• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A decadal abruption of midwinter storm tracks over North Pacific from 1951 to 2010

    2016-11-23 03:30:10YANGDongXia
    關(guān)鍵詞:斜壓銅業(yè)圓盤

    YANG Dong-Xia

    Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    A decadal abruption of midwinter storm tracks over North Pacific from 1951 to 2010

    YANG Dong-Xia

    Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    Based on 60-year (1951-2010) reanalysis data of the National Oceanic and Atmospheric Administration and extended reconstructed sea surface temperatures, a detailed investigation was conducted to explore the midwinter storm track changes over the North Pacifc. The rootmean-square (rms) of subweekly (2.5-6 days) transient of 300 hPa geopotential height feld was calculated to represent the storm track. A decadal abruption occurred in 1982/1983, according to the Mann-Kendall test result. The frst two Empirical Orthogonal Function (EOF) spatial patterns of the North Pacifc storm track during P1 (1955-1982) and P2 (1983-2010) revealed opposite results: The EOF1 during P1 and the EOF2 during P2 revealed changes of intensity of the midwinter storm track in the North Pacifc, whereas the EOF2 during P1 and the EOF1 during P2 exhibited a southward/northward shift of its central axis. In addition, pronounced diferences in the thermal infuence of the ocean on the storm track during P1 and P2 existed. A strong and sustained ENSO signal contributed to a storm track variation through the westerly jet from1955 to 1982, as the storm track was observed to strengthen and shift equatorward during El Ni?o events. From 1983 to 2010,an apparent sea temperature frontal zone at approximately 40°N and the associated near-surface baroclinicity resulted in the organization of a prominent mid-latitude storm track throughout the depth of the troposphere.

    ARTICLE HISTORY

    Revised 14 March 2016

    Accepted 17 March 2016

    Storm track; midwinter;

    EOF; ENSO; oceanic front;baroclinicity

    風暴軸作為中緯度天氣尺度瞬變渦動最強烈的區(qū)域,在中緯度天氣和氣候系統(tǒng)中扮演著至關(guān)重要的角色。本文通過Butterworth帶通濾波、EOF分析及合成分析等氣象統(tǒng)計方法,探究了1951-2010年北太平洋深冬(1月份)風暴軸的年代際變化及可能影響機制。根據(jù)Mann-Kendall突變檢驗結(jié)果,風暴軸在1982/1983左右有明顯的年代際突變,突變前后EOF分布基本類似。P1時期(1955-1982年),熱帶西太平洋強烈且持續(xù)的ENSO信號通過西風急流來影響風暴軸,即在厄爾尼諾年間,風暴軸中心強度明顯增強且向赤道方向移動,拉尼娜年恰好相反。P2時期(1983-2010年),位于風暴軸入口處的中緯度海洋鋒區(qū),由于其南北兩側(cè)感熱通量的不同,引起局地近地層斜壓增長,風暴軸強度增強。

    1. Introduction

    One of the primary features of middle and high latitude atmospheric circulation is transient variability. In the 1970s, Blackmon (1976) frst defned a 2.5-6-day synoptic transient eddy region over the ocean as a ‘storm track.' Since then, both observational research and theoretical study have revealed the importance of the storm track in the forecasting of cold air outbreaks at mid-latitude,its feedback to the time mean fow, and the momentum transport between the tropical and high-latitude atmosphere (Christoph, Ulbrich, and Speth 1997; Chang, Lee, and Swanson 2002; Chen et al. 2013; Zhu, Yuan, and Chen 2013;Gu et al. 2013).

    Using a stationary wave model and an idealized global circulation model, Chang and Guo (2007) conducted experiments to determine that enhanced tropical heating forces a stronger and narrower Pacifc jet and storm track. Orlanski (2005) used a high-resolution non- hydrostatic model with explicit convection to simulate the Pacifc storm track (PST) and its sensitivity to tropical sea surface temperatures (SSTs) and natural variability. It is revealed that the storm track variability and its feedback to the quasi-stationary circulation were shown to depend on mid-Pacifc baroclinicity, which is controlled by tropical SST and the strength of the upstream seeding. Chang,Lee, and Swanson (2002) summarized the relationship between the ENSO cycle and the large shifts in stormtrack structure. On the interannual timescale, the PST shifts equatorward and downstream during the El Ni?o years,apparently in response to the local enhancement of the Hadley circulation over the eastern Pacifc (Bjerknes 1966;Zhou and Wang 2008), while La Ni?a events mark opposite shifts. On the decadal timescale, Chang and Fu (2002) also observed that even if ENSO-like interdecadal variabilities are removed, the residual storm track data still exhibits signifcant interdecadal variability, which indicates that attributing all of these storm track structural changes to the direct tropical forcing is not appropriate.

    Gan and Wu (2013) revealed that the mid-latitude warm(cold) SST anomalies in the preceding fall could remarkably reduce (enhance) the storm track activities in early winter through changes in the tropospheric baroclinicity. He,Deng, and Zhu (2009) determined that the anomalous sea ice area over the southwestern Sea of Okhotsk, together with the associated North Pacifc SST anomaly (SSTA), can exert signifcant infuence on the variability in the strength and extension (contraction) of the PST. However, the sea ice area anomalies over the northeastern Sea of Okhotsk and the associated North Pacifc SSTA primarily afect the strength and South-North movement of the storm track.

    In 1992, Nakamura discovered the midwinter suppression phenomenon in which the strength of the midwinter PST in January is weaker than that in autumn or early spring. This suppression occurs despite the fact that the low-level baroclinity and the intensity of the jet stream are strongest in midwinter. He also noted that the baroclinic wave activity over the Pacifc Ocean is positively correlated with the strength of the upper-tropospheric jet for wind speeds up to 45 m s-1(Nakamura 1992). Nakamura and Sampe (2002) further explained the possible efect of the westerly jet on the storm track midwinter suppression. As the East Asian winter monsoon intensifes, eddies with subweekly periods propagating through the mid-latitude tropopause into the storm track tend to be trapped in the jet core, which is 1,000 km from the surface baroclinic zone. The trapping weakens the interaction between the upper-level eddies and baroclinic zone, thus contributing to the midwinter minimum in the eddy activity. An energy analysis (Chen, Zhu, and Yuan 2013) showed in midwinter,with large decreases in the baroclinic energy conversion and barotropic energy conversion, a remarkable net loss in the eddy kinetic energy might lead directly to the midwinter suppression of the North PST.

