• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of carrier mobility on performance of perovskite solar cells?

    2019-04-13 01:14:56YiFanGu顧一帆HuiJingDu杜會(huì)靜NanNanLi李楠楠LeiYang楊蕾andChunYuZhou周春宇
    Chinese Physics B 2019年4期

    Yi-Fan Gu(顧一帆),Hui-Jing Du(杜會(huì)靜),Nan-Nan Li(李楠楠),Lei Yang(楊蕾),and Chun-Yu Zhou(周春宇)

    Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    1.Introduction

    Perovskite solar cells(PSCs)have attracted considerable attention in the past few years due to their rapid photovoltaic efficiency improvement,from 10%in 2012[1,2]to 23.2%in 2018.[3]The excellent photovoltaic performance of PSCs is ascribed to its excellent optoelectrical characteristics,such as high light absorption coefficient,[4,5]long carrier diffusion length,[6,7]high carrier mobility,[8,9]and long recombination lifetime.[9]The transportation of carriers from the absorber to charge transport layer and the collection of them by electrodes are key processes to determine the cell efficiency,hence carrier mobility is one of the significant factors affecting cell performance.The carrier mobility and diffusion length of perovskite crystal have reached to hundreds of cm2/V·s and hundreds ofμm respectively.However,can the higher mobility and the longer diffusion length lead to better PSCs’performance?Research has drawn different conclusions about the influence of carrier mobility[10–12]and diffusion length[10,13–15]on PSCs performance.Simulation studies based on one-dimensional simulation software SCAPS show that the diffusion length longer than 1μm and higher mobility of the carriers have no positive effect on the cell performance promotion,[13,15]and high mobility of the charge transport layer is also necessary for the high efficiency.[16,17]The influence of carrier mobility on the cell performance is restricted by other cell parameters,such as doping concentration,layer thickness,etc.In these papers,these factors were not considered as a whole.Carrier transportation can be enhanced if the parameters of the cell are well matched,and thus improve cell performance.Many experimental and theoretical studies of the mobility influence on the organic solar cells’performance demonstrated that there exists an optimal value of mobility for obtaining high efficiency organic cells.[18–21]While the systematic study of carrier mobility in PSCs is very rare,this would affect the best utilization of the excellent carriers’transportation characters of perovskite material to improve cell performance.To clarify these questions,we construct the device model and simulate the carrier transportation to understand the mechanism of carrier mobility influencing the cell performance.Our simulation study shows that the optimal mobility also exists in perovskite solar cells,and by matching the carrier mobility of the transportation layer and the absorption layer,the efficiency of perovskite solar cells can be enhanced.The optimized cells’structure with a diffusion length of nearly 1.9μm and the photovoltaic efficiency of 27.39%is obtained ultimately.

    2.Device model and simulation parameters

    In our previous research on lead-free perovskite solar cells,[22]we obtained an efficiency of 23.36%by optimizing the doping concentration,defect density and electron affinity of the buffer.To elucidate the mechanism of high carrier mobility and long diffusion length of the perovskite materials influencing the cell performance,our simulation is based on that previous optimized structure(glass substrate/TCO/buffer layer TiO2(ETM)/absorption layer CH3NH3SnI3/hole transport material(HTM)spiro-OMeTAD/metal back contact)to avoid the influence of other cell parameters.The parameters of that previous structure,serving as our initial simulation parameters,are listed in the following Table 1.The simulation principle,the cell architecture,and other simulation parameters selected for each layer can also be found from our previous studies.[22]

    Table 1.Simulation parameters and performances of device during optimization.The parameters in bold text are the optimal value during the optimization.

    The current density–voltage( J–V)characteristic curve of the cell with initial parameters is shown in Fig.1(curve 1).Short-circuit current density( Jsc)of 31.59 mA/cm2,opencircuit voltage(Voc)of 0.92 V, fill factor(FF)of 79.99%,and power conversion efficiency(PCE)of 23.36%are obtained.

    Fig.1. J–V curves of PSCs during optimization.

    Based on previous optimized structure,we further investigate the relation between the carrier mobility and the cell performance.Taking into account the influence of each layer on the performance of perovskite solar cells,the optimization process consists of four steps.The parameters of thickness,carrier mobility,and doping concentration are optimized in the absorber layer,HTM,and ETM layers in sequence at the first three steps.At the fourth step,the parameters of the absorber layer are re-optimized to realize the matching optimization of all the parameters.Experimental research has shown that the mobilityμis independent of charge carrier concentration of the perovskite absorber layer at lower concentrations(1016cm?3–1018cm?3).[23,24]

    3.Results and discussion

    3.1.Optimization of the absorption layer

    In this step,the relation of the mobility with the thickness and doping concentration of the absorber is investigated first based on the parameters of the initial cell in Table 1.Figures 2 and 3 illustrate the effects of mobility on the device performance under various absorber thickness values and doping concentrations.It can be seen that the optimal value of mobility(Figs.2(a)and 3(a))changes with the absorber thickness and doping concentration.At an optimal value of 5 cm2/V·s(1100 nm),the cell efficiency increases slightly from the initial 23.36%to 24.66%.With the enhancement of the mobility,the FF and the Jscincrease significantly,which is consistent with the experimental research in the literature.[19,25]When the carrier mobilityμ is smaller than 10 cm2/V·s,efficiency and Jscof the device first rise and then decreases with thickness increasing,and a moderate thickness of 800 nm is conducible to the improvement of efficiency, so we adopted an optimal thickness 600 nm of the absorption layer when μ was 2 cm2/V·s in our previous paper.[22]This is consistent with the experimental research that the absorber thickness is always about 700 nm,because the mobility of the polycrystalline perovskite film is always lower than 10 cm2/V·s.[3,26,27]When μ is higher than 10 cm2/V·s,the absorber thicker than 800 nm is more suitable to the obtaining of a higher efficiency,which is embodied with the significant increment of Jsc.The higher the thickness absorber layer,the more the generated photo-carriers is,and especially more longwaves can be absorbed.[28,29]This can be seen in the external quantum efficiency(QE)curve(Fig.4),where the QE at the longwave increases with the augmentation of the absorber thickness.

    Fig.2.Variations of(a)efficiency,(b)Voc,(c) Jsc,and(d)FF of PSCs with thickness and mobility of the first optimization of absorber.

