• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rebuilding motor function of the spinal cord based on functional electrical stimulation

    2016-12-01 09:23:39XiaoyanShenWeiDuWeiHuangYiChenElectronicInformationSchoolNantongUniversityNantongJiangsuProvinceChina2CoinnovationCenterofNeuroregenerationNantongUniversityNantongJiangsuProvinceChinaMedicalSchoolNantongUniversityNantongJ

    Xiao-yan Shen, Wei Du Wei Huang Yi Chen Electronic Information School, Nantong University, Nantong, Jiangsu Province, China2 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China Medical School, Nantong University, Nantong, Jiangsu Province, China

    Rebuilding motor function of the spinal cord based on functional electrical stimulation

    Xiao-yan Shen1,2,*, Wei Du1, Wei Huang1, Yi Chen3
    1 Electronic Information School, Nantong University, Nantong, Jiangsu Province, China
    2 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
    3 Medical School, Nantong University, Nantong, Jiangsu Province, China

    How to cite this article: Shen XY, Du W, Huang W, Chen Y (2016) Rebuilding motor function of the spinal cord based on functional electrical stimulation. Neural Regen Res 11(8)∶1327-1332.

    Funding: This work was supported by the National Natural Science Foundation of China, No. 81371663, 61534003; and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions of China, No. PPZY2015B135.

    Xiao-yan Shen, Ph.D.,

    xiaoyansho@ntu.edu.cn.

    orcid:

    0000-0003-4551-186X (Xiao-yan Shen)

    Accepted: 2016-07-20

    Graphical Abstract

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

    nerve regeneration; spinal cord injury; functional electrical stimulation; rebuilding motor function; movement control; spinal cord; lumbosacral spinal cord; motor function sites; hip extension movement; hip flexion movement; ankle plantarflexion; ankle dorsiflexion; neural regeneration

    Introduction

    Spinal cord injury (SCI) can impair the motor function of patients to different degrees, and directly impacts the patients’ lifestyle and quality of life. Thus, there is an urgent need to explore effective ways to restore motor function of patients with SCI (Griffin et al., 2009; Musienko et al., 2009; Borton et al., 2014). Functional electrical stimulation (FES) has been widely used as a method to artificially activate the motor system after central nervous system injury (Dejan, 2014). So far, FES has been used in clinical trials successfully (Hart et al., 1998; Burridge et al., 2007). It has been used to control the arm and hand or to promote standing, balance, posture and gait training in the lower limbs (Pfurtscheller et al., 2003; Kim et al., 2008; Braz et al., 2009). Also, FES induces limb movements and promotes the motor function recovery of animals with SCI (Mushahwar et al., 2002, 2004; Bamford et al., 2005; Mondello et al., 2014). Because limb movements cannot occur with only a single muscle contraction, a natural motor behavior is formed by the combination of muscle synergies (d’Avella et al., 2003; Drew et al., 2008; Yu et al., 2009). Electrical microstimulation research has provided the most direct and powerful evidence that the nervous system encodes motor primitives, whether the corresponding relationship exists in the spinal cord or cortex (Tresch et al., 1999; Graziano et al., 2002; Haiss et al., 2005; Zimmermann et al., 2011). There is no suitable spinal cord motor function map that is used for FES, so the positions of many implanted microelectrodes have been determined by trial and error of a specific movement (Lemay et al., 2009). Therefore, FES technology has been used to determine the corresponding relationships between the motor function sites in the spinal cord and the muscles that control the hindlimb movements. On this basis, rebuilding hindlimb motor function with FES was studied.

    Materials and Methods

    Animals

    Seven adult specific-pathogen-free male Sprague-Dawley rats (~250 g body weight) were provided by the Experimental Animal Center of Nantong University in China (animal license No. SCXK (Su) 2014-0001). After intraperitoneal anesthesia with chloral hydrate (4 mL/kg), the rats’ backs and left hindlimbs were shaved and laminectomies were performed at the T12-L5vertebral segments (the distance of the spinous process of the thoracic vertebra is shortest between the ninth, the tenth and the eleventh). The spinous process trended to caudal-ward above the ninth thoracic vertebra, the tenth was in the neutral position, and the spinous process trended to head-ward below the eleventh (Shang et al., 2013). The reference electrode was implanted in the adjacent paraspinal muscle. Bipolar needle electrodes were implanted in the eight muscles of the left hindlimb: biceps femoris, obliquus externus abdominis, glutaeus superficialis, semitendinosus, tibialis anterior, adductor femoris magnus, sacrococcygeus ventralis medialis, and gastrocnemius, which were

    used to confirm whether the relevant muscle contraction was induced by the electrical stimulation. Rats were placed on a heating pad to maintain body temperature at approximately 37°C. All surgical procedures were carried out in accordance with the Guide for the Care and Use of Laboratory Animals and were approved by the local Animal Studies Committee.