    Thus far, many studies have revealed the interdecadal variations in winter (November-December-January) and midwinter (January) PST. Chang and Fu (2002, 2003) examined the interdecadal changes over 1949-1999 and found there was a remarkable transition during the early 1970s from a weak state prior to 1972/73 to a strong state subsequently. Lee et al. (2012) achieved a consistent conclusion and pointed out that midwinter PST underwent decadal change from a weak regime in the early 1980s to a strong regime in the late 1980s. But the main reason dominating the peaks and valleys at each stage have not yet to be discussed. Therefore, in our study, the temporal and spatial variability of the midwinter storm track over the North Pacifc was explored using the Empirical Orthogonal Function (EOF) method. A signifcant decadal abruption was observed in approximately 1982/1983, and changes in the thermal infuence of the ocean and associated atmospheric circulation are discussed. This paper has certain innovations and provides a basic reference for further study of the midwinter storm track characteristics.

    2. Data and methods

    2.1. Data

    Sixty-year (1951-2010) atmospheric variables, including zonal wind velocity, geopotential height, and air temperature, were obtained from NOAA at a horizontal resolution of 2.5° × 2.5° (Kalnay et al. 1996). SST data were extracted from the Met Ofce Hadley Centre Sea Ice and Sea Surface Temperature version 1 (HadISST1) data-set with a 1° spatial resolution (Rayner et al. 2003).

    2.2. Defnition of storm track

    A storm track is defned as a region where the subweekly transient disturbance is the most intensive over the oceans. In the Eulerian method, Blackmon (1976) showed that the bandpass-fltered (2.5-6 days) root-mean-square (rms) of geopotential height for the Northern Hemisphere (NH)correspond signifcantly with the locations of maximum synoptic-scale cyclone activity.

    Therefore, in this study, we identifed the storm tracks as the rms of subweekly transient of the 300 hPa geopotential height. Subweekly (2.5-6 days) transient fuctuations were derived from the daily 300 hPa geopotential height on the basis of the Butterworth bandpass flter. Then we calculated the Standard Deviation month by month to represent the storm track.

    2.3. Eddy growth rate (baroclinicity)

    As the synoptic scale disturbance is closely related to the mid-latitude atmospheric baroclinicity, we used the Eddy growth rate index (σ) (Lindzen and Farrell 1980) given by:

    where BI means baroclinic instability, f is the Coriolis parameter, V is the horizontal wind speed, z is the vertical depth, and N represents the static stability.

    Figure 1.(a) The climatological distribution of the North Pacifc storm track during 1951-2010 (the rms of subweekly transient 300 hPa geopotential height feld). (b) The non-parameter Mann-Kendall test of storm track index (STI).

    whereΩis the self-rotating angular velocity of the earth,φis latitude, g is the gravity parameter, and θ represents the potential temperature.

    3. Results

    3.1. Climatological distribution and Mann-Kendall test

    Figure 1(a) shows the 60-year climatology of the January storm track (the rms of the subweekly transient 300 hPa geopotential height feld) over the North Pacifc Ocean averaged from 1951 to 2010. The storm track shows a zonal distribution at mid-latitude, with the axis located at 40-45°N, 160°E-160°W. The maximum intensity exceeds 60 gpm in the central zone. To analyze the intensity changes of the storm track, a new storm track index (STI) was defned as a regional average of storm track values over 34-48°N, 150°E-150°W.

    A non-parameter Mann-Kendall test method was applied to analyze the trend and abruption of STI during the 60 years. As shown in Figure 1(b), there has been a rising trend of the storm track strength since 1980,as the UF is greater than 0 from this year and reached 1.98 in 2007. The intersection of UF and UB illustrates that an abrupt decadal change occurred in 1982/1983(at a significance level of 0.05). To further explore its changing mechanism, we divided our research scope into two periods: P1 (1955-1982) and P2 (1983-2010)due to this abruption.

    3.2. EOF results

    The EOF method was used to analyze the main storm track modes in the North Pacifc for the two periods. During P1, the explained variances of the frst two EOF (EOF1 and EOF2) eigenvectors are 18% and 17%, respectively. Similarly, the variances occupied 17% and 15% in P2. This result implies that multiple modes coexisted in the storm track changes in January, due to the transient characteristics of the storm track. More specifcally, the EOF results in the two periods revealed a signifcant diference. The frstspatial pattern during P1 (Figure 2(a)) presented a peak in the heartland, indicating a general increase in the storm track intensity over the central axis. The EOF2 during P1(Figure 2(b)) exhibited a northwest (-)-southeast (+) dipole form distributed on both sides of the climatological storm track axis, refecting the southeastward/northwestwardshift of the central maximum region. During P2, however,the opposite result was observed: the EOF1 demonstrated the southward/northward shift of the maximum region(Figure 2(c)), with the EOF2 refecting intensifed storm track strength around the central axis (Figure 2(d)).

    Figure 2.(a) EOF1 and (b) EOF2 of the North Pacifc storm track from 1955 to 1982. (c) EOF1and (d) EOF2 of the 1983-2010 storm track.

    Figure 3.(a) The correlation between the January storm track and the contemporaneous SST over the North Pacifc from 1955 to 1982. The shaded regions show the 90% signifcance level. (b) Same as (a) but for 1983-2010.

    In general, the spatial modes of the synoptic-scale storm track are less distinctive and stable compared to the EOF results of the large-scale circulation feld due to the highly nonlinear and stochastic processes of transient activities. However, the frst two spatial distributions clearly reveal the intensity changes and southward/northward shift of the storm track maximum region, which prove to be two primary features of the storm track changes. Therefore,we mainly discussed these two characteristics and their mechanisms in following analysis.