    Fig.3.Variations of(a)efficiency,(b)Voc,(c) Jsc,and(d)FF of PSCs with doping concentration and mobility of the first optimization of absorber.

    Figure 3 illustrates the effects of mobility on the cell performance at various doping concentrations of the absorber layer based on the optimized absorber thickness of 800 nm obtained from Fig.2.The Jscand FF both increase with mobility increasing at different doping concentrations,especially the Jsccan be significantly augmented(Fig.3(c)).The obvious influence of mobility on Jsccan be observed when NAis higher than 1×1016cm?3.With a certain mobility,say,μ =6 cm2/V·s, Jscfirst increases with the augment of doping concentration and then decreases significantly with NAfurther increasing to 5×1016cm?3.This is because both Jscand recombination rate increase with the augment of doping concentration.Mobility can surmount the contradiction between high Jscand high recombination rate caused by the high doping concentration.Recombination can be weakened through good transportation performance of perovskite material with high mobility,which would be explained in the paper in the last simulation step(see Fig.11).The optimal value of mobility gradually decreases with NAincreasing,thus lowering the negative effect of the doping concentration increment(see Fig.3(a)).Moderate doping concentration(5×1015cm?3≤NA<1×1016cm?3)is beneficial to the improvement of efficiency forμ >10 cm2/V·s.

    Fig.4.Curves of external quantum efficiency versus wavelength of PSCs during optimization.

    This analysis presents that monotonically increasing the mobility of the absorber layer is not beneficial to the performance of the PSCs.Taking into account the influence of the thickness and doping concentration,an optimal value of mobility exists.The corresponding J–V characteristic curve(curve 2)is shown in Fig.1,and Jscrises significantly from the initial 31.59 mA/cm2to 33.30 mA/cm2.TheVocof 0.90 V,FF of 82.38%,and PCE of 24.78%are obtained at this preliminary optimization of the absorption layer.

    The transportation parameter’s matching between the absorber and the charge transport layer is important to avoid the excessive accumulation of the carriers at their interface during the photon-generated carriers transporting to the corresponding electrodes.Hence,after the absorber layer optimization,the carrier mobility and other parameters,such as doping concentration and thickness,of HTM and ETM should also be optimized.

    3.2.Optimization of the charge transport layer

    3.2.1.Optimization of the hole transport layer(HTM)

    The HTM layer is optimized based on the preliminarily optimized absorber layer.The effects of mobility on the performance of perovskite solar cells under various HTM thickness values(Fig.5(a))and doping concentrations(Fig.5(b))are given.In a 3-nm–15-nm range of HTM thickness,when the mobility of HTM increases from 10?4cm2/V·s to 5 ×10?2cm2/V·s,the efficiency of perovskite solar cells increases gradually.Little change of the efficiency can be seen forμ >1×10?2cm2/V·s because the carriers’diffusion length is longer than the thickness of the HTM.When doping concentration is smaller than 1×1019cm?3,PSCs’efficiency augments gradually with mobility increasing and reaches a saturation level at an HTM mobility of 0.1 cm2/V·s.When the doping concentration is 1×1019cm?3,the effect of the mobility is very weak on the cell’s efficiency.

    Fig.5.Plots of efficiency versus mobility of PSCs for various(a)thickness values and(b)doping concentrations of HTM.

    Figure6 shows the variation trends of device performance affected by thickness,doping concentration,and mobility of HTM,respectively.During simulation,other two parameters are kept unchanged when the optimized parameters are extracted from Fig.5 with an HTM thickness of 5 nm,a doping concentration of 1×1019cm?3and mobility of 0.1 cm2/V·s.The efficiency, Jscand FF rise with the mobility of HTM increasing,and the open-circuit voltage Vocis almost constant,which is in accordance with the work of Alnuaimi.[30]Doping concentration enhancement of HTM can increase its conductivity,hole mobility and charge density,and this will significantly improve the device performance.[31,32]The improvement of device performance with doping concentration growing is consistent with the scenario in the literature,[33]and we set 3×1019cm?3and 0.1 cm2/V·s as the optimal doping concentration and mobility of HTM,respectively.The optimal mobility value of 0.1 cm2/V·s is in agreement with that in the literature.[30]Although thinner thickness is more beneficial to the cell performance promoting,considering the difficulty of preparation,the optimal thickness value of HTM is taken to be 5 nm.After the optimization of the HTM,a PCE of 24.89%is obtained with Jscof 33.32 mA/cm2,Vocof 0.904 V,FF of 82.66%,and its J–V curve is depicted with curve 3 in Fig.1.In comparison with the preliminary optimization of the absorber layer(curve 2 Fig.1),an obvious augment of Vocis obtained.

    Fig.6.Variations of performance parameters of PSCs with(a)thickness,(b)doping concentration,and(c)mobility of HTM.

    Fig.7.Plots of efficiency of PSC versus mobility for(a)various thickness values and(b)various doping concentrations of ETM.

    3.2.2.Optimization of the electron transport layer(ETM)

    The parameters of the ETM layer are optimized in sequence.Figure 7 reveals the influences of ETM mobility on device efficiency with various thickness values and doping concentrations.The efficiency decreases with the thickness of ETM increasing from 3 nm to 20 nm but does not vary with the mobility of ETM.Figure 8 exhibits the variations in thickness,doping concentration,and mobility of ETM versus device performance parameters,respectively.When the ETM thickness increases from 1 nm to 15 nm,all the performance parameters,such as Jsc,Voc,FF,and PCE of the device first rise and then decrease,and there exists an optimal thickness value of 5 nm for the ETM layer.For polycrystalline perovskite,CH3NH3PbI3,whose diffusion length is short,a thick mesoporous ETM layer is generally required.[34]But for the single crystal perovskite with L on the order of micros,the ETM layer is not necessary for the high efficiency cell.The TiO2ETM of the planner structured PSC can be prepared fast by spraying pyrolysis with good crystallinity.[35]

    The device performance parameters continuously increase as the doping concentration of ETM increases because of the enhancement of the carrier concentration and conductivity,[36,37]while they do not vary with the mobility of optimization of electron transport layer.We take 3×1019cm?3as the optimum doping concentration for ETM,which is compatible to that in Refs.[38]and[39]and highly efficient semiconducting TiO2can also be obtained by aerosol pyrolysis.[40]The importance of the high doping of the TiO2ETM to match the HTM with high mobility was also investigated systematically in Ref.[17].The J–V curve of the device after the optimization of ETM is illustrated in curve 4 of Fig.1,and Jscof 34.16 mA/cm2,Vocof 0.947 V,FF of 83.95%,and PCE of 27.17%are obtained.