    Stimulation electrode and stimulation parameters

    Monopolar stimulation with a tungsten needle microelectrode (WE30030.5A3; MicroProbes for Life Science, Gaithersburg, MD, USA) with a diameter of 2-3 μm and 30-70 μm exposed at the tip was used to stimulate the spinal cord. Monophasic, cathodic, voltage-controlled (400-800 mV) pulse trains generated by a stimulator (master 9, A.M.P.I, Jerusalem, Israel) were applied in the experiment. Each train consisted of 40 negative pulses, and each pulse lasted 200 μs with a frequency of 33 Hz. The pulse trains were repeated every 4 seconds.

    Experimental procedure

    The experimental procedure of positioning the spinal cord motor function sites of the rat via FES is shown in Figure 1. Each rat was laid down on the Stereotaxic System (51750; Stereotaxic Instrument, Stoelting, IL, USA) and the spinal cord was fixed with the rat spinal cord adaptor (51695, Stereotaxic Instrument). FES was used in the exposed spinal cord, and the spinal cord locations that could induce a certain muscle contraction were determined. The locations of the stimulation sites were described as the positions in the corresponding vertebral segment, denoted as (X, Y, Z). X is the distance that the stimulation site deviated from the posterior median sulcus of the spinal cord (left ‘-’, right ‘+’). Y is the depth of the stimulation site (distance from the highest location of the spinal cord surface). Z is the distance from the stimulation site to the rostral margin of the corresponding vertebral segment. Electrical stimulation was delivered to the stimulation electrode, which was moved in the cross-sectional and the rostrocaudal directions of the spinal cord at certain intervals. Stimulation intensity was regulated and the different locations that could induce hindlimb muscle contraction were determined. The region that induced a certain muscle contraction was determined. The thresholds of the different stimulation sites in the region were compared, and the stimulation site with the lowest threshold was determined as the optimal spinal cord stimulation site (the rats were anesthetized deeply). The optimal stimulation sites that control different muscle contraction were normalized. The stimulation sites of other rats were calculated according to the processed data. Phasing pulse sequences were delivered to the different motor function sites in the spinal cord to induce hindlimb coordinated movements. Electromyography (EMG) signals were recorded (2 kHz), amplified and filtered (30-1,000 Hz).

    Normalized coordinate description of the stimulation sites

    To describe the motor function locations in the spinal cord accurately, the coordinates that control different muscle con-traction were normalized. Through analysis and verification of the two normalization methods relative to the vertebral segment or the total length of spinal cord (Huang et al., 2012), the normalization method relative to the vertebral segment was adopted to describe the motor function sites. Coordinate X was normalized by the half transverse diameter of the spinal cord D/2 (D was the transverse diameter of the spinal cord). Coordinate Y was normalized by the transverse diameter (D). Z was normalized by the length L of the vertebral segment in the rostrocaudal direction.

    Table 1 Normalized coordinates of motor function sites in the spinal cord

    Figure 1 Experimental schematic indicating the positioning of the motor function sites in the spinal cord of the rat via functional electrical stimulation.

    Figure 2 The three-dimensional map depicts the spinal cord motor function sites.

    Figure 3 Stimulus signals controlling hip flexion and extension movement.

    Figure 4 Hip extension and flexion movements based on functional electrical stimulation.

    Figure 5 Ankle plantarflexion and dorsiflexion movements based on functional electrical stimulation.

    Results

    The map about motor function sites

    Following the above experimental procedure, the experiment of positioning the motor function sites with a frequency of 1 Hz was conducted on the six rats. The coordinates of the spinal cord motor function sites that induce muscle contraction were normalized and recorded as (X, Y, Z). The data on the normalized coordinates are shown in Table 1.

    According to the experimental data in Table 1, based on the average diameter of the spinal cord and the average length of each rat’s spine, a three-dimensional map of the spinal cord stimulation sites that can induce hindlimb muscle contraction is shown in Figure 2. The spinal segments corresponding to the T12-L5vertebral segments are depicted in Figure 2. The vertebral segments were separated by blue lines. The locations of the optimal spinal cord motor function sites that can induce biceps femoris, obliquus externus abdominis, glutaeus superficialis, semitendinosus, tibialis anterior, adductor femoris magnus, sacrococcygeus ventralis medialis, and gastrocnemius to produce muscle contraction are shown with red dots on the map. Determining the corresponding relationship between the motor function sites and the muscles can provide guidance for the next few experiments to achieve hip flexion, hip extension, ankle plantarflexion, and dorsiflexion movements.

    Movement control with FES

    Lumbosacral spinal cord can induce simple muscle contraction with low-frequency electrical stimulation, but coordinated movements can only be induced at a higher frequency (Lavrov et al., 2015). According to the data in Table 1, the transverse diameter and the length of the vertebral segments of the 7thrat, the positions that control the hip flexion, hip extension, ankle plantarflexion and dorsiflexion could be calculated.