    4. Correlations of the storm track with thePacific SST

    As mentioned in Section 3.1, we divided the STI into 2 stages: P1 (1955-1982) and P2 (1983-2010), according to the Mann-Kendall test result. To explore the potential connection between the storm track strength in January and the SST over the Pacifc, correlations of the preceding and simultaneous Pacifc SST with the STI were calculated separately in P1 and P2

    Figure 3(a) shows that the correlations between STI and contemporaneous SST during P1 exceed 0.5 over the equatorial central and eastern Pacifc, which indicates an intense El Ni?o event. Similarly, the correlations between STI and the Pacifc SST anomalies which lead storm track byone to six months were also calculated. The results are provided in Figure A1 in the Appendix. This result implies that following a strong sustained (at least seven months) signal of El Ni?o, the central storm track intensity was enhanced. In addition, a signifcant negative correlation coefcient(CC) existed over the Okhotsk Sea and the Western Bering Sea (Figure 3(a)), which suggests that the cooler Okhotsk and western Bering SST might also contribute to the reinforced storm track in January.

    During P2, a clear dipole form is presented in Figure 3(b). A signifcant negative CC between STI and Pacifc SST was largely distributed over the Okhotsk Sea and Bering Sea areas, reaching -0.5 in the central regions. On its south side, a smaller signifcant positive CC occurred in the central Pacifc Ocean. This result could suggest that as the Okhotsk and Bering SST decreased and the central Pacifc SST increased, the meridional SST gradient between them was enhanced, forming a tight oceanic frontal zone at approximately 40°N (Sampe et al. 2010). Further explanation will be provided in the next section based on the observations.

    Although a similar signifcant negative correlation was discovered over the Okhotsk and Bering seas during two periods, pronounced diferences in the thermal infuence of the ocean on mid-latitude storm track exist. A strong and sustained ENSO signal plays a dominant role in the storm track variation during 1955-1982, while the SST frontal zone in P2 might lead to the formation and maintenance of the storm track.

    5. Atmospheric circulation related to the storm track variations

    The question arose as to how diferent SST regions in P1 and P2 have a diferent infuence on the storm track intensity. To answer this question, the atmospheric circulation over the North Pacifc was investigated.

    Strong El Ni?o and La Ni?a years were selected separately due to the great infuence of the ENSO cycle on the storm track during 1954-1981. On the basis of the Oceanic Ni?o Index (ONI) data from NOAA, years with ONI values greater than 0.5 and lasting for at least fve months were regarded as El Ni?o years; those with ONI values smaller than -0.5 and lasting for a minimum of fve months were considered La Ni?a years. Therefore, we selected nine strong El Ni?o years and eight La Ni?a years.

    The rms of subweekly transient 300 hPa geopotential height feld was averaged over the El Ni?o and La Ni?a years. Moreover, the synthetic diference feld was also determined. The storm track shifted equatorward in El Ni?o events, with the central intensity exceeding 65 gpm(Figure 4(a)). In La Ni?a years, the strength was 55 gpm in the central zone and the axis marked an opposite shift(Figure 4(b)). The diference feld (Figure 4(c)) showed the same result: the storm track was remarkably strengthened during El Ni?o years and moved equatorward. Meanwhile,the synthetic diference feld of 200 hPa westerly jet shown in Figure 4(d) illustrates a coordinated variation in correspondence with the storm track changes. The westerly jet in the upper troposphere was conspicuously strengthened over the 20-40°N and shifted equatorward in El Ni?o years. A strong and sustained ENSO signal contributed to the storm track variation through the westerly jet during 1955-1982.

    According to Chang, Lee, and Swanson (2002), the westerly stream intensifes in El Ni?o years, primarily due to the local enhancement of the Hadley circulation over the eastern Pacifc. In addition, coordinated activities between the westerly jet and the storm track have been proven by several studies (Nakamura 1992; Zhu and Sun 2000a;Harnik and Chang 2004; Han, Ren, and Yang 2007; Ren,Yang, and Chu 2010; Huang and Liu 2011). In general, the storm track intensifes in accordance with the reinforced westerly jet and is normally located on the downstream and equatorward side of the jet axis.

    More specifcally, Nakamura and Sampe (2002) proposed that the subtropical jet and polar front jet play different roles in storm track changes. As the subtropical jet develops in some winters, the subweekly eddies tend to be trapped in the jet core, thus acting against the eddy amplifcation. However, Sampe et al. (2010) also proved that a polar front jet is formed and maintained, which is consistent with a SST front and meridional momentum transport (E-P fux) from eddies. An additional detailed mechanism is needed to explain the consistent changes of the westerly jet and storm track during the ENSO cycle in the future.

    Based on the correlation results in Section 4, an apparent sea temperature frontal zone forms at approximately 40°N during 1983-2010. The meridional SST gradient averaged between 150°E and 150°W was calculated each year in P2. The strong and weak oceanic front years were selected separately due to the meridional SST gradient averaged from 36 to 44°N. Therefore, we obtained eight strong oceanic front years and six weak front years. The meridional SST gradients and the baroclinicity (eddy growth rate) feldsσthroughout the troposphere were averaged over the strong and weak front years separately. The synthetic diference feld of the storm track was also obtained.

    Figure 5(a) illustrates that the peak gradient arrived up to 1.2 °C at approximately 40°N in the strong front years, which is in accordance with the north (+)-south (-)dipole form on the correlation map. Correspondingly, a vigorous near-surface baroclinicity was reinforced above the sharp SST front at approximately 37°N (Figure 5(c)).Meanwhile, the synthetic diference feld of the storm track (Figure 5(e)) exhibited a strengthening trend along the oceanic frontal zone, with an equatorward shift of the core axis.

    Figure 4.(a) The storm track averaged over eight El Ni?o years during P1. (b) The storm track averaged over nine La Ni?a years. (c) The diference between El Ni?o and La Ni?a years during P1. (d) The 200 hPa westerly jet diference between El Ni?o and La Ni?a years during P1.The shaded regions show the 90% signifcance level.

    Figure 5.(a) SST gradient averaged over eight strong front years during P2. (b) Same as (a) but for six weak front years. (c) Baroclinicity throughout the troposphere averaged over eight strong front years during P2. (d) Same as (c) but for six weak front years. (e) Storm track diference between strong and weak front years during P2.The shaded regions show the 90% signifcance level.

    The mechanism of the mid-latitude SST front afecting the storm track was explained clearly by Zhu and Sun(2000b), Nakamura et al. (2004) and Sampe et al. (2010). The tight SST gradient maintains the near-surface baroclinicity through the surface sensible heat fux (SHF). Specifcally,at the equatorward fank of the frontal zone, the SST is higher than surface air temperature (SAT), while at its poleward fank, SAT is higher than SST. In correspondence, this results in a peak of surface SHF at the equatorward fank of the front and a sharp decrease of SHF poleward across it. The sharp decline in heat supply leads to the development of near-surface baroclinicity. Therefore, the strong near-surface baroclinicity associated with the SST front enhances baroclinic eddy growth as a whole, leading to the organization of a prominent mid-latitude storm track throughout the depth of the troposphere.