    Because the diffusion length L of micrometer magnitude caused by the high mobility(1 cm2/V·s–40 cm2/V·s)of ETM is far beyond the ETM thickness(5 nm–40 nm),the influence of the ETM mobility on device performance is weaker than that of the HTM.

    Fig.8.Variations of performance parameters of PSCs with(a)thickness,(b)doping concentration,and(c)mobility of ETM.

    3.3.Ultimate optimization of absorption layer

    After the preliminary optimization of the absorber and charge transport layer,ultimate optimization of the absorption layer is carried out to access a good match between layers.Figure 9 depicts the relationships between mobility and efficiency of PSCs at diverse thickness values and doping concentrations of the absorber layer.The optimal absorber thickness increases from about 800 nm to 1200 nm whenμrises from 3 cm2/V·s to 12 cm2/V·s,which can be seen from the partially detailed map inset in Fig.9(a)clearly.A similar parabola relation between the absorber mobility and the cell efficiency is exhibited in an organic cell.[18,19]The optimal mobility is small for the thin absorber,and when the mobility of the absorber is higher than 10 cm2/V·s,a thicker absorber is more beneficial to the cell efficiency improvement.This enhancement of the optimal thickness of the absorber is induced by increasing the absorber mobility and the NA,Dof the charge transportation layer,the same change trend is observed in Ref.[41].

    Fig.9.Efficiency of PSCs as a function of mobility with(a)thickness and(b)doping concentration of the second optimization of absorber.

    However,the excessive thickness and mobility do not achieve higher efficiency(Figs.10(a)and 10(c)),and the efficiency reaches a saturation level at a thickness of 1200 nm.An optimal value of 12 cm2/V·s for the mobility exists with an absorber thickness of 1200 nm.[42]When the doping concentration changes from 1014cm?3to 1016cm?3,the maximum efficiency of the cell appears at NAof 1.2×1016cm?3.The enhancement of the mobility results in the increase of FF and Jsc,while the Vocreduces.The Vocaugments obviously with NAfurther increasing from 8×1015cm?3(preliminary optimization)to 1.2×1016cm?3(ultimate optimization),which is reflected in the J–V curves 2 and 4 in Fig.1,respectively.The change of the optimal value of NAis caused by increasing the optimal value of the thickness and mobility of the absorber.

    Fig.10.Plots of PSCs’performance with(a)thickness,(b)doping concentration,and(c)mobility of the second optimization of absorber.

    Finally,after the four optimizing steps,the device PCE reaches 27.39%with Jscof 34.21 mA/cm2,Vocof 0.942 V,FF of 84.97%.The efficiency increases by 4.03%compared with the initial one,and this efficiency is highest,to our knowledge,for the single junction PSCs obtained by simulation.The optimal match between the mobility and other parameters of the absorber and the charge transport layer induces the value of Jscand Vocto obviously augment,which can be seen in the J–V characteristic curve(curve 5)of the ultimate optimized cell in Fig.1.

    4.Detailed analysis of the influence mechanism of carrier mobility on cell influence

    4.1.Effect of mobility on JJsc

    Jsccan be approximated as

    The photo-generation rate G can be considered as a constant under certain lighting conditions AM1.5.Depletion width w of the p-n junction depends on carrier concentration. The value of Jscwould ascend with the increase of diffusion length L,because the value of w is unchangeable in the NA,Dinvariable situation(Fig.3(c)).The significant increase of Jscas NA,Dincreases can be seen in Figs.3(c),6,and 8.This happens because the depletion width decreases due to the increase of NA,D,and this can lower the contact resistance of the interface,which is favorable to the transportation of the carriers.

    4.2.Effect of mobility on open-circuit voltage VVoooccc

    Obvious improvement of Vocis obtained for the optimized cell,and this is the combined influence of doping concentration and the carrier mobility.The formula of Vocand reverse saturation current J0can be expressed as

    According to the Einstein relationship and the diffusion length(Ln)formula, Jcan be described as

    In our simulation,the lifetime τ can be considered as a constant in the case of invariable defect concentration.The value of J0decreases with the increase of NA,Dof the charge transport layer.Owing to the influence of the strong increase of Jscwith the increase of NA,D,the Vocwill increase based on formula(2).Because of the considerable difference in magnitude between NA,Dandμn,p,the influence of mobility on J0is negligible.

    According to formulas(1)–(4),Voccan be expressed as

    Keeping the NA,Dconstant,Vocdecreases with the enhancement of diffusion length,that is,Vocdecreases with the enhancement of mobility under the NA,Dinvariable condition(see Fig.3(b)).

    4.3.Effect of mobility on other cell parameters

    The final part of this article is dedicated to investigating the contribution of mobility to recombination rate R,carrier density distribution,and band structure in planar heterojunction PSCs.The recombination rate of the process of optimization of ETM layer and the second optimization of the absorber layer is depicted in Fig.11.The increasing of doping concentration of the absorber layer from 8×1015cm?3to 1.2×1016cm?3in the last optimization step should cause the recombination rate to increase,while a weakened recombination rate can be seen in Fig.11.

    Fig.11.Recombination distributions of different optimizations.

    We ascribe the weakening of recombination to the increasing of mobility of the absorber from 5 cm2/V·s to 12cm2/V·s,which improves the transportation performance of the cell.The influence of carrier mobility on the carrier transportation is studied based on the last optimized cell structure through the observation of carrier concentration distribution in the absorber layer with the mobility increasing from 2 cm2/V·s to 40 cm2/V·s(see Fig.12).The empty and the solid symbols represent holes and electrons,respectively.The simulation is conducted based on the final optimization step,with keeping all the parameters constant,except for the enhanced mobility of the absorber.The carriers’concentration of the absorber does not rise consistently with the mobility increase,and the maximum concentration of carriers appears at a mobility of 12 cm2/V·s,which is the optimal value of the mobility in the absorber.The enhanced drift velocity v(v=μE)of the carriers,caused by the improved mobility,can augment the concentration of carriers crossing the cell section,which benefits the cell performance improvement.While the enhanced carrier concentration also increases the recombination rate,and there is a competing mechanism between the improvement of the carrier transportation and the enhanced recombination brought by the enhanced mobility,only an optimal mobility value can improve the cell performance.[43]

    Fig.12.Carrier’s density distribution with different mobility values of absorber layer.