    Hip movement control with FES

    The location calculated with related data that control the hip flexion of the 7thrat is located in the spinal cord corresponding to the first lumbar vertebra, near coordinates (X, Y, Z) = 0.8, 1.5, 3.6 mm. The location that controls the hip flexion is located in the third lumbar vertebra, near coordinates (X, Y, Z) = 1.0, 1.3, 3.1 mm.

    The extension and flexion movements of the hip joint are controlled by two phasing pulse sequences as shown in Figure 3. Hip flexion movement was generated with pulse train a, and hip extension movement was generated with pulse train b. Stimulation signals a and b were delivered to two tungsten electrodes that were located in the correspondingspinal cord motor function sites. The threshold voltage of the hip flexion movement was 800 mV and the threshold voltage of the hip extension movement was 250 mV.

    The kinematics of the hip movements of the left hindlimb are displayed in Figure 4. As can be seen in the figure, accompanying the hip flexion and extension movements, slight movements of other joints can be evoked within these locations.

    Ankle movement control with FES

    The experimental procedure of ankle movement control was consistent with the experimental procedure of hip movement control. The stimulus signals shown in Figure 3 were still used, but the difference was that ankle plantarflexion movement was generated with pulse train a and ankle dorsiflexion movement was generated with pulse train b. The location that controls the ankle dorsiflexion of the 7thrat is located in the spinal cord corresponding to the second lumbar vertebra, near coordinates (X, Y, Z) = 0.9, 1.3, 3.3 mm. The location that controls the ankle plantarflexion is located in the third lumbar vertebra, near coordinates (X, Y, Z) = 1.1, 1.2, 4.6 mm. The kinematics of the ankle movements of the left hindlimb is shown in Figure 5. Accompanying the ankle dorsiflexion and plantarflexion movements, slight movements of the knee joint can also be seen in Figure 5.

    Discussion

    In this study, FES technology was used to position the motor function sites in the spinal cord that can induce hindlimb muscle contraction. The normalized locations of motor function sites were summarized and a three-dimensional map of the relationship between the motor function sites and the corresponding muscles was drawn. All this can be the basis of further study using functional reconstruction experiments in SCI rats via electrical means. Phasing pulse sequences were delivered to the corresponding motor function sites in the spinal cord, and hip extension, hip flexion, ankle plantarflexion, and dorsiflexion movements were achieved successfully. Thus, fluid movements of the hindlimb can be induced using phasing pulse sequences that are delivered to a small amount of electrodes implanted in the corresponding functional sites of the lumbosacral spinal cord.

    Some scholars have drawn maps to describe the output response of electrical stimulation at the ventral horn of the spinal cord or the motoneuron distribution in the lumbosacral spinal cord (Mushahwar and Horch et al., 1997, 1998). However, so far, there is no description of the corresponding relationship between the optimal motor function sites and the corresponding muscles. Independent control of all the joints and muscles can be achieved with the above corresponding relationship and the parameters of the animal model. In the experiment, a simple muscle contraction response could only be seen with a stimulus frequency of 1 Hz, while a variety of hindlimb movements could be induced with frequency ~30 Hz. This is because of the varieties of motoneurons that are compactly distributed in the lumbosacral spinal cord (Vanderhorst et al., 1997; Yakovenko et al., 2002). When electrical stimulation was delivered to the tip of the microelectrode implanted in the lumbosacral spinal cord, the motoneurons located at the tip of and around the microelectrode were activated simultaneously, and the motor output was expressed as the co-effect of multiple muscle contractions. In addition, because the number of interneurons is seven times that of the motoneurons within these stimulated regions (Henneman, 1980), the flexion and extension movements of the joints and other coordinated movements might arise from the activation of neuronal circuitry spanning the lumbosacral, and indirectly activated motoneurons. It is reported that rhythmic activities can be evoked with tonic intraspinal microstimulation (Guevremont et al., 2006; Lavrov et al., 2015). However, alternating, locomotor-like stepping was not found in our experiments, which may be because of suppression from the higher central nervous system. More experiments need to be conducted on spinal rats to investigate the mechanism of the locomotion generated by FES in the spinal cord.

    As a form of FES, intraspinal microstimulation shows promise in clinical applications, and indices better selective activation of locomotor-related networks in the spinal cord than does epidural electrical stimulation (Musbahwar et al., 1998, 2000). More importantly, intraspinal microstimulation can activate propriospinal pathways located superficially, making it more feasible in clinical applications (Lavrov et al., 2015). Further, intraspinal microstimulation can evoke natural movements of the hindlimb by recruiting muscles in a synergistic way, and preferentially recruits fatigue-resistant muscle fibers, so the issue of fatigue is reduced significantly during electrical stimulation (Mushahwar and Horch et al., 2000; Bamford et al., 2011; Verhaagen et al., 2012). Because of the complexity of the neural networks in the lumbosacral spinal cord, further investigations will be needed into the distribution of motoneurons, interneurons and axons in the lumbosacral spinal cord, which requires more electrophysiological studies (Mushahwar et al., 2002). Other methods can be combined to promote the recovery of hindlimb motor function in follow-up experiments, such as pharmacological therapy and treadmill training. Research on this topic will provide guidance on the subsequent experiment addressing the recovery of motor function.