    6. Conclusions and remaining questions

    In this study, a decadal abrupt change of a midwinter storm track over the North Pacifc was discovered. According to the Mann-Kendall test result, the storm track intensifed from 1980 to 2010, and the signifcant abruption occurred in 1982/1983.To further explore its changing mechanism,we divided the storm track into two periods: P1 (1955-1982) and P2 (1983-2010).

    The EOF results in the two periods revealed a signifcant diference. EOF1 of the midwinter storm track in P1 and EOF2 of P2 both indicated changes of intensity in the North Pacifc, whereas EOF2 of P1 and EOF1 of P2 exhibited a southward/northward shift of the central axis. Although the frst two spatial patterns are presented in opposite results and their explained variances are less signifcant than the large-scale circulation feld due to the highly nonlinear and stochastic processes of transient activities,the two distinctive features of the storm track have been clearly revealed. Therefore, these two characteristics were primarily discussed in this paper.

    The correlations between the leading and coincident Pacifc SST and STI in P1 and P2 indicate that pronounced diferences in the thermal infuence of the ocean on the storm track exist. A strong and sustained ENSO signal played a dominant role in storm track variation during 1955-1982. The westerly stream intensifed during El Ni?o events in response to the local reinforcement of the Hadley circulation over the eastern Pacifc. Generally, the storm track intensifed in accordance with the enhancement of the westerly jet and was located at the downstream and equatorward side of the jet core. We could infer that a strong and sustained ENSO signal contributes to storm track variation through the westerly jet.

    From 1983 to 2010, an apparent sea temperature frontal zone formed between the Okhotsk Sea and the central Pacifc, maintaining the near-surface baroclinicity through surface SHF. Across-frontal diferential sensible heat supply from the ocean retained an intense near- surface baroclinicity, as is observed along the oceanic frontal zone. Therefore, the strong near-surface baroclinicity associated with the SST front enhanced the baroclinic eddy growth as a whole, leading to the organization of a prominent mid-latitude storm track throughout the depth of the troposphere.

    Why the storm track activity in P2 is stronger than in P1 along with the sustained ENSO signal disappearing during P2? Combining the conclusion of Lee et al. (2012), we could infer that the remarkable meridional SST gradient during P2, which is located over storm track entrance area, could intensify the storm track directly through the enhancement of local baroclinic eddy growth. While the strong tropical heating in P1 could only infuence the mid-latitude storm track indirectly through enhancement of Hadley circulation and westerly jet. In addition, some recent discoveries indicate that the subtropical jet and polar front jet play diferent roles in storm track changes. Therefore,further studies are needed to reveal the disappearance of ENSO signal during P2 and the mechanism of how ENSO afects the storm track.

    2016年,江西銅業(yè)鉛鋅金屬有限公司稀貴金屬廠上馬銀陽極圓盤澆鑄機的研制項目,委托由江西銅業(yè)集團冶金化工工程有限公司負責研制,經(jīng)過吸收江西銅業(yè)貴溪冶煉廠一車間的澆鑄經(jīng)驗,采用液壓系統(tǒng)、變頻控制系統(tǒng)、遙控操作系統(tǒng),成功研制出一種新型的銀陽極圓盤澆鑄機。該澆鑄機運行平穩(wěn),操作簡單強度低,澆鑄質(zhì)量得到保證,銀陽極板外觀整潔須后續(xù)加工處理。

    Funding

    This research was supported by The National Natural Science Foundation of China [grant number 41421004].

    References

    Bjerknes, J. 1966. “A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies of Ocean Temperature.” Tellus 18 (4): 820-829. doi: http://dx.doi. org/10.1111/j.2153-3490.1966.tb00303.x.

    Blackmon, M. L. 1976. “A Climatological Spectral Study of the 500 Mb Geopotential Height of the Northern Hemisphere.”Journal of the Atmospheric Sciences 33 (8): 1607-1623. doi: http://dx.doi.org/10.1175/1520-0469(1976)033<1607:ACSS OT>2.0.CO;2.

    Chang, E. K. M., and Y. F. Fu. 2002. “Interdecadal Variations in Northern Hemisphere Winter Storm Track Intensity.” Journal of Climate 15 (6): 642-658. doi: http://dx.doi.org/10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    Chang, E. K. M., and Y. F. Fu. 2003. “Using Mean Flow Change as a Proxy to Infer Interdecadal Storm Track Variability.”Journal of Climate 16 (13): 2178-2196. doi: http://dx.doi. org/10.1175/2773.1.

    Chang, E. K. M., and Y. J. Guo. 2007. “Dynamics of the Stationary Anomalies Associated with the Interannual Variability of the Midwinter Pacifc Storm Track-the Roles of Tropical Heating and Remote Eddy Forcing.” Journal of the Atmospheric Sciences 64 (7): 2442-2461. doi: http://dx.doi.org/10.1175/JAS3986.1.

    Chang, E. K. M., S. Lee, and K. L. Swanson. 2002. “Storm Track Dynamics.” Journal of Climate 15 (16): 2163-2183. doi: http:// dx.doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0. CO;2.

    Chen, L., B. K. Tan, N. G. Kvamsto, and O. M. Johannessen. 2013.“Wintertime Cyclone Activity and Its Relation to Precipitation over China.” Atmospheric and Oceanic Science Letters 6 (5): 387-393. doi: http://dx.doi.org/10.3878/j.issn.1674-2834.13.0041.

    Chen, Y. N., W. J. Zhu, and K. Yuan. 2013. “An Energy Analysis of Midwinter Suppression of the North Pacifc Storm Track.” [In Chinese.] Transactions of Atmospheric Sciences 36 (6): 725-733.

    Gan, B. L., and L. X. Wu. 2013. “Seasonal and Long-Term Coupling between Wintertime Storm Tracks and Sea Surface Temperature in the North Pacifc.” Journal of Climate 26 (16): 6123-6136. doi: http://dx.doi.org/10.1175/JCLI-12-00724.1.