    Fig.13.Difference in quasi-Fermi energy(a)?Epand(b)?Enversus depth from cell surface for different mobility values of absorber layer.

    The distribution of carriers in a nonequilibrium state is related to quasi-Femi energy.The energy bands of the simulated structure with different absorber mobility values are studied based on the last optimized cell structure,and we obtain the energy difference between the Ev(Ec)and EFp(EFn)(Fig.13).When the energy difference ?Ep(?En)is smaller,the carrier concentration is higher.It can be seen that the electrons(holes)transport from the absorber layer to the ETM(HTM)layer,because of the rapid reduction of the?En(?Ep)at their interface.The fastest decline in?E,namely the fastest growing of the carrier concentration,appears at the architecture with a mobility of 12 cm2/V·s,which means the fastest transportation of the carriers.So the mobility of 12 cm2/V·s is an optimal value of our simulated structure with the highest efficiency of 27.39%.

    Fig.14.Plots of efficiency of PSC versus carrier diffusion length L during optimization.

    4.4.How long carrier diffusion length is enough to achieve high cell efficiency?

    Getting a long diffusion length by improving perovskite process can enhance cell efficiency.[16]Diffusion length L of single CH3NH3PbI3crystal has reached 175μm.[44]Now,a question arises:can the longer L achieve the better performance of the PSCs?In this paper,L is adjusted by changing the mobility,with the defect concentration of the absorber unchanged.The efficiency of the cell with the changing of L at the different optimization steps in the paper is shown in Fig.14.The length L of 0.7μm is enough to construct the initial cell with a small absorber thickness(600 nm),and this thickness value is consistent with those for most of the PSCs with high efficiency in the experimental research.The appropriate L rises with the increase of thickness and mobility of the absorber.[38]Finally,the highest efficiency appears at L of 1.9μm,which is larger than the absorber thickness of 1200 nm.Many researchers have pointed out that L of 1μm is enough to construct the cell device,but this conclusion is obtained under specified circumstances,such as the thickness of the absorber is about hundreds of nanometers.In Ref.[6],L(1.2 μm)is twice the CH3NH3PbI3?xClxabsorber thickness(500 nm).The L higher than the absorber thickness in the perovskite is needed for efficient carriers’extraction before significant recombination occurs.The Jscis limited by the material’s long wavelength response,and the higher absorber thickness benefits the strong red spectral absorption.[28,43]In Fig.2,the trends of Jsc,and Vocvarying with absorber thickness are opposite,which can be seen asμ >10 cm2/V·s.Improving L(namely,mobility)of the perovskite material can avoid the joint reduction of Jscand Vocwhen the absorber layer thickness increases.

    Many researchers have indicated that the PCE of the PSCs is insensitive to the absorber thickness beyond 600 nm,this lies in the fact that the recombination rate of the thicker perovskite layer is higher than that of the thinner layer.In the research by Jeon et al.,[3]the PSC reached a high efficiency of 23.2%.The absorber thickness is selected to be 600 nm to avoid the carriers crossing the grain boundaries during transporting to the electrodes.We expect that if the crystal size presented in Joen et al.’s research[3]can be improved to 1 μm and an absorber thicker than 600 nm can be obtained,the cell efficiency can be further improved based on our simulation.Now the single perovskite crystal with a size of 300μm has been achieved in experiment.[44]High-performance PSC with absorber layer thickness of 1150 nm has been realized by the hot casting method.[42]And more importantly,the thick- film PSC has good stability.This research bodes well for the great potential of thick- film PSCs in mass-produce of PSCs.

    The relatively undoped(Sn4+-free)and pinhole-free CH3NH3SnI3perovskite films and the near-single-crystalline FASnI3film have been fabricated.[22,45–47]If the background doping of CH3NH3SnI3can decrease to 1015cm?3,then L can reach to micrometers.With the advance in preparation technology,lead-free perovskite materials with low defect and longer diffusion can be achieved.

    5.Conclusions

    The effects of the carrier mobility and diffusion length on the PSC’s performance are studied systematically with the device simulation.A similar parabolic relationship between the mobility of absorber and the efficiency for PSC to that for the organic solar cell is observed and there also exists an optimal mobility of the absorber.Diffusion length longer than 1 μm is also beneficial to the PSCs’performance when the absorber is thick and has high crystalline quality.The improved carrier mobility of the absorber and the HTM appropriately is favorable to the reduction of the recombination rate and the improvement of the carrier transportation,which can avoid the joint reduction of Jsc,and Vocwhen the absorber layer thickness increases,and these can improve the cell’s efficiency.The doping of the carrier transport layer has a significant role in improving the cell performance.Finally,we obtain the Jscof 34.21 mA/cm2,Vocof 0.942 V,FF of 84.97%,and PCE of 27.39%in our cell structure with an absorber thickness of 1200 nm,a high mobility of 12 cm2/V·s,and long diffusion length of 2μm.Using the hot casting method to realize high quality perovskite films may be a promising method to realize the high efficiency PSCs with thick absorber and high stability.

    [1]Kim H S,Lee C R,Im J H,Lee K B,Moehl T,Marchioro A,Moon S J,Humphry-Baker R,Yum J H,Moser J E,Gratzel M and Park N G 2012 Sci.Rep.2 591

    [2]Lee M M,Teuscher J,Miyasaka T,Murakami T N and Snaith H J 2012 Science 338 643

    [3]Jeon N J,Na H,Jung E H,Yang T Y,Lee Y G,Kim G,Shin H W,Seok S I,Lee J and Seo J 2018 Nat.Energy 3 682

    [4]Baikie T,Fang Y,Kadro J M,Schreyer M,Wei F,Mhaisalkar S G,Graetzel M and White T J 2013 J.Mater.Chem.A 1 5628

    [5]Phillips L J,Rashed A M,Treharne R E,Kay J,Yates P,Mitrovic I Z,Weerakkody A,Hall S and Durose K 2016 Sol.Energy Mater.Sol.Cells 147 327

    [6]Stranks S D,Eperon G E,Grancini G,Menelaou C,Alcocer M J,Leijtens T,Herz L M,Petrozza A and Snaith H J 2013 Science 342 341