    Author contributions: The overall design of the experiment was agreed by all authors after extensive discussions. XYS designed the study. WH performed the study. YC drew the diagrams. WH and WD analyzed the experimental data and wrote the paper. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Bamford JA, Mushahwar VK (2011) Intraspinal microstimulation for the recovery of function following spinal cord injury. Progress Brain Res 194:227.

    Bamford JA, Putman CT, Mushahwar VK (2005) Intraspinal microstimulation preferentially recruits fatigue resistant muscle fibres and generates gradual force in rat. J Physiol 569:873-884.

    Borton D, Bonizzato M, Beauparlant J, Digiovanna, J., Moraud, EM, Wenger N (2014) Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res 78:21-29.

    Braz GP, Russold M, Davis GM (2009) Functional electrical stimulation control of standing and stepping after spinal cord injury: a review of technical characteristics. Neuromodulation 12:180-190.

    Burridge J, Haugland M, Larsen B (2007) Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia. J Rehabil Med 39:212-218.

    d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300-308.

    Dejan BP (2014) Advance in functional electrical stimulation. J Electromyogr Kinesiol 24:795-802.

    Drew T, Kalaska J, Krouchev N (2008) Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol 586:1239-1245.

    Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841-851.

    Griffin L, Decker MJ, Hwang JY (2009) Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 19:614-622.

    Guevremont L (2006) Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation. IEEE Trans Neural Syst Rehabil Eng 14:266-272.

    Haiss F, Schwarz C (2005) Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. J Neurosci 25:1579-1587.

    Hart RL, Kilgore KL, Peckham PH (1998) A comparison between control methods for implanted FES hand-grasp systems. IEEE Trans Rehabil Eng 6:208-218.

    Henneman E (1980) Organization of the spinal cord and its reflexes. Med Physiol 762-786.

    Huang W, Shen XY, Huang TP (2012) Experimental research on the Reference coordinates for functional localization of spinal cord. The 6thInternational Conference on Bioinformatics and Biomedical Engineering (iCBBE) 245-248.

    Kim CS, Eom GM, Hase K (2008) Stimulation pattern-free control of fes cycling: simulation study. IEEE Trans Syst Man Cybern 38:125-134.

    Lavrov I, Musienko PE, Selionov VA, Zdunowski S, Roy RR, Edgerton VR (2015) Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Res 1600:84-92.

    Lemay MA, Grasse D, Grill WM (2009) Hindlimb endpoint forces predict movement direction evoked by intraspinal microstimulation in cats. IEEE Trans Neural Syst Rehabil Eng 17:379-389.

    Mondello SE, Kasten MR, Horner PJ (2014) Therapeutic intraspinal stimulation to generate activity and promote long-term recovery. Front Neurosci 8:21.

    Mushahwar VK, Aoyagi Y, Stein RB (2004) Movements generated by intraspinal microstimulation in the intermediate gray matter of the anesthetized, decerebrate, and spinal cat. Can J Physiol Pharmacol 82:702-714.

    Mushahwar VK, Gillard DM, Gauthier MJ (2002) Intraspinal microstimulation generates locomotor-like and feedback-controlled movements. IEEE Trans Neural Syst Rehabil Eng 10:68-81.

    Mushahwar VK, Horch KW (1997) Proposed specifications for a lumbar spinal cord electrode array for control of lower extremities in paraplegia. IEEE Trans Rehabil Eng 5:237-243.

    Mushahwar VK, Horch KW (1998) Selective activation and graded recruitment of functional muscle groups through spinal cord stimulation. Ann N Y Acad Sci 860:531-535.

    Mushahwar VK, Horch KW (2000) Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans Neural Syst Rehabil Eng 8:11-21.

    Mushahwar VK, Saigal R (2002) Spinal cord stimulation for restoration of locomotion. Engineering in Medicine and Biology 24thAnnual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint. IEEE 3:2041-2042.

    Musienko P, van den Brand R, Maerzendorfer O, Larmagnac, A (2009) Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury. IEEE Trans Biomed Eng 56:2707-2711.

    Pfurtscheller G, Müller GR, Pfurtscheller J (2003) ‘Thought’-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33-36.

    Shang YL, Li YF, Ning YF (2013) Anatomy reference location for model of SCI rats. Anat Res 35:412-414.

    Tresch MC, Bizzi E (1999) Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res 129:401-416.

    Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382:46-76.

    Verhaagen J, McDonald III JW (2012) Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol 109:283.