    Gu, P. S., W. J. Zhu, M. Y. Liu, J. Gao, and D. W. Zeng. 2013.“Storm Track Anomaly over the North Pacifc in Winter andIts Relation with Atmospheric Circulation over East Asia.” [In Chinese.] Journal of the Meteorological Sciences 33 (6): 610-618. doi: http://dx.doi.org/10.3969/2012jms.0175.

    Han, B., X. J. Ren, and X. Q. Yang. 2007. “Analysis of the North Pacifc Storm Track Anomaly and the Relationship with Zonal Wind.” [In Chinese.] Scientia Meteorologoia Sinica 27 (3): 237-245.

    Harnik, N. L., and E. K. M. Chang. 2004. “The Efects of Variations in Jet Width on the Growth of Baroclinic Waves: Implications for Midwinter Pacifc Storm Track Variability.” Journal of the Atmospheric Sciences 61 (1): 23-40. doi: http://dx.doi. org/10.1175/1520-0469(2004)061<0023:TEOVIJ>2.0.CO;2.

    He, D. Y., X. L. Deng, and W. J. Zhu. 2009. “Infuence on Northern Pacifc Storm Track of the Okhotsk Sea Ice during Winter.”Marine Science Bulletin 11 (1): 1-12.

    Huang, G., and Y. Liu. 2011. “Simulation of the East Asian Subtropical Westerly Jet Stream with GFDL AGCM (AM2.1).”Atmospheric and Oceanic Science Letters 4 (1): 24-29.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. “The NCEP/NCAR 40-Year Reanalysis Project.” Bulletin of the American Meteorological Society 77 (3): 437-471.

    Lee, S. S., J. Y. Lee, B. Wang, K. J. Ha, K. Y. Heo, F. F. Jin, D. M. Straus,and J. Shukla. 2012. “Interdecadal Changes in the Storm Track Activity over the North Pacifc and North Atlantic.” Climate Dynamics 39 (1-2): 313-327. doi: http://dx.doi.org/10.1007/ s00382-011-1188-9.

    Lindzen, R. S., and B. Farrell. 1980. “A Simple Approximate Result for the Maximum Growth Rate of Baroclinic Instabilities.”Journal of the Atmospheric Sciences 37 (7): 1648-1654. doi: http://dx.doi.org/10.1175/1520-0469(1980)037<1648:ASARF T>2.0.CO;2.

    Nakamura, H. 1992. “Midwinter Suppression of Baroclinic Wave Activity in the Pacifc.” Journal of the Atmospheric Sciences 49 (17): 1629-1642. doi: http://dx.doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    Nakamura, H., and T. Sampe. 2002. “Trapping of Synoptic-Scale Disturbances into the North-Pacifc Subtropical Jet Core in Midwinter.” Geophysical Research Letters 29 (16): 8-1-8-4. doi: http://dx.doi.org/10.1029/2002GL015535.

    Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo. 2004.“Observed Associations among Storm Tracks, Jet Streams and mid-Latitude Oceanic Fronts.” The Earth's Climate: The Ocean-Atmosphere Interaction Geophysical Monograph 147: 329-346. doi: http://dx.doi.org/10.1029/147GM18.

    Orlanski, I. 2005. “A New Look at the Pacifc Storm Track Variability: Sensitivity to Tropical SSTs and to Upstream Seeding.” Journal of the Atmospheric Sciences 62 (5): 1367-1390. doi: http://dx.doi.org/10.1175/JAS3428.1.

    Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan. 2003. “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century.”Journal of Geophysical Research 108 (D14): 1063-1082. doi: http://dx.doi.org/10.1029/2002JD002670.

    Ren, X. J., X. Q. Yang, and C. J. Chu. 2010. “Seasonal Variations of the Synoptic-Scale Transient Eddy Activity and Polar Front Jet over East Asia.” Journal of Climate 23 (12): 3222-3233. doi: http://dx.doi.org/10.1175/2009JCLI3225.1.

    Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi. 2010.“Signifcance of a Midlatitude SST Frontal Zone in the Formation of a Storm Track and an Eddy-Driven Westerly Jet.” Journal of Climate 23 (7): 1793-1814. doi: http://dx.doi. org/10.1175/2009JCLI3163.1.

    Zhou, B. T., and H. J. Wang. 2008. “Relationship between Hadley Circulation and Sea Ice Extent in the Bering Sea.”Chinese Science Bulletin 53 (3): 444-449. doi: http://dx.doi. org/10.1007/s11434-007-0451-2.

    Zhu, W. J., and Z. B. Sun. 2000a. “Interannual Variability of Northern Winter Pacifc Storm Track and Its Association with 500 HPa Height and Tropical and Northern Pacifc Sea Surface Temperature.” [In Chinese.] Acta Meteorologica Sinca 58 (3): 309-320.

    Zhu, W. J., and Z. B. Sun. 2000b. “Impacts of Kuroshio SSTA on Storm Track over North Pacifc in Winter.” [In Chinese.]Quarterly Journal of Applied Meteorology 11 (2): 145-153.

    Zhu, W. J., K. Yuan, and Y. N. Chen. 2013. “Spatial and Temporal Variations in the Eastern North Pacifc Storm Track.” [In Chinese.] Chinese Journal of Atmospheric Sciences 37 (1): 65-80. doi: http://dx.doi.org/10.3878/j.issn.1006-9895.2012.11245.

