• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerosol absorption optical depth of fine-mode mineral dust in eastern China

    2016-11-23 01:12:51ZHANGTinHngndLIAOHong
    關(guān)鍵詞:觀測(cè)網(wǎng)沙塵氣溶膠

    ZHANG Tin-Hngnd LIAO Hong

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bUniversity of Chinese Academy of Sciences, Beijing, China

    Aerosol absorption optical depth of fine-mode mineral dust in eastern China

    ZHANG Tian-Hanga,band LIAO Honga

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bUniversity of Chinese Academy of Sciences, Beijing, China

    The fine-mode aerosol absorption optical depth (AAOD) retrieved from the Aerosol Robotic Network(AERONET) has been used in previous studies to calculate the radiative forcing of black carbon (BC)aerosol, assuming that the absorption by fine-mode aerosols (diameter ≤ 1 μm) is primarily from BC while the absorption by larger particles (diameter > 1 μm) is principally from dust. In the present study, the Community Earth System Model was used to simulate and quantify the contribution of fine-mode dust to fine-mode AAOD in eastern China (29-41°N, 104-122°E)-an area where concentrations of BC are high. The simulated fine-mode dust concentrations were constrained by observations from nine sites belonging to the Chinese Meteorological Administration Atmosphere Watch Network. Averaged over eastern China, the simulated annual mean fine-mode dust AAOD was 3.6 × 10-3, with the maximum AAOD in spring and the minimum value in winter. The contribution of fine-mode dust to the total fine-mode AAOD (sum of fine-mode dust, BC, and organic carbon)in winter, spring, summer, and autumn was 3.4%, 25.2%, 12.5%, and 14.9%, respectively, with an annual mean value of 15.1%. The results indicate the importance of removing fine dust AAOD when the AERONET fine-mode AAOD is used for calculating the radiative forcing of BC in eastern China.

    Fine-mode; mineral dust;AAOD; eastern China

    由氣溶膠自動(dòng)觀測(cè)網(wǎng)(AERONET)反演的細(xì)模態(tài)氣溶膠的吸收光學(xué)厚度(AAOD)通常被認(rèn)為是黑碳?xì)馊苣z的AAOD,并且通過這種方法得到的黑碳AAOD已經(jīng)被用在計(jì)算黑碳輻射強(qiáng)迫的研究中。但是這種方法是基于如下假設(shè):直徑小于1 μm的細(xì)模態(tài)氣溶膠和直徑大于1 μm的粗模態(tài)氣溶膠對(duì)光的吸收主要分別歸功于黑碳和沙塵。為了定量描述細(xì)模態(tài)沙塵氣溶膠對(duì)全部細(xì)模態(tài)氣溶膠的AAOD的貢獻(xiàn),我們利用地球系統(tǒng)交互模式(CESM)模擬了中國東部(104-122°E, 29-41°N)細(xì)模態(tài)沙塵氣溶膠的AAOD。其中,我們根據(jù)9個(gè)中國氣象局大氣觀測(cè)網(wǎng)(CAWNET)站點(diǎn)觀測(cè)的細(xì)模態(tài)沙塵地表濃度調(diào)整了模擬的細(xì)模態(tài)沙塵氣溶膠的濃度。結(jié)果顯示,模擬的中國東部年平均細(xì)模態(tài)沙塵氣溶膠的AAOD的值為3.6 × 10-3,其中AAOD的最大和最小值分別出現(xiàn)在春季和冬季。細(xì)模態(tài)沙塵氣溶膠對(duì)總的細(xì)模態(tài)氣溶膠(細(xì)模態(tài)沙塵、黑碳和有機(jī)碳?xì)馊苣z的總和)的AAOD的貢獻(xiàn)在春季、夏季、秋季和冬季分別為3.4%、25.2%、12.5%和14.9%,其年平均值為15.1%。這些結(jié)果顯示當(dāng)利用AERONET反演得到的細(xì)模態(tài)氣溶膠的AAOD來計(jì)算中國東部BC氣溶膠的輻射強(qiáng)迫時(shí),去除細(xì)模態(tài)沙塵粒子的影響顯得尤為重要。