    Yakovenko S (2002) Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. J Neurophysiol 87:1542-1553.

    Yu XN, Qian JG (2009) The function of functional electrical stimulation to lower extremity of hemipleg. Nanjing Tiyu Nxueyuan Xuebao (Ziran Kexueban) 8:26-29.

    Zimmermann JB, Seki K, Jackson A (2011) Reanimating the arm and hand with intraspinal microstimulation. J Neural Eng 8:054001.

    Copyedited by Jackson C, Norman C, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.189199

    *Correspondence to:

    亚洲欧美一区二区三区国产| 99久久人妻综合| 国产精品久久久久久精品古装| 在线观看www视频免费| 久久人人爽人人片av| 少妇 在线观看| 水蜜桃什么品种好| 侵犯人妻中文字幕一二三四区| 不卡av一区二区三区| 中文乱码字字幕精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 欧美乱码精品一区二区三区| 人妻人人澡人人爽人人| 欧美人与性动交α欧美软件| 不卡av一区二区三区| 欧美精品亚洲一区二区| 又紧又爽又黄一区二区| 建设人人有责人人尽责人人享有的| 国产精品一二三区在线看| 啦啦啦啦在线视频资源| 美女视频免费永久观看网站| 妹子高潮喷水视频| 老司机靠b影院| 国产爽快片一区二区三区| 亚洲国产欧美日韩在线播放| 少妇粗大呻吟视频| av线在线观看网站| 亚洲成人免费av在线播放| 美女午夜性视频免费| 国产精品国产av在线观看| 国产又色又爽无遮挡免| 午夜福利,免费看| 精品人妻熟女毛片av久久网站| 啦啦啦 在线观看视频| 大香蕉久久网| 国产亚洲欧美在线一区二区| 亚洲av日韩精品久久久久久密 | 国产欧美亚洲国产| 性高湖久久久久久久久免费观看| 看十八女毛片水多多多| 少妇裸体淫交视频免费看高清 | 制服人妻中文乱码| 黄色怎么调成土黄色| 中文字幕高清在线视频| 亚洲自偷自拍图片 自拍| 国产老妇伦熟女老妇高清| 国产精品99久久99久久久不卡| 亚洲成人免费电影在线观看 | 日本午夜av视频| 国产一区二区在线观看av| 精品欧美一区二区三区在线| 欧美国产精品一级二级三级| 人人澡人人妻人| 精品高清国产在线一区| 欧美 亚洲 国产 日韩一| 亚洲专区国产一区二区| 丝袜在线中文字幕| 亚洲伊人色综图| 青春草视频在线免费观看| 午夜免费观看性视频| 亚洲,欧美精品.| 女性生殖器流出的白浆| 青草久久国产| 国产色视频综合| 国产麻豆69| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线不卡| 黄色a级毛片大全视频| 亚洲成人手机| 亚洲一区中文字幕在线| 国产精品国产三级国产专区5o| 久久久久久人人人人人| 一个人免费看片子| 国产主播在线观看一区二区 | 亚洲情色 制服丝袜| 中文字幕高清在线视频| 国产片特级美女逼逼视频| 亚洲三区欧美一区| 人人妻,人人澡人人爽秒播 | 亚洲激情五月婷婷啪啪| 成年人黄色毛片网站| 性少妇av在线| 一级毛片电影观看| 丁香六月欧美| 亚洲午夜精品一区,二区,三区| 亚洲av综合色区一区| 97在线人人人人妻| 国产精品久久久人人做人人爽| 精品少妇黑人巨大在线播放| 国产精品av久久久久免费| 麻豆av在线久日| bbb黄色大片| 狂野欧美激情性xxxx| 亚洲欧洲日产国产| 国产av国产精品国产| 美国免费a级毛片| 少妇 在线观看| 99久久人妻综合| 久久亚洲精品不卡| 国产在线视频一区二区| 久久中文字幕一级| 久久99精品国语久久久| 久久久精品国产亚洲av高清涩受| 午夜久久久在线观看| 亚洲 欧美一区二区三区| 日本欧美国产在线视频| 日韩 亚洲 欧美在线| 欧美日韩黄片免| 亚洲精品一区蜜桃| av欧美777| 色94色欧美一区二区| 国产精品 国内视频| 精品一区二区三区四区五区乱码 | 亚洲一区中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 国产日韩欧美在线精品| 亚洲,欧美,日韩| 肉色欧美久久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久久久久毛片微露脸 | 国产精品九九99| 亚洲一码二码三码区别大吗| av福利片在线| 欧美中文综合在线视频| 日日爽夜夜爽网站| 