    [7]Zhao Y,Nardes A M and Zhu K 2014 J.Phys.Chem.Lett.5 490

    [8]Takahashi Y,Hasegawa H,Takahashi Y and Inabe T 2013 J.Solid State Chem.205 39

    [9]Ponseca C S,Jr.,Savenije T J,Abdellah M,Zheng K,Yartsev A,Pascher T,Harlang T,Chabera P,Pullerits T,Stepanov A,Wolf J P and Sundstrom V 2014 J.Am.Chem.Soc.136 5189

    [10]Huang L,Sun X,Li C,Xu R,Xu J,Du Y,Wu Y,Ni J,Cai H,Li J,Hu Z and Zhang J 2016 Sol.Energy Mater.Sol.Cells 157 1038

    [11]Fu K,Zhou Q,Chen Y,Lu J and Yang S E 2015 J.Opt.17 105904

    [12]Zhou Y and Gray-Weale A 2016 Phys.Chem.Chem.Phys.18 4476

    [13]Da Y,Xuan Y and Li Q 2018 Sol.Energy Mater.Sol.Cells 174 206

    [14]Sheikh A D,Bera A,Haque M A,Rakhi R B,Gobbo S D,Alshareef H N and Wu T 2015 Sol.Energy Mater.Sol.Cells 137 6

    [15]Minemoto T and Murata M 2014 J.Appl.Phys.116 054505

    [16]Kour N,Mehra R and Chandni 2018 Chin.Phys.B 27 018801

    [17]Adhikari K R,Gurung S,Bhattarai B K and Soucase B M 2016 Phys.Status Solidi C 13 13

    [18]Mandoc M M,Koster L J A and Blom P W M 2007 Appl.Phys.Lett.90 133504

    [19]Deibel C,Wagenpfahl A and Dyakonov V 2008 Phys.Status Solidi-Rapid Res.Lett.2 175

    [20]Ram′?rez O,Cabrera V and Res′endiz L M 2014 Opt.Quantum Electron.46 1291

    [21]Shieh J T,Liu C H,Meng H F,Tseng S R,Chao Y C and Horng S F 2010 J.Appl.Phys.107 084503

    [22]Du H J,Wang W C and Zhu J Z 2016 Chin.Phys.B 25 108802

    [23]Manser J S,Christians J A and Kamat P V 2016 Chem.Rev.116 12956[24]He Y and Galli G 2017 Chem.Mater.29 682

    [25]Jiang C S,Yang M,Zhou Y,To B,Nanayakkara S U,Luther J M,Zhou W,Berry J J,Lagemaat J,Padture N P,Zhu K and Al-Jassim M M 2015 Nat.Commun.6 8397

    [26]Yang G,Ding B,Li Y,Huang S,Chu Q,Li C and Li C 2017 J.Mater.Chem.A 5 6840

    [27]Tan H,Jain A,Voznyy O,Lan X,Arquer F P G,Fan J Z,Bermudez R Q,Yuan M,Zhang B,Zhao Y,Fan F,Li P,Quan L N,Zhao Y,Lu Z H,Yang Z,Hoogl,S and Sargent E H 2017 Science 355 722

    [28]Shirayama M,Kadowaki H,Miyadera T,Sugita T,Tamakoshi M,Kato M,Fujiseki T,Murata D,Hara S,Murakami T N,Fujimoto S,Chikamatsu M and Fujiwara H 2016 Phys.Rev.Appl.5 014012

    [29]Albrecht S,Saliba M,Correa-Baena J P,J¨ager K,Korte L,Hagfeldt A,Gr¨atzel M and Rech B 2016 J.Opt.18 064012

    [30]Alnuaimi A,Almansouri I and Nayfeh A 2016 J.Comput.Electron.15 1110

    [31]Abate A,Leijtens T,Pathak S,Teuscher J,Avolio R,Errico M E,Kirkpatrik J,Ball J M,Docampo P,McPherson I and Snaith H J 2013 Phys.Chem.Chem.Phys.15 2572

    [32]Leijtens T,Lim J,Teuscher J,Park T and Snaith H J 2013 Adv.Mater.25 3227

    [33]Toshniwal A,Jariwala A,Kheraj V,Opanasyuk A S and Panchal C J 2017 J.Nano-Electron.Phys.9 03038

    [34]Edri E,Kirmayer S,Henning A,Mukhopadhyay S,Gartsman K,Rosenwaks Y,Hodes G and Cahen D 2014 Nano Lett.14 1000

    [35]Liu X,Bu T,Li J,He J,Li T,Zhang J,Li W,Ku Z,Peng Y,Huang F,Cheng Y B and Zhong J 2018 Nano Energy 44 34

    [36]Zhang H,Shi J,Xu X,Zhu L,Luo Y,Li D and Meng Q 2016 J.Mater.Chem.A 4 15383

    [37]Liu D,Li S,Zhang P,Wang Y,Zhang R,Sarvari H,Wang F,Wu J,Wang Z and Chen Z D 2017 Nano Energy 31 462

    [38]Zhou Q,Jiao D,Fu K,Wu X,Chen Y,Lu J and Yang S E 2016 Sol.Energy 123 51

    [39]Iftiquar S M and Yi J 2018 Mater.Sci.Semicond.Process 79 46

    [40]Kavan L and Gr¨atzel M 1995 Electrochim.Acta 40 643

    [41]Momblona C,Malinkiewicz O,Rold′an-Carmona C,Soriano A,Gil-Escrig L,Bandiello E,Scheepers M,Edri E and Bolink H J 2014 APL Mater.2 081504

    [42]Chen J,Zuo L,Zhang Y,Lian X,Fu W,Yan J,Li J,Wu G,Li C Z and Chen H 2018 Adv.Energy Mater.8 1800438

    [43]Chiang C H and Wu C G 2016 Nat.Photon.10 196

    [44]Dong Q,Fang Y,Shao Y,Mulligan P,Qiu J,Cao L and Huang J 2015 Science 347 967

    [45]Koh T M,Krishnamoorthy T,Yantara N,Shi C,Leong W L,Boix P P,Grimsdale A C,Mhaisalkar S G and Mathews N 2015 J.Mater.Chem.A 3 14996