    1. Introduction

    Aerosol absorption optical depth (AAOD) represents column aerosol light absorption and is a key parameter in evaluating aerosol radiative forcing (e.g. Huang et al. 2006; Park and Sohn 2010; Kirillova et al. 2014; Koike et al. 2014) and atmospheric heating (e.g. Lau et al. 2006;Xia et al. 2007; Huang et al. 2009). AAOD is calculated as(1-SSA) × AOD, where SSA and AOD are the column single scattering albedo and aerosol optical depth, respectively. Aerosol species that contribute to AAOD include mineral dust, black carbon (BC), and organic carbon (OC).

    AAOD values have been retrieved by the Aerosol Robotic Network (AERONET) (Holben et al. 1998; Dubovik and King 2000), whose datasets provide fine-mode (diameter ≤ 1 μm) and coarse-mode (diameter > 1 μm) AAOD values. By analyzing AERONET datasets over specific regions,Dubovik et al. (2002) reported that fine-mode and coarsemode particles dominate over biomass-burning and desert regions, respectively. Bond et al. (2013) calculated the direct radiative forcing of BC by adjusting the median AAOD in the Aerosol Comparisons between Observations and Models to be consistent with the AERONET fine-mode retrieval. They obtained a global mean AAOD of 0.006.However, such an approach to derive the BC AAOD is positively biased because the AERONET AAOD includes absorption by BC, organic matter, and fine-mode dust(Bond et al. 2013).

    Several previous studies have reported the AAOD of total aerosols (fine-mode plus coarse-mode) retrieved from AERONET in dusty weather in China (Yu et al. 2006;Yu et al. 2011; Yu et al. 2013). Yu et al. (2006) presented the average AOD and SSA on dusty days during 2001-2005 at 10 AERONET sites in East Asia. The AAOD values of all aerosol species at 675 nm averaged over four sites in China(Dunhuang, Yulin, Beijing, and Inner Mongolia), three sites in Korea (Gosan, Gwangju, and Anmyon), and three sites in Japan (Osaka, Shirahama, and Noto) were 0.061, 0.032, and 0.023, respectively. Similarly, Yu et al. (2013) showed that the average AAOD of all aerosol species calculated from the observed AOD and SSA from AERONET on dusty days in Beijing during 2001-2010 were 0.186 and 0.084 at 440 and 670 nm, respectively. These studies, however, did not examine the fine-mode dust AAOD.

    Large uncertainties exist in simulations of emissions and concentrations of dust (Generoso et al. 2008; Johnson et al. 2012; Ridley et al. 2012). For example, global dust emissions were simulated to be in the range of 514-4313 Tg year-1(Textor et al. 2006; Huneeus et al. 2011). Cakmur et al. (2006) constrained the global emissions of clay dust particles (0.2 μm < diameter < 2 μm) in the ModelE version of NASA Goddard Institute for Space Studies atmospheric general circulation model by using observed AOD retrieved from AERONET, Advanced Very High Resolution Radiometer, and Total Ozone Mapping Spectrometer, as well as the volume particle size distribution retrieved from AERONET. A similar approach can be used to constrain the emissions of fine-mode dust, but it requires size-resolved observations of concentrations or optical properties of mineral dust.

    The present study simulated the fine-mode dust AAOD in eastern China (29-41°N, 104-122°E)-where concentrations of BC are high-using the Community Earth System Model (CESM), to quantify the contribution of fine-mode dust to fine-mode AAOD. Section 2 describes the model and numerical experiments. Sections 3 and 4 present the simulated concentrations and fine-mode dust AAOD,respectively. Section 5 examines the contribution of finemode dust to the AAOD of total fine-mode aerosols.