    風暴軸; 深冬; EOF; ENSO;海洋鋒區(qū); 斜壓增長率

    5 November 2015

    CONTACT YANG Dong-Xia yangdongxia13@mails.ucas.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    斜壓銅業(yè)圓盤
    江西銅業(yè)鑫瑞科技有限公司
    江西銅業(yè)鑫瑞科技有限公司
    中鋁洛陽銅業(yè)有限公司簡介
    江西銅業(yè)集團有限公司簡介
    圓盤鋸刀頭的一種改進工藝
    石材(2020年6期)2020-08-24 08:27:00
    斜壓渦度的變化與臺風暴雨的關(guān)系研究
    單位圓盤上全純映照模的精細Schwarz引理
    奇怪的大圓盤
    Rossby波的線性穩(wěn)定性
    科技資訊(2016年23期)2016-05-30 20:25:49
    2005—2009年、2011年和2013年南海東北部120°E斷面秋季體積輸運的年際變化*
    海洋與湖沼(2016年1期)2016-01-15 03:50:46
    久久久久性生活片| 3wmmmm亚洲av在线观看| 国产精品乱码一区二三区的特点| aaaaa片日本免费| 好男人在线观看高清免费视频| 成人特级av手机在线观看| 日韩欧美精品v在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲天堂国产精品一区在线| 国产单亲对白刺激| 给我免费播放毛片高清在线观看| 最近视频中文字幕2019在线8| 久久99热这里只有精品18| 三级国产精品欧美在线观看| 亚洲国产精品合色在线| 国产熟女xx| 精品久久久久久久人妻蜜臀av| 日韩欧美在线二视频| 一级作爱视频免费观看| 男女视频在线观看网站免费| 色精品久久人妻99蜜桃| 欧美黄色片欧美黄色片| 欧美黄色片欧美黄色片| 88av欧美| 宅男免费午夜| av天堂在线播放| 亚洲成人精品中文字幕电影| 国产高清视频在线播放一区| 好男人电影高清在线观看| 午夜日韩欧美国产| 又爽又黄a免费视频| 18禁黄网站禁片午夜丰满| 国产人妻一区二区三区在| 亚洲精品影视一区二区三区av| 天美传媒精品一区二区| 哪里可以看免费的av片| 国产精品一区二区三区四区久久| 亚洲成人精品中文字幕电影| 国产三级在线视频| 此物有八面人人有两片| 此物有八面人人有两片| 99久久久亚洲精品蜜臀av| 全区人妻精品视频| 白带黄色成豆腐渣| 99国产精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 色综合婷婷激情| 窝窝影院91人妻| 免费在线观看日本一区| 免费人成在线观看视频色| 中文字幕人妻熟人妻熟丝袜美| 蜜桃亚洲精品一区二区三区| 一级黄片播放器| 成人av在线播放网站| 高清毛片免费观看视频网站| 夜夜爽天天搞| 色精品久久人妻99蜜桃| 老鸭窝网址在线观看| 免费人成视频x8x8入口观看| 日日干狠狠操夜夜爽| 亚洲av第一区精品v没综合| 变态另类丝袜制服| 亚洲熟妇中文字幕五十中出| 中文字幕av成人在线电影| 日韩中文字幕欧美一区二区| 怎么达到女性高潮| 老女人水多毛片| 亚洲欧美日韩高清在线视频| 欧美一级a爱片免费观看看| 国产 一区 欧美 日韩| 国产在线精品亚洲第一网站| 国产aⅴ精品一区二区三区波| 国产av一区在线观看免费| 在线免费观看不下载黄p国产 | 天堂网av新在线| 精品日产1卡2卡| 亚洲第一欧美日韩一区二区三区| 国产精品伦人一区二区| 国内精品久久久久久久电影| 能在线免费观看的黄片| 久久久久性生活片| 国产欧美日韩一区二区精品| 亚洲国产色片| 1024手机看黄色片| 亚洲精品久久国产高清桃花| 久久久久久久精品吃奶| 欧美黑人巨大hd| 久久天躁狠狠躁夜夜2o2o| 欧美性感艳星| 精品免费久久久久久久清纯| 亚洲狠狠婷婷综合久久图片| 99国产综合亚洲精品| 成人午夜高清在线视频| 一级毛片久久久久久久久女| 欧美日韩中文字幕国产精品一区二区三区| 日韩成人在线观看一区二区三区| 亚洲成人中文字幕在线播放| 色在线成人网| 91午夜精品亚洲一区二区三区 | 国产精品人妻久久久久久| 国产伦一二天堂av在线观看| 窝窝影院91人妻| 国产在线男女| 熟妇人妻久久中文字幕3abv| 黄色配什么色好看| 午夜两性在线视频| 亚洲精品在线美女| 久久精品91蜜桃| 精品人妻偷拍中文字幕| 亚洲真实伦在线观看| 亚洲真实伦在线观看| 在线观看一区二区三区| 欧美黑人欧美精品刺激| 国产精品免费一区二区三区在线| 长腿黑丝高跟| 超碰av人人做人人爽久久| 欧美xxxx黑人xx丫x性爽| 真人一进一出gif抽搐免费| 两人在一起打扑克的视频| 欧美3d第一页| 老司机午夜福利在线观看视频| 日本在线视频免费播放| 国产又黄又爽又无遮挡在线| 免费在线观看日本一区| 黄色一级大片看看| 欧美激情国产日韩精品一区| 国内精品一区二区在线观看| 午夜福利在线观看免费完整高清在 | 99在线视频只有这里精品首页| 99热6这里只有精品| 老司机福利观看| 国产精品久久久久久久久免 | 亚洲va日本ⅴa欧美va伊人久久| av天堂中文字幕网| 婷婷精品国产亚洲av在线| 亚洲成人中文字幕在线播放| 欧美黑人欧美精品刺激| 麻豆国产97在线/欧美| 嫩草影院新地址| 午夜福利在线观看吧| 午夜精品久久久久久毛片777| 桃色一区二区三区在线观看| 日韩欧美在线二视频| 久久久久久久亚洲中文字幕 | 亚洲无线在线观看| 夜夜爽天天搞| 亚洲人与动物交配视频| 极品教师在线视频| 高清在线国产一区| 日韩欧美在线乱码| 欧美最新免费一区二区三区 | 黄片小视频在线播放| 欧美黑人欧美精品刺激| 国产精品自产拍在线观看55亚洲| 一边摸一边抽搐一进一小说| 久久久国产成人免费| 亚洲男人的天堂狠狠| 成人欧美大片| 天天一区二区日本电影三级| 欧美一区二区精品小视频在线| 久久热精品热| 在线播放无遮挡| 国产精品国产高清国产av| 日韩欧美 国产精品| 色综合亚洲欧美另类图片| 日本精品一区二区三区蜜桃| 一级毛片久久久久久久久女| 久久久久九九精品影院| 亚洲人成伊人成综合网2020| 在线播放国产精品三级| 色5月婷婷丁香| 成人特级黄色片久久久久久久| 成人国产一区最新在线观看| 精品人妻视频免费看| av欧美777| 午夜福利免费观看在线| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区视频在线| 国产亚洲av嫩草精品影院| 精品一区二区三区视频在线| 亚洲不卡免费看| 亚洲国产日韩欧美精品在线观看| 999久久久精品免费观看国产| 少妇被粗大猛烈的视频| 麻豆国产97在线/欧美| 一边摸一边抽搐一进一小说| 国产单亲对白刺激| 丁香六月欧美| 亚洲专区国产一区二区| 亚洲成人精品中文字幕电影| 亚洲精品粉嫩美女一区| 午夜福利在线观看吧| 美女高潮的动态| 美女被艹到高潮喷水动态| 欧美最新免费一区二区三区 | www.