    [46]Bansode U,Naphade R,Game O,Agarkar S and Ogale S 2015 J.Phys.Chem.C 119 9177

    [47]Shao S,Liu J,Portale G,Fang H H,Blake G R,ten Brink G H,Koster L J A and Loi M A 2018 Adv.Energy Mater.8 1702019

    精品人妻一区二区三区麻豆| 一级a做视频免费观看| 搡女人真爽免费视频火全软件| 日产精品乱码卡一卡2卡三| av在线观看视频网站免费| 国产成人精品婷婷| 日韩欧美精品免费久久| 国产在线一区二区三区精| 久久精品国产亚洲av涩爱| 最新的欧美精品一区二区| 久久人人爽人人爽人人片va| 国产精品嫩草影院av在线观看| 内地一区二区视频在线| 亚洲av二区三区四区| 亚洲熟女精品中文字幕| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 夜夜爽夜夜爽视频| 久久99一区二区三区| 国产伦精品一区二区三区视频9| 国产亚洲午夜精品一区二区久久| 一级毛片 在线播放| www.色视频.com| 哪个播放器可以免费观看大片| 久久久久久久久久人人人人人人| 免费观看在线日韩| 22中文网久久字幕| 国产真实伦视频高清在线观看| 亚洲伊人久久精品综合| 有码 亚洲区| 免费大片18禁| av国产久精品久网站免费入址| 日韩亚洲欧美综合| 在线观看www视频免费| 国产在线一区二区三区精| 两个人免费观看高清视频 | 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜爱| 极品教师在线视频| av天堂中文字幕网| 国产成人免费观看mmmm| 欧美 亚洲 国产 日韩一| 国产亚洲av片在线观看秒播厂| .国产精品久久| 人人妻人人澡人人看| 黄色毛片三级朝国网站 | 亚洲一级一片aⅴ在线观看| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av天美| 一个人看视频在线观看www免费| 日产精品乱码卡一卡2卡三| av天堂久久9| 久久人人爽人人片av| 欧美变态另类bdsm刘玥| 国产午夜精品久久久久久一区二区三区| 在线观看国产h片| 国产日韩欧美视频二区| 九九爱精品视频在线观看| 国产亚洲一区二区精品| 久久青草综合色| 噜噜噜噜噜久久久久久91| 久久久久久伊人网av| 18禁裸乳无遮挡动漫免费视频| √禁漫天堂资源中文www| 一级二级三级毛片免费看| 亚洲婷婷狠狠爱综合网| 最近的中文字幕免费完整| 亚洲精品乱码久久久v下载方式| 人妻 亚洲 视频| 国产精品一区二区在线观看99| 伊人亚洲综合成人网| 看非洲黑人一级黄片| 国产精品免费大片| 卡戴珊不雅视频在线播放| a级毛色黄片| 亚洲国产精品999| 亚洲美女黄色视频免费看| 9色porny在线观看| 成年av动漫网址| 亚洲经典国产精华液单| 爱豆传媒免费全集在线观看| 国产 精品1| 国产精品人妻久久久久久| 国产精品偷伦视频观看了| 一级毛片久久久久久久久女| 久热久热在线精品观看| 伦理电影大哥的女人| 国产一区二区在线观看av| 久久综合国产亚洲精品| 丰满少妇做爰视频| 午夜老司机福利剧场| 欧美日韩国产mv在线观看视频| 人妻人人澡人人爽人人| 春色校园在线视频观看| 另类精品久久| 少妇精品久久久久久久| 不卡视频在线观看欧美| 午夜福利网站1000一区二区三区| 久久精品国产自在天天线| 欧美另类一区| 一区二区三区乱码不卡18| 久久精品久久久久久久性| 免费少妇av软件| 欧美日本中文国产一区发布| 欧美精品人与动牲交sv欧美| 国产精品无大码| 免费观看性生交大片5| 99热这里只有精品一区| 国产免费福利视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区三卡| 国产午夜精品久久久久久一区二区三区| av国产精品久久久久影院| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 99久久中文字幕三级久久日本| 在现免费观看毛片| 国产毛片在线视频| 国产成人免费观看mmmm| 麻豆精品久久久久久蜜桃| 日本黄色日本黄色录像| 免费不卡的大黄色大毛片视频在线观看| 一本一本综合久久| 欧美+日韩+精品| 日韩精品有码人妻一区| 国产在视频线精品| 国产精品人妻久久久久久| 免费观看a级毛片全部| 91精品伊人久久大香线蕉| 国产亚洲av片在线观看秒播厂| 午夜福利网站1000一区二区三区| 天堂8中文在线网| 国产91av在线免费观看| 伊人亚洲综合成人网| 欧美性感艳星| 乱码一卡2卡4卡精品| 日韩欧美 国产精品| 久久午夜综合久久蜜桃| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 男女国产视频网站| 乱人伦中国视频| 日本-黄色视频高清免费观看| 有码 亚洲区| 另类精品久久| 国产成人精品无人区| 久久久久人妻精品一区果冻| 中文字幕亚洲精品专区| 成人毛片60女人毛片免费| 成人漫画全彩无遮挡| 在线亚洲精品国产二区图片欧美 | 久久久久视频综合| 国产乱来视频区| 大香蕉久久网| 夫妻午夜视频| 久久精品国产亚洲av天美| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 国产欧美日韩精品一区二区| 伦理电影免费视频| videossex国产| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 久久综合国产亚洲精品| 欧美一级a爱片免费观看看| 国产黄色免费在线视频| 国产精品久久久久久av不卡| 亚洲精品一二三| 26uuu在线亚洲综合色| 久久国内精品自在自线图片| 国产成人freesex在线| 国产成人免费观看mmmm| 亚洲成人一二三区av| 99视频精品全部免费 在线| 精品久久国产蜜桃| 亚洲图色成人| 只有这里有精品99| 亚洲国产最新在线播放| 人妻一区二区av| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 韩国高清视频一区二区三区| 亚洲经典国产精华液单| 黑人猛操日本美女一级片| 国产视频内射| 午夜福利在线观看免费完整高清在| 久久ye,这里只有精品| 久久久久久人妻| 高清黄色对白视频在线免费看 | 久久久久久久久久人人人人人人| 在线观看美女被高潮喷水网站| 91成人精品电影| 