    2. Model description and numerical experiments

    2.1. Mineral dust in the CESM model

    The simulation of mineral dust aerosol was carried out using CESM, version 1.2.0 (http://www2.cesm.ucar.edu/),developed by National Center for Atmospheric Research. The model has a horizontal resolution of 1.9 × 2.5° and 30 vertical layers from the surface to 4 hPa. The simulation of dust in CESM has been described in Liu et al. (2012). The dust emission scheme follows the Dust Entrainment and Deposition Module (Zender 2003), which allows dust emissions over dry and non-vegetated regions with strong winds. Dust emissions are calculated online depending on the simulated meteorological parameters. The three-mode version of the modal aerosol module (MAM-3) scheme used in this work includes the Aitken, accumulation, and coarse modes. Therefore, the emissions of dust were allocated into the accumulation and coarse modes of MAM-3 with cut-off size ranges of 0.1-1.0 and 1.0-10 μm, respectively. Mineral dust was assumed to be internally-mixed with other aerosol species within a mode but externally-mixed with other modes. As described by Ghan and Zaveri (2007), the mass absorption coefficient for each mode at each model layer was calculated using Mie theory as a function of refractive index and the surface mode radius of wet aerosol particles. The AAOD for each mode was the integration of the absorption coefficient (product of mass concentration and mass absorption coefficient)over all model layers. The refractive index of dust in CESM 1.2.0 is 1.53-0.00627i at 550 nm, which was measured in Barbados by Volz (1973).

    2.2. Constrained emissions of fine-mode dust

    The simulated emissions of fine-mode dust were constrained using the observed annual mean dust concentrations over the two-year period of 2006-2007,averaged over nine sites of the Chinese Meteorological Administration Atmosphere Watch Network (CAWNET)(Zhang et al. 2012). Considering that fine-mode dust can be transported far away to downwind regions (e.g. Han et al. 2004; Chin et al. 2007; Fairlie et al. 2007), the nine sites in eastern China (Figure 1) were selected. Because the observed dust concentrations in Zhang et al. (2012) did not distinguish between fine- and coarse-mode fractions,a mass ratio of fine-mode dust to total dust of 18.2% was obtained by averaging the size-resolved dust concentrations measured during 18 dust events during 2004-2006 in Beijing (Wu et al. 2009). As a result, the emissions of fine-mode dust were calculated as:

    Figure 1.Locations of the nine CAWNET sites (black dots) from which observed surface dust concentrations were used to constrain the simulated dust emissions. These nine CAWNET sites were: Gaolanshan (GLS) (36°0′N, 105°51′E); Gucheng (GC) (39°7.8′N, 115°48′E); XiAn(XA) (34°25.8′N, 108°58.2′E); Zhengzhou (ZZ) (34°46.8′N, 113°40.8′E); Taiyangshan (TYS) (29°10.2′N, 111°42.6′E); Jinsha (JS) (29°37.8′N,114°12′E); LinAn (LA) (30°18′N, 119°44′E); Dalian (DL) (38°54′N, 121°37.8′E); and Chengdu (CD) (30°39′N, 104°2.4′E). The mass ratio of fine to coarse dust was obtained from the size-resolved observations of dust at Beijing (BJ) (39°55′N, 116°24′E) (red star). Eastern China was defined as per the red rectangle (29-41°N, 104-122°E).

    where Edefaultand Econstrainedare the simulated emissions of fine-mode dust before and after constraining, respectively, over all grid cells with dust emissions. Cmeasuredwas the measured annual mean surface dust concentration averaged of two years' (2006-2007) dust concentrations over the nine CAWNET sites (Zhang et al. 2012), and Csimulatedwas the simulated annual mean surface concentration of fine-mode dust averaged over the same CAWNET sites for the present day. Based on the measurements and model, the ratio of the measured to simulated annual mean surface concentration of fine-mode dust over the nine CAWNET sites was calculated to be 3.29.