色视频.com| 乱人视频在线观看| 日韩有码中文字幕| 九色国产91popny在线| 欧美激情久久久久久爽电影| av天堂在线播放| 欧美黑人欧美精品刺激| 亚洲国产精品成人综合色| 能在线免费观看的黄片| 日本三级黄在线观看| 亚洲av中文字字幕乱码综合| 欧美三级亚洲精品| 国产不卡一卡二| 综合色av麻豆| 熟女人妻精品中文字幕| 中文字幕人妻熟人妻熟丝袜美| 欧美精品啪啪一区二区三区| 精品人妻1区二区| 久久精品综合一区二区三区| 日本一二三区视频观看| 色综合欧美亚洲国产小说| 国产精品99久久久久久久久| 在线观看av片永久免费下载| 精品乱码久久久久久99久播| 亚洲黑人精品在线| 99久久精品国产亚洲精品| 日韩欧美国产在线观看| 国产黄片美女视频| 精品人妻视频免费看| 亚洲av电影在线进入| 一本一本综合久久| 日韩欧美在线二视频| 特级一级黄色大片| 日本五十路高清| 九色成人免费人妻av| 男插女下体视频免费在线播放| 色av中文字幕| 丁香六月欧美| 成人永久免费在线观看视频| 欧美三级亚洲精品| 亚洲激情在线av| 天天躁日日操中文字幕| 男插女下体视频免费在线播放| 最近视频中文字幕2019在线8| 亚洲中文字幕一区二区三区有码在线看| 男插女下体视频免费在线播放| 午夜两性在线视频| 亚洲一区高清亚洲精品| 丝袜美腿在线中文| 麻豆国产av国片精品| 99热精品在线国产| 一区二区三区激情视频| 丰满的人妻完整版| 一区二区三区免费毛片| 两人在一起打扑克的视频| 免费av观看视频| 此物有八面人人有两片| 日韩欧美免费精品| 国产亚洲欧美98| 国产精品野战在线观看| 精品一区二区三区视频在线观看免费| 精品久久久久久久久亚洲 | 欧美性猛交╳xxx乱大交人| 久久久国产成人免费| 啦啦啦观看免费观看视频高清| 亚洲中文字幕一区二区三区有码在线看| 久久婷婷人人爽人人干人人爱| 久久久久国内视频| 国产久久久一区二区三区| 免费无遮挡裸体视频| 他把我摸到了高潮在线观看| 国模一区二区三区四区视频| 色尼玛亚洲综合影院| 小说图片视频综合网站| 色吧在线观看| 免费观看的影片在线观看| 欧美另类亚洲清纯唯美| 一个人看的www免费观看视频| 一a级毛片在线观看| 69人妻影院| 亚洲av免费高清在线观看| 亚洲精品456在线播放app | 国产亚洲精品av在线| 日本黄大片高清| 欧美黄色片欧美黄色片| 国产精华一区二区三区| 一级av片app| 婷婷亚洲欧美| 久久精品国产亚洲av香蕉五月| 高清毛片免费观看视频网站| 十八禁国产超污无遮挡网站| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| 给我免费播放毛片高清在线观看| 亚洲三级黄色毛片| 日韩人妻高清精品专区| 免费高清视频大片| 三级毛片av免费| 国产熟女xx| 亚洲国产精品sss在线观看| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app | 国内精品久久久久精免费| 国产精品综合久久久久久久免费| 国产欧美日韩精品亚洲av| 精品人妻熟女av久视频| 小蜜桃在线观看免费完整版高清| 亚洲一区二区三区色噜噜| 色综合站精品国产| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人| 又粗又爽又猛毛片免费看| 少妇的逼好多水| 亚洲人成伊人成综合网2020| 两性午夜刺激爽爽歪歪视频在线观看| 美女大奶头视频| 嫩草影院入口| 老女人水多毛片| 国产一级毛片七仙女欲春2| 国产精品一及| 午夜免费激情av| 十八禁国产超污无遮挡网站| 变态另类成人亚洲欧美熟女| 久久这里只有精品中国| 深爱激情五月婷婷| 99久国产av精品| 欧美不卡视频在线免费观看| 亚洲乱码一区二区免费版| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| 91狼人影院| 97人妻精品一区二区三区麻豆| 亚洲av熟女| av黄色大香蕉| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 成人av在线播放网站| 99久久99久久久精品蜜桃| 五月伊人婷婷丁香| 国产精品久久视频播放| 十八禁国产超污无遮挡网站| 久久热精品热| 男女之事视频高清在线观看| 亚洲美女搞黄在线观看 | 国产成人影院久久av| 精品国内亚洲2022精品成人| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| 亚洲精品乱码久久久v下载方式| 999久久久精品免费观看国产| 久久久久久久午夜电影| 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9| 波野结衣二区三区在线| 免费av毛片视频| 久久午夜亚洲精品久久| 91在线观看av| 3wmmmm亚洲av在线观看| 97热精品久久久久久| 成人精品一区二区免费| 国产一区二区在线观看日韩| 国产亚洲av嫩草精品影院| 看片在线看免费视频| 色在线成人网| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 我的老师免费观看完整版| 色综合站精品国产| 成人亚洲精品av一区二区| 亚洲成人免费电影在线观看| 国产成人福利小说| 欧美中文日本在线观看视频| 午夜福利在线观看免费完整高清在 | 日日摸夜夜添夜夜添小说| 亚洲精品一区av在线观看| 一夜夜www| av在线老鸭窝| av国产免费在线观看| 免费观看的影片在线观看| 18+在线观看网站| 久久精品国产亚洲av香蕉五月| 精品一区二区三区视频在线| 欧美日本视频| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 国产乱人伦免费视频| 亚洲内射少妇av| 老司机福利观看| 国产精品综合久久久久久久免费| 亚洲av电影在线进入| 亚洲人成网站在线播| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 久99久视频精品免费| 国产精品一区二区三区四区免费观看 | 一区二区三区免费毛片| av专区在线播放| 亚洲精品在线观看二区| 亚洲精华国产精华精| 午夜视频国产福利| 国产欧美日韩一区二区三| 99热6这里只有精品| 成人特级黄色片久久久久久久| 观看美女的网站| 脱女人内裤的视频| 97人妻精品一区二区三区麻豆| 亚洲av免费高清在线观看| 真人做人爱边吃奶动态| 亚洲成人久久性| 在线国产一区二区在线| 国产老妇女一区| 国产精品女同一区二区软件 | 国产aⅴ精品一区二区三区波| 日本五十路高清| 