欧美精品啪啪一区二区三区 | 欧美国产精品va在线观看不卡| 亚洲精品在线美女| tube8黄色片| 黄色一级大片看看| 久久免费观看电影| 两人在一起打扑克的视频| 亚洲国产精品一区三区| 一本大道久久a久久精品| 亚洲精品国产区一区二| 国产日韩欧美在线精品| 黄色视频不卡| 亚洲av欧美aⅴ国产| 日本一区二区免费在线视频| 国产精品欧美亚洲77777| 美女福利国产在线| 又紧又爽又黄一区二区| videos熟女内射| 欧美黄色片欧美黄色片| 国产成人精品久久久久久| 别揉我奶头~嗯~啊~动态视频 | 黄色a级毛片大全视频| 中文乱码字字幕精品一区二区三区| 在线亚洲精品国产二区图片欧美| 在线观看免费视频网站a站| 久久精品国产亚洲av涩爱| 少妇被粗大的猛进出69影院| 亚洲av电影在线进入| 亚洲精品日韩在线中文字幕| 电影成人av| 久久性视频一级片| 中文欧美无线码| 国产欧美日韩综合在线一区二区| 欧美另类一区| 午夜91福利影院| 妹子高潮喷水视频| 一区福利在线观看| 成人亚洲欧美一区二区av| 欧美成狂野欧美在线观看| svipshipincom国产片| 91精品伊人久久大香线蕉| 一级黄色大片毛片| 涩涩av久久男人的天堂| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影 | 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美| 国产精品久久久人人做人人爽| 国产熟女欧美一区二区| 汤姆久久久久久久影院中文字幕| 国产成人欧美在线观看 | 欧美日韩黄片免| 一区二区日韩欧美中文字幕| 最近中文字幕2019免费版| 香蕉国产在线看| 激情五月婷婷亚洲| 欧美性长视频在线观看| 国产爽快片一区二区三区| 人妻一区二区av| 亚洲av欧美aⅴ国产| 中文字幕色久视频| 久久 成人 亚洲| 久久久精品区二区三区| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 99热国产这里只有精品6| 黄片播放在线免费| 国产精品免费视频内射| 国产一区有黄有色的免费视频| 成人免费观看视频高清| 一区二区三区精品91| 日韩av免费高清视频| 欧美人与性动交α欧美软件| av线在线观看网站| 看免费成人av毛片| 亚洲av国产av综合av卡| svipshipincom国产片| 五月天丁香电影| 在线观看人妻少妇| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区| 伦理电影免费视频| 手机成人av网站| 国产又爽黄色视频| 精品国产一区二区三区久久久樱花| 中文字幕人妻熟女乱码| 黑人欧美特级aaaaaa片| 亚洲精品第二区| h视频一区二区三区| 黄频高清免费视频| 国产一区二区在线观看av| 国产av国产精品国产| 欧美日韩黄片免| 免费在线观看完整版高清| 日韩人妻精品一区2区三区| 各种免费的搞黄视频| 天天躁日日躁夜夜躁夜夜| 在线 av 中文字幕| 中文字幕制服av| 免费看不卡的av| cao死你这个sao货| 中文精品一卡2卡3卡4更新| 日韩免费高清中文字幕av| 国产在线一区二区三区精| www.av在线官网国产| 国产熟女午夜一区二区三区| 黑人欧美特级aaaaaa片| 亚洲三区欧美一区| 18禁国产床啪视频网站| 日韩av不卡免费在线播放| 久久久国产一区二区| 久久精品亚洲熟妇少妇任你| 天天躁狠狠躁夜夜躁狠狠躁| 成在线人永久免费视频| 精品一区二区三区四区五区乱码 | 日本五十路高清| 夫妻性生交免费视频一级片| 又大又黄又爽视频免费| av在线播放精品| 亚洲av综合色区一区| 99re6热这里在线精品视频| 最新的欧美精品一区二区| 成人三级做爰电影| 国产精品久久久久久精品电影小说| 免费少妇av软件| 亚洲九九香蕉| 欧美黄色淫秽网站| 不卡av一区二区三区| 国产野战对白在线观看| 国产精品九九99| 中文字幕人妻熟女乱码| 国产99久久九九免费精品| 另类精品久久| 国产精品二区激情视频| 欧美日韩成人在线一区二区| 中国国产av一级| 亚洲熟女毛片儿| 熟女av电影| 青草久久国产| 午夜免费鲁丝| 国产视频一区二区在线看| 亚洲人成网站在线观看播放| 激情五月婷婷亚洲| 国产黄色视频一区二区在线观看| 一区福利在线观看| 久久久久久久久久久久大奶| 欧美日韩亚洲国产一区二区在线观看 | 日韩制服骚丝袜av| 久久综合国产亚洲精品| 日韩中文字幕欧美一区二区 | 熟女少妇亚洲综合色aaa.