最新的欧美精品一区二区| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区 | 欧美日本中文国产一区发布| 亚洲自偷自拍三级| 熟妇人妻不卡中文字幕| 22中文网久久字幕| 春色校园在线视频观看| 日韩熟女老妇一区二区性免费视频| 啦啦啦在线观看免费高清www| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品| 热re99久久国产66热| 日韩精品免费视频一区二区三区 | 国产白丝娇喘喷水9色精品| 日韩av免费高清视频| 中文字幕制服av| 国产精品一区二区性色av| 在线观看美女被高潮喷水网站| tube8黄色片| 少妇人妻一区二区三区视频| 亚洲av免费高清在线观看| 久久久久久久久久成人| 丰满乱子伦码专区| 国产在线一区二区三区精| 亚洲精品亚洲一区二区| 99九九在线精品视频 | 国产成人a∨麻豆精品| 一级毛片aaaaaa免费看小| 日韩中字成人| 熟女人妻精品中文字幕| 成人免费观看视频高清| 成人黄色视频免费在线看| 免费高清在线观看视频在线观看| 2021少妇久久久久久久久久久| 免费人成在线观看视频色| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 欧美区成人在线视频| 国产成人91sexporn| 插阴视频在线观看视频| a级片在线免费高清观看视频| 日韩av不卡免费在线播放| 青青草视频在线视频观看| 国产日韩欧美在线精品| 99热网站在线观看| 午夜精品国产一区二区电影| 22中文网久久字幕| 日本欧美国产在线视频| 精品国产一区二区三区久久久樱花| 9色porny在线观看| 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www | 午夜福利在线观看免费完整高清在| 黄色怎么调成土黄色| 免费人成在线观看视频色| 一区二区av电影网| 特大巨黑吊av在线直播| 亚洲精品自拍成人| 人妻少妇偷人精品九色| 精品国产露脸久久av麻豆| 日韩成人av中文字幕在线观看| 日韩精品免费视频一区二区三区 | 熟女电影av网| 亚洲成人手机| 国产在线免费精品| 免费大片18禁| 欧美变态另类bdsm刘玥| 免费久久久久久久精品成人欧美视频 | 我的女老师完整版在线观看| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 亚洲va在线va天堂va国产| 国产一区二区三区综合在线观看 | 亚洲一级一片aⅴ在线观看| 久热久热在线精品观看| 国产精品无大码| 水蜜桃什么品种好| 亚洲国产精品一区二区三区在线| 高清欧美精品videossex| 久久鲁丝午夜福利片| 搡老乐熟女国产| 成人美女网站在线观看视频| 亚洲综合色惰| 晚上一个人看的免费电影| 亚洲激情五月婷婷啪啪| 麻豆成人午夜福利视频| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 午夜福利,免费看| 久久久国产一区二区| 伊人久久国产一区二区| 国产一区二区在线观看av| 国产精品伦人一区二区| 亚洲精品,欧美精品| 欧美日韩av久久| 欧美日韩一区二区视频在线观看视频在线| av卡一久久| 99国产精品免费福利视频| 丰满乱子伦码专区| 嘟嘟电影网在线观看| 国产精品一区二区在线观看99| 97超视频在线观看视频| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 亚洲中文av在线| 国产极品粉嫩免费观看在线 | 亚洲熟女精品中文字幕| 亚洲,一卡二卡三卡| 乱人伦中国视频| 两个人的视频大全免费| 亚洲情色 制服丝袜| 熟妇人妻不卡中文字幕| 大话2 男鬼变身卡| 日韩强制内射视频| 午夜精品国产一区二区电影| 免费观看在线日韩| 欧美另类一区| 极品教师在线视频| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 国产爽快片一区二区三区| 寂寞人妻少妇视频99o| 久久久久久久精品精品| 高清视频免费观看一区二区| 99九九线精品视频在线观看视频| 亚洲精品一二三| 欧美国产精品一级二级三级 | 天堂8中文在线网| 久久久久久久亚洲中文字幕| 欧美xxⅹ黑人| 色吧在线观看| 亚洲第一av免费看| 国产av精品麻豆| 一区二区三区四区激情视频| 精品一区二区三卡| 日本vs欧美在线观看视频 | 免费观看av网站的网址| 91精品国产国语对白视频| 中国美白少妇内射xxxbb| 日日撸夜夜添| 人妻系列 视频| 一级毛片黄色毛片免费观看视频| 亚洲综合色惰| 免费黄色在线免费观看| 精品国产一区二区三区久久久樱花| 久久人人爽av亚洲精品天堂| 精品一品国产午夜福利视频| 亚洲av男天堂| 亚洲国产成人一精品久久久| 久久久午夜欧美精品| 2021少妇久久久久久久久久久| av有码第一页| 久久午夜综合久久蜜桃| 国产成人精品一,二区| 视频区图区小说| 亚洲人与动物交配视频| 欧美区成人在线视频| 国产视频首页在线观看| 黑人巨大精品欧美一区二区蜜桃 | 在线免费观看不下载黄p国产| 久久久久久久久久久免费av| 夫妻午夜视频| 国产91av在线免费观看| 伊人亚洲综合成人网| 国产精品久久久久久av不卡| 午夜免费观看性视频| 99热国产这里只有精品6| 老司机影院成人| 免费大片黄手机在线观看| 日韩av免费高清视频| 精品99又大又爽又粗少妇毛片| 中文天堂在线官网| 国产成人a∨麻豆精品| 两个人免费观看高清视频 | 国产探花极品一区二区| 国产成人免费无遮挡视频| 欧美激情极品国产一区二区三区 | 国产精品一区二区在线不卡| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 看十八女毛片水多多多| 日韩av免费高清视频| 黄色欧美视频在线观看| 欧美另类一区| 尾随美女入室| av在线播放精品| 精品酒店卫生间| 黄色毛片三级朝国网站 | av女优亚洲男人天堂| 纵有疾风起免费观看全集完整版| 狂野欧美激情性bbbbbb| 亚洲欧美精品专区久久| 精品99又大又爽又粗少妇毛片| 视频区图区小说| 亚洲国产精品国产精品| 爱豆传媒免费全集在线观看| 秋霞伦理黄片| 国产亚洲午夜精品一区二区久久| 国产成人午夜福利电影在线观看| 色视频在线一区二区三区| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 人妻制服诱惑在线中文字幕| av国产久精品久网站免费入址| 人体艺术视频欧美日本| 