成人无遮挡网站| 91九色精品人成在线观看| 亚洲美女黄片视频| 成年人黄色毛片网站| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 91麻豆av在线| 91久久精品电影网| 亚洲五月天丁香| 少妇的逼水好多| 色吧在线观看| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 一边摸一边抽搐一进一小说| 国产成+人综合+亚洲专区| 亚洲av免费在线观看| 老司机福利观看| 日韩精品青青久久久久久| 日韩欧美精品免费久久 | 亚洲精品色激情综合| 欧美丝袜亚洲另类 | 午夜免费男女啪啪视频观看 | 日日摸夜夜添夜夜添小说| 最新中文字幕久久久久| 简卡轻食公司| 国产黄片美女视频| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 日韩高清综合在线| 欧美绝顶高潮抽搐喷水| 国产精品三级大全| 亚洲美女视频黄频| 精品久久久久久久久av| 亚洲avbb在线观看| 此物有八面人人有两片| www.www免费av| 看黄色毛片网站| 热99在线观看视频| 夜夜夜夜夜久久久久| 人妻夜夜爽99麻豆av| 俺也久久电影网| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 十八禁国产超污无遮挡网站| 色噜噜av男人的天堂激情| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 国产精品野战在线观看| 美女高潮喷水抽搐中文字幕| 别揉我奶头~嗯~啊~动态视频| 小说图片视频综合网站| 51午夜福利影视在线观看| 亚洲午夜理论影院| 床上黄色一级片| 尤物成人国产欧美一区二区三区| 日韩中字成人| 99热6这里只有精品| 国产一区二区三区视频了| 性色avwww在线观看| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 国产大屁股一区二区在线视频| 97人妻精品一区二区三区麻豆| 午夜激情福利司机影院| 999久久久精品免费观看国产| 欧美成人a在线观看| 亚洲,欧美,日韩| 亚洲国产欧洲综合997久久,| 蜜桃久久精品国产亚洲av| 日韩成人在线观看一区二区三区| 无人区码免费观看不卡| 日本成人三级电影网站| 免费搜索国产男女视频| 国产探花极品一区二区| 美女xxoo啪啪120秒动态图 | 美女大奶头视频| 日韩亚洲欧美综合| 亚洲成人免费电影在线观看| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 日韩欧美免费精品| 午夜视频国产福利| 色哟哟·www| 欧美一级a爱片免费观看看| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| 97人妻精品一区二区三区麻豆| 日本黄色片子视频| 国产av在哪里看| 一进一出抽搐动态| 日本黄色视频三级网站网址| 午夜老司机福利剧场| 欧美日韩综合久久久久久 | 少妇丰满av| 免费在线观看成人毛片| 久久久久久九九精品二区国产| 俺也久久电影网| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频| 国产乱人伦免费视频| 久久6这里有精品| 特级一级黄色大片| 性色av乱码一区二区三区2| 成人永久免费在线观看视频| 欧美性感艳星| 韩国av一区二区三区四区| 嫩草影院精品99| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 免费在线观看日本一区| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 日本精品一区二区三区蜜桃| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 欧美高清性xxxxhd video| 中文字幕人成人乱码亚洲影| 极品教师在线视频| 3wmmmm亚洲av在线观看| 亚洲一区高清亚洲精品| 91av网一区二区| 国产精品伦人一区二区| 97人妻精品一区二区三区麻豆| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| 91麻豆av在线| 男人舔女人下体高潮全视频| 蜜桃久久精品国产亚洲av| 热99在线观看视频| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 久久久久精品国产欧美久久久| 黄片小视频在线播放| 亚洲人成网站高清观看| 欧美精品国产亚洲| 中文字幕久久专区| 国产一区二区激情短视频| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 成人精品一区二区免费| 国产精品精品国产色婷婷| 欧美激情国产日韩精品一区| 欧美zozozo另类| 国产毛片a区久久久久| 在线a可以看的网站| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 51午夜福利影视在线观看| 网址你懂的国产日韩在线| 久久久久国内视频| 精品一区二区三区人妻视频| 简卡轻食公司| 午夜免费成人在线视频| 最新在线观看一区二区三区| 丁香欧美五月| 亚洲国产精品久久男人天堂| 精品乱码久久久久久99久播| 久久久精品大字幕| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看| 偷拍熟女少妇极品色| 在线观看舔阴道视频| 日本a在线网址| 亚洲va日本ⅴa欧美va伊人久久| 欧美zozozo另类| 精品不卡国产一区二区三区| 真人一进一出gif抽搐免费| 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 一区福利在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国内毛片毛片毛片毛片毛片| 黄色一级大片看看| 18美女黄网站色大片免费观看| 亚洲一区二区三区色噜噜| 久久性视频一级片| 国产高潮美女av| 在线免费观看不下载黄p国产 | 亚洲美女视频黄频| 久久久久久久亚洲中文字幕 | 丁香六月欧美| 乱人视频在线观看| 伦理电影大哥的女人| 嫁个100分男人电影在线观看| 国产精品综合久久久久久久免费| 成年免费大片在线观看| avwww免费| 老女人水多毛片| 欧美一区二区国产精品久久精品| 老司机深夜福利视频在线观看| 精品久久久久久久末码| 99久久久亚洲精品蜜臀av| 日本撒尿小便嘘嘘汇集6| 久久精品久久久久久噜噜老黄 | 97热精品久久久久久| 两个人的视频大全免费| 很黄的视频免费| 午夜影院日韩av| 精品人妻一区二区三区麻豆 | 亚洲av电影不卡..在线观看|