    2.3. Numerical simulations

    CESM was run for six model years to simulate the finemode dust concentrations for the present day, with the initial conditions downloaded from https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata. The first model year was treated as spin-up, and the model results from the last five years were analyzed.

    3. Simulated concentrations of fine-mode dust

    Figure 2a shows the simulated surface-layer concentrations of fine-mode dust in China. High concentrations of fine-mode dust were simulated over the northern border of China and western China. Over the Taklimakan and Gobi deserts, concentrations of fine-mode dust ranged between 250 and 350 μg m-3in March-April-May (MAM)and June-July-August (JJA), and between 100 and 250 μg m-3in September-October-November (SON) and December-January-February (DJF). Over eastern China(29-41°N, 104-122°E), the simulated surface-layer concentrations of fine-mode dust gradually decreased from the northwest to the southeast of the domain. Averaged over eastern China, the simulated surface-layer concentrations of fine-mode dust in DJF, MAM, JJA, and SON were 5.0, 31.6,14.2, and 24.1 μg m-3, respectively, with an annual mean value of 19.2 μg m-3. The seasonal distributions in column burdens of fine-mode dust generally reflected those in the surface-layer concentrations (Figure 2b). Note that over the Taklimakan desert the maximum burden occurred in JJA, while the maximum surface-layer concentration occurred in MAM, as a result of the stronger convection in JJA than in MAM. With the emissions of fine-mode dust over the Taklimakan desert simulated as slightly larger in JJA than in MAM, the stronger convection in JJA transported fine-mode dust to higher altitudes.

    Figure 3 compares the simulated monthly variations in surface-layer fine-mode dust concentrations with the observations at the nine CAWNET sites in eastern China. Note that the observations from Zhang et al. (2012) were all multiplied by 18.2% to be consistent with the treatment described above. After constraining the emissions, the simulated surface-layer concentrations of fine-mode dust showed two peaks, in spring and autumn. The simulated peak in spring agreed well with observations at all sites, but the second observed peak occurred in different months during September-December. Bias between the monthly mean simulated and observed dust concentrations at aCAWNET site was calculated by normalized mean bias(NMB) defined as:

    Figure 2.Simulated seasonal mean values of the (a) surface-layer concentrations (μg m-3) of fine-mode dust, (b) column burdens(×10-5kg m-2) of fine-mode dust, (c) AAOD (×10-3) of fine-mode dust, (d) AAOD (×10-3) of BC, (e) AAOD (×10-3) of OC, (f) AAOD (×10-3)of total fine-mode aerosols (sum of dust, BC, and OC), and (g) ratio (×10-2) of fine-mode dust AAOD to that of total fine-mode aerosols(%). Notes: Eastern China (29-41°N, 104-122°E) was defined as per the red rectangles in (c) and (g). The number in the top right-hand corner of each panel is the averaged value over eastern China.

    Figure 3.Comparisons of observed and simulated surface-layer fine-mode dust concentrations (μg m-3) at the nine CAWNET sites. Simulated values before and after constraining the emissions both are shown. Notes: NMB1 and NMB2 represent the NMB between the observed and simulated dust concentrations before and after constraining, respectively. R is the correlation coefficient between the observed and simulated monthly dust concentrations after constraining.

    where xiand yiwere the simulated and observed dust concentrations, and n represented 12 months. At the sites of XiAn, Zhengzhou, Taiyangshan, Jinsha, LinAn,Dalian, and Chengdu, the NMBs between the simulated and observed surface-layer fine-mode dust concentrations were in the range of -88.2% to -71.3%; whereas,after constraining, the range was -64.9% to -18.1%,indicating that the simulated fine-dust concentrations were improved after constraining at these sites, where BC concentrations were also high. However, at the two sites those were close to dust source regions (Gucheng and Gaolanshan), the NMBs increased from -25.8% and -58.7% to +107.2% and +12.4%, respectively, which can be explained by the fact that the constraining factor was the mean value over the nine sites. With all of the nine sites considered, the NMB increased from -69.2% to -11.9%. With emissions constrained, the correlation coefficients between the monthly simulated and observed fine-mode dust surface concentrations at the nine sites were in the range of +0.4 to +0.81.