99久国产av精品国产电影| 亚洲欧美精品自产自拍| 国产黄色视频一区二区在线观看| 国产精品福利在线免费观看| 久久久久久久大尺度免费视频| 成人国产麻豆网| 亚洲精品一区蜜桃| xxx大片免费视频| av专区在线播放| 97在线视频观看| 少妇的逼水好多| 亚洲国产精品一区三区| 岛国毛片在线播放| 能在线免费看毛片的网站| 欧美xxⅹ黑人| 秋霞在线观看毛片| 欧美日韩视频精品一区| 老熟女久久久| 欧美精品国产亚洲| 91精品一卡2卡3卡4卡| 日本av手机在线免费观看| 女人久久www免费人成看片| 毛片一级片免费看久久久久| 欧美xxⅹ黑人| 韩国av在线不卡| 亚洲美女黄色视频免费看| 三上悠亚av全集在线观看 | 成人午夜精彩视频在线观看| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 一区二区三区乱码不卡18| 我的老师免费观看完整版| 51国产日韩欧美| 欧美精品一区二区免费开放| 99热这里只有精品一区| 日韩中文字幕视频在线看片| kizo精华| 国产精品久久久久久av不卡| 亚洲精品国产av蜜桃| 亚洲国产精品成人久久小说| 日韩成人伦理影院| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 免费少妇av软件| 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 成人美女网站在线观看视频| 日韩不卡一区二区三区视频在线| 国产精品一二三区在线看| 国产成人精品久久久久久| 久久午夜福利片| 亚洲欧美日韩东京热| 王馨瑶露胸无遮挡在线观看| 91久久精品电影网| 亚洲av综合色区一区| 一区二区av电影网| 国产淫语在线视频| 欧美日韩视频高清一区二区三区二| 十八禁网站网址无遮挡 | 国产在线一区二区三区精| 最新的欧美精品一区二区| 在线 av 中文字幕| 欧美变态另类bdsm刘玥| 伦理电影免费视频| 中文字幕人妻熟人妻熟丝袜美| 欧美亚洲 丝袜 人妻 在线| 热99国产精品久久久久久7| 国产精品一区二区三区四区免费观看| 男女国产视频网站| 97在线人人人人妻| 69精品国产乱码久久久| 久久人人爽人人片av| 中文字幕人妻丝袜制服| 热re99久久国产66热| 精品人妻熟女毛片av久久网站| 日韩av免费高清视频| tube8黄色片| 国产成人91sexporn| 亚洲精品乱码久久久v下载方式| 国产 一区精品| 三级国产精品片| 久久久亚洲精品成人影院| 老司机影院成人| 天堂中文最新版在线下载| 欧美 亚洲 国产 日韩一| 日日啪夜夜撸| 丝瓜视频免费看黄片| 高清av免费在线| 99re6热这里在线精品视频| 精品久久久精品久久久| 最新的欧美精品一区二区| 内地一区二区视频在线| 有码 亚洲区| 亚洲欧美日韩东京热| 免费观看的影片在线观看| 久久久午夜欧美精品| 蜜桃久久精品国产亚洲av| 大码成人一级视频| 欧美+日韩+精品| 精品久久久精品久久久| 日日啪夜夜撸| 十八禁高潮呻吟视频 | 免费大片黄手机在线观看| 99久久精品国产国产毛片| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲av天美| 一级a做视频免费观看| 人妻制服诱惑在线中文字幕| 亚洲精品日本国产第一区| 国产 一区精品| tube8黄色片| 偷拍熟女少妇极品色| 人体艺术视频欧美日本| 人妻系列 视频| 99久久精品热视频| 午夜影院在线不卡| 国产精品一区二区在线不卡| 国产在线免费精品| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 精品国产国语对白av| 黄色日韩在线| 午夜福利视频精品| 女人久久www免费人成看片| 卡戴珊不雅视频在线播放| 久久久国产精品麻豆| 亚洲成人手机| 黄色配什么色好看| 亚洲精品久久午夜乱码| 亚洲精品一二三| 亚洲精品国产成人久久av| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品专区久久| a级毛色黄片| 国产黄色免费在线视频| 亚洲国产色片| 精品熟女少妇av免费看| 春色校园在线视频观看| 人体艺术视频欧美日本| 午夜91福利影院| 国产高清不卡午夜福利| 免费观看性生交大片5| 成年人免费黄色播放视频 | 国产精品熟女久久久久浪| 国产高清不卡午夜福利| 美女cb高潮喷水在线观看| 日韩av不卡免费在线播放| 亚洲av不卡在线观看| 一本色道久久久久久精品综合| 国产午夜精品一二区理论片| 91久久精品国产一区二区成人| 久久人妻熟女aⅴ| 国产精品国产三级国产专区5o| 午夜久久久在线观看| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 亚洲av日韩在线播放| 最近的中文字幕免费完整| av福利片在线| 久久久久久久亚洲中文字幕| 欧美性感艳星| 免费观看在线日韩| 免费看日本二区| 美女主播在线视频| 在线亚洲精品国产二区图片欧美 | 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 夜夜爽夜夜爽视频| 99久久精品热视频| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 亚洲真实伦在线观看| 一级av片app| 国产伦精品一区二区三区视频9| 亚洲国产毛片av蜜桃av| √禁漫天堂资源中文www| 亚洲精品一二三| 久久精品久久精品一区二区三区| .国产精品久久| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 妹子高潮喷水视频| 久久久久精品久久久久真实原创| 国产深夜福利视频在线观看| www.色视频.com| 免费人成在线观看视频色| 国产日韩一区二区三区精品不卡 | 女的被弄到高潮叫床怎么办| 亚洲伊人久久精品综合| 精品一品国产午夜福利视频| 一区二区三区免费毛片| 国产精品偷伦视频观看了| 精品一区二区三卡| 亚洲高清免费不卡视频| 国产亚洲5aaaaa淫片| 国产高清三级在线| 中文字幕av电影在线播放| 午夜日本视频在线| 久久久久久久亚洲中文字幕| 一二三四中文在线观看免费高清| 国产黄色免费在线视频| 国产日韩欧美在线精品| 热re99久久国产66热| 街头女战士在线观看网站| 一级毛片aaaaaa免费看小| 丰满少妇做爰视频| 观看av在线不卡| 蜜桃在线观看..| av不卡在线播放| 搡女人真爽免费视频火全软件| 熟女av电影| 色婷婷久久久亚洲欧美|