| a级毛片黄视频| av欧美777| 天天躁夜夜躁狠狠久久av| 亚洲国产中文字幕在线视频| 亚洲午夜精品一区,二区,三区| 久久国产精品男人的天堂亚洲| 国产精品亚洲av一区麻豆| 日日爽夜夜爽网站| 999精品在线视频| 亚洲精品美女久久av网站| 国产精品国产三级专区第一集| 欧美精品av麻豆av| 水蜜桃什么品种好| 久久精品aⅴ一区二区三区四区| 久久免费观看电影| 久久久久精品国产欧美久久久 | 久久99热这里只频精品6学生| 悠悠久久av| 黄色视频不卡| 亚洲欧美成人综合另类久久久| 丝袜美足系列| 亚洲少妇的诱惑av| 亚洲七黄色美女视频| 高清av免费在线| 97人妻天天添夜夜摸| 热99久久久久精品小说推荐| 超色免费av| 黑人欧美特级aaaaaa片| 亚洲精品中文字幕在线视频| www.999成人在线观看| 观看av在线不卡| 一区二区三区四区激情视频| 每晚都被弄得嗷嗷叫到高潮| 国产在线免费精品| 日本wwww免费看| 天天躁日日躁夜夜躁夜夜| 免费黄频网站在线观看国产| 性色av乱码一区二区三区2| 成年女人毛片免费观看观看9 | 亚洲欧美清纯卡通| 少妇精品久久久久久久| 国产免费福利视频在线观看| 狂野欧美激情性xxxx| 亚洲精品日本国产第一区| 久久精品熟女亚洲av麻豆精品| 这个男人来自地球电影免费观看| 国产一区二区 视频在线| 超碰97精品在线观看| 精品人妻熟女毛片av久久网站| 别揉我奶头~嗯~啊~动态视频 | 中文字幕精品免费在线观看视频| 亚洲成人免费av在线播放| 久久精品国产亚洲av高清一级| 午夜久久久在线观看| 麻豆乱淫一区二区| 捣出白浆h1v1| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 日韩精品免费视频一区二区三区| 亚洲精品久久久久久婷婷小说| 午夜免费鲁丝| 黑人巨大精品欧美一区二区蜜桃| 叶爱在线成人免费视频播放| av又黄又爽大尺度在线免费看| 亚洲精品一卡2卡三卡4卡5卡 | 欧美+亚洲+日韩+国产| 色网站视频免费| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 一本久久精品| 久久狼人影院| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 午夜精品国产一区二区电影| 夫妻性生交免费视频一级片| xxx大片免费视频| 一级黄片播放器| 九草在线视频观看| 亚洲免费av在线视频| 欧美精品啪啪一区二区三区 | 欧美 日韩 精品 国产| 色网站视频免费| 日韩av免费高清视频| 精品国产超薄肉色丝袜足j| 90打野战视频偷拍视频| 国产精品人妻久久久影院| 午夜激情av网站| 十八禁网站网址无遮挡| 性少妇av在线| 777久久人妻少妇嫩草av网站| 18禁国产床啪视频网站| 亚洲欧洲国产日韩| 一本大道久久a久久精品| 91麻豆精品激情在线观看国产 | 熟女av电影| 视频区图区小说| 国产老妇伦熟女老妇高清| 亚洲男人天堂网一区| 少妇人妻久久综合中文| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀 | 黑人巨大精品欧美一区二区蜜桃| 久久人妻熟女aⅴ| 成人18禁高潮啪啪吃奶动态图| 18禁观看日本| 电影成人av| 日日爽夜夜爽网站| 美女午夜性视频免费| 91国产中文字幕| 丰满少妇做爰视频| 午夜福利乱码中文字幕| 99香蕉大伊视频| 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 另类亚洲欧美激情| 日本一区二区免费在线视频| 欧美精品啪啪一区二区三区 | 国产爽快片一区二区三区| 久久99一区二区三区| 欧美日韩视频高清一区二区三区二| 午夜免费成人在线视频| 伊人亚洲综合成人网| 亚洲,一卡二卡三卡| h视频一区二区三区| 少妇人妻久久综合中文| 久热爱精品视频在线9| 视频区欧美日本亚洲| 久久久国产一区二区| 女人被躁到高潮嗷嗷叫费观| 国产福利在线免费观看视频| 午夜免费鲁丝| 免费少妇av软件| 亚洲天堂av无毛| 亚洲人成电影免费在线| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 操美女的视频在线观看| 久热爱精品视频在线9| 大陆偷拍与自拍| 色婷婷av一区二区三区视频| 亚洲国产欧美网| 另类亚洲欧美激情| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| videos熟女内射| 成年人黄色毛片网站| 2021少妇久久久久久久久久久| 欧美黑人欧美精品刺激| www.精华液| 老熟女久久久| 成年人黄色毛片网站| 曰老女人黄片| 成人亚洲欧美一区二区av| 欧美日韩视频高清一区二区三区二| 国产免费又黄又爽又色| 国产欧美日韩综合在线一区二区| 老司机在亚洲福利影院| 天天添夜夜摸| 青青草视频在线视频观看| 日本欧美视频一区| 亚洲一卡2卡3卡4卡5卡精品中文| 男人爽女人下面视频在线观看| 精品久久久久久久毛片微露脸 | 操出白浆在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 午夜福利视频在线观看免费| 成年人黄色毛片网站| 9热在线视频观看99| 岛国毛片在线播放| 免费av中文字幕在线| 亚洲少妇的诱惑av| 成年人黄色毛片网站| 一边摸一边抽搐一进一出视频| 国产免费现黄频在线看| 婷婷成人精品国产| 国产男女超爽视频在线观看| 欧美大码av| 国产日韩欧美在线精品| 久久久精品国产亚洲av高清涩受| 亚洲熟女毛片儿| 国产成人精品无人区| 99九九在线精品视频| 黄色视频不卡| 欧美国产精品一级二级三级| 欧美av亚洲av综合av国产av| 久久精品久久久久久噜噜老黄| 亚洲三区欧美一区| 亚洲av日韩在线播放| 国产成人精品久久二区二区免费| 蜜桃在线观看..