    4. Simulated fine-mode dust AAOD

    Figure 2c shows the simulated fine-mode dust AAOD in China. Over the Taklimakan and Gobi deserts, the finemode dust AAOD reach 10 × 10-3, 40 × 10-3, 50 × 10-3,and 20 × 10-3in DJF, MAM, JJA, and SON, respectively. Over eastern China, the simulated fine-mode dust AAOD values are the highest in MAM, consistent with the highest concentrations and burdens of fine-dust in this season. Averaged over eastern China, simulated fine-mode dust AAOD are 0.6 × 10-3, 6.6 × 10-3, 3.1 × 10-3, and 3.8 × 10-3in DJF, MAM, JJA, and SON, respectively, with an annual mean value of 3.6 × 10-3. Our simulated annul mean fine-mode dust AAOD is smaller than the observed AAOD values of 6.1 × 10-3and 8.4 × 10-3of total aerosols in dusty days averaged over four sites in China (Dunhuang, Yulin, Beijing,and Inner-Mongolia) (Yu et al. 2006) and Beijing (Yu et al. 2013), respectively.

    5. Contribution of fine-mode dust to the AAOD of total fine-mode aerosols

    CESM can perform default simulations of mineral dust, BC,OC, sulfate, and sea-salt aerosols, as described by Liu et al.(2012), which allows us to examine the contribution of finemode dust to AAOD, as compared to all other aerosol types. Fine-mode absorbing aerosols (diameter ≤ 1 μm) in CESM include fine-mode dust, BC, and OC. Figures 2d and 2e present the AAOD of BC and OC simulated in CESM, respectively. Note that the simulation of BC and OC was based on the present day monthly anthropogenic and biomass-burning emissions from the Intergovernmental Panel on Climate Change Fifth Assessment Report emissions datasets(Lamarque et al. 2010). The AAOD values of BC and OC were high over polluted eastern China, with annual mean values of 18.6 × 10-3and 1.5 × 10-3, respectively. The spatial distributions of the total AAOD of fine-mode aerosols (sum of fine-mode dust, BC, and OC) (Figure 2f) indicate that finemode dust and BC dominate the AAOD of fine-mode aerosols in northwestern China and eastern China, respectively.

    Figure 2g shows the ratios of fine-mode dust AAOD to that of all fine-mode aerosols. High ratios were simulated over the northern border of China and western China, corresponding to the high fine-mode dust AAOD. The ratios were high in the northwest corner of eastern China, at approximately 70%-100% in MAM, 50%-70% in JJA and SON, and 30%-50% in DJF. The ratios gradually reduced to less than 5% in the southeast corner of eastern China in all seasons. Averaged over eastern China, the ratios of fine-mode dust AAOD to that of all fine-mode aerosols were 3.4%, 25.2%,12.5%, and 14.9% in DJF, MAM, JJA, and SON, respectively,with an annual mean value of 15.1%. Similarly, the ratios of the AAOD of OC to that of all fine-mode aerosols (not shown)were 5.3%, 5.1%, 8.5%, and 5.7% in DJF, MAM, JJA, and SON,respectively, with an annual mean value of 6.2%. Therefore,if the fine-mode AAOD derived from AERONET is treated as BC AAOD, it would lead to an overestimation of BC AAOD of 21.3% (15.1% plus 6.2%) over eastern China, which would in turn lead to a considerable overestimation of the radiative forcing of BC in these regions.

    It should be noted that the uncertainties in the simulated concentrations of BC and OC may influence the conclusion. For example, comparing the simulated surface-layer BC and OC concentrations in the present study with the observations of Zhang et al. (2012) