99| 满18在线观看网站| 在线观看免费高清a一片| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 日韩熟女老妇一区二区性免费视频| 午夜成年电影在线免费观看| 伊人久久大香线蕉亚洲五| 1024视频免费在线观看| 99国产精品一区二区三区| 久久人妻熟女aⅴ| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 久久99热这里只频精品6学生| 99国产精品免费福利视频| 亚洲欧美日韩高清在线视频 | 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 午夜成年电影在线免费观看| 嫩草影视91久久| 99香蕉大伊视频| 激情视频va一区二区三区| 日韩大码丰满熟妇| 欧美国产精品va在线观看不卡| 成年人免费黄色播放视频| 国产一区二区 视频在线| 两个人免费观看高清视频| 精品午夜福利视频在线观看一区 | 国产成人精品在线电影| 亚洲中文日韩欧美视频| 国产欧美亚洲国产| 亚洲欧美日韩高清在线视频 | 欧美日韩一级在线毛片| 美女福利国产在线| 欧美黑人欧美精品刺激| 久久ye,这里只有精品| 欧美激情 高清一区二区三区| 欧美国产精品一级二级三级| 动漫黄色视频在线观看| 欧美精品人与动牲交sv欧美| 免费在线观看视频国产中文字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利视频在线观看免费| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区蜜桃| 十八禁人妻一区二区| 午夜激情av网站| 国产成人精品无人区| 真人做人爱边吃奶动态| 亚洲男人天堂网一区| 2018国产大陆天天弄谢| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器 | 久久精品国产亚洲av香蕉五月 | 啦啦啦中文免费视频观看日本| 在线观看免费视频网站a站| 精品国产乱码久久久久久小说| 下体分泌物呈黄色| 大香蕉久久网| 777米奇影视久久| 亚洲欧美日韩另类电影网站| 性高湖久久久久久久久免费观看| 最新在线观看一区二区三区| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 亚洲伊人久久精品综合| 久久精品亚洲精品国产色婷小说| 亚洲成人国产一区在线观看| 18禁黄网站禁片午夜丰满| 高清欧美精品videossex| av视频免费观看在线观看| 中文字幕人妻熟女乱码| 美国免费a级毛片| 国产欧美日韩一区二区三| 日本一区二区免费在线视频| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| tocl精华| 中文字幕精品免费在线观看视频| kizo精华| 亚洲国产av影院在线观看| 国产精品1区2区在线观看. | 高清av免费在线| 无遮挡黄片免费观看| 色婷婷av一区二区三区视频| 丝袜在线中文字幕| 亚洲色图 男人天堂 中文字幕| 久久久久久免费高清国产稀缺| 18在线观看网站| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 岛国在线观看网站| 国内毛片毛片毛片毛片毛片| 欧美日韩国产mv在线观看视频| 美女高潮到喷水免费观看| 脱女人内裤的视频| 美女高潮喷水抽搐中文字幕| 精品一区二区三区av网在线观看 | a在线观看视频网站| av免费在线观看网站| 母亲3免费完整高清在线观看| 成年人午夜在线观看视频| 中亚洲国语对白在线视频| 侵犯人妻中文字幕一二三四区| 嫁个100分男人电影在线观看| 久久婷婷成人综合色麻豆| 黄色片一级片一级黄色片| 精品亚洲成a人片在线观看| 女警被强在线播放| 国产精品影院久久| 桃花免费在线播放| 国产精品久久久av美女十八| 国产男女内射视频| 精品视频人人做人人爽| 中文字幕最新亚洲高清| 欧美黄色片欧美黄色片| 亚洲精品久久午夜乱码| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 91成年电影在线观看| netflix在线观看网站| 国产亚洲欧美在线一区二区| 久久国产亚洲av麻豆专区| 日韩视频一区二区在线观看| 美国免费a级毛片| 黄频高清免费视频| 老熟妇乱子伦视频在线观看| 交换朋友夫妻互换小说| 777久久人妻少妇嫩草av网站| 视频在线观看一区二区三区| 国产视频一区二区在线看| 欧美乱妇无乱码| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| www.自偷自拍.com| e午夜精品久久久久久久| 搡老岳熟女国产| 大片电影免费在线观看免费| 80岁老熟妇乱子伦牲交| 怎么达到女性高潮| 久久久国产精品麻豆| 亚洲专区字幕在线| 国产成人精品无人区| 亚洲五月色婷婷综合| 欧美精品一区二区免费开放| 999久久久国产精品视频| 国产麻豆69| 极品少妇高潮喷水抽搐| 可以免费在线观看a视频的电影网站|