| 首页视频小说图片口味搜索 | 69精品国产乱码久久久| 国产精品一区二区精品视频观看| 黑丝袜美女国产一区| 国产99久久九九免费精品| 亚洲成人国产一区在线观看 | 丝袜喷水一区| 在线观看免费午夜福利视频| 建设人人有责人人尽责人人享有的| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| videos熟女内射| 视频区图区小说| 久久久久久免费高清国产稀缺| 大型av网站在线播放| 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| www.精华液| 国产成人系列免费观看| 久久这里只有精品19| 超碰97精品在线观看| 电影成人av| 亚洲一区中文字幕在线| 久久中文字幕一级| 午夜福利视频精品| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 精品亚洲成a人片在线观看| 亚洲人成电影免费在线| 日韩中文字幕欧美一区二区 | 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 亚洲情色 制服丝袜| 国产精品国产av在线观看| 大片电影免费在线观看免费| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频 | 中文字幕亚洲精品专区| 又大又爽又粗| 一级黄色大片毛片| 伊人亚洲综合成人网| 99国产精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 午夜福利,免费看| 国产一区二区 视频在线| 考比视频在线观看| 在线av久久热| 国产在线一区二区三区精| 操出白浆在线播放| 天堂俺去俺来也www色官网| 日韩av不卡免费在线播放| 老司机亚洲免费影院| 精品国产乱码久久久久久男人| 男男h啪啪无遮挡| 久久久国产精品麻豆| 丝袜美足系列| 国产在线免费精品| 国产1区2区3区精品| 岛国毛片在线播放| 男男h啪啪无遮挡| 色94色欧美一区二区| 大片免费播放器 马上看| 国产高清不卡午夜福利| 国产成人a∨麻豆精品| av有码第一页| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 午夜福利免费观看在线| 91精品伊人久久大香线蕉| 女人久久www免费人成看片| 男男h啪啪无遮挡| 国产成人精品在线电影| 99九九在线精品视频| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 欧美xxⅹ黑人| 亚洲国产最新在线播放| 久久中文字幕一级| 老司机深夜福利视频在线观看 | 美女大奶头黄色视频| 水蜜桃什么品种好| 又大又爽又粗| 久久久久久免费高清国产稀缺| 麻豆国产av国片精品| 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 99久久人妻综合| 成年女人毛片免费观看观看9 | 一区二区日韩欧美中文字幕| 久久ye,这里只有精品| 免费在线观看完整版高清| 天堂8中文在线网| 黄片小视频在线播放| 黄色a级毛片大全视频| 久久鲁丝午夜福利片| 美女福利国产在线| 国产成人精品在线电影| 咕卡用的链子| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 久热爱精品视频在线9| 超色免费av| 久久久久久久大尺度免费视频| 国产成人av教育| 国产精品久久久av美女十八| 国产男女内射视频| kizo精华| 脱女人内裤的视频| 99国产综合亚洲精品| 欧美性长视频在线观看| 永久免费av网站大全| 一级黄片播放器| 欧美人与性动交α欧美精品济南到| 久久人人97超碰香蕉20202| 性少妇av在线| 欧美在线黄色| 欧美精品av麻豆av| 一二三四社区在线视频社区8| 美女福利国产在线| 肉色欧美久久久久久久蜜桃| 下体分泌物呈黄色| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 国产成人欧美在线观看 | 亚洲一码二码三码区别大吗| 国产精品国产三级国产专区5o| 亚洲一卡2卡3卡4卡5卡精品中文| 精品人妻1区二区| 高清av免费在线| 欧美黄色片欧美黄色片| 美女福利国产在线| 亚洲七黄色美女视频| 天堂俺去俺来也www色官网| 女警被强在线播放| 巨乳人妻的诱惑在线观看| 在线观看国产h片| 亚洲人成77777在线视频| 男人爽女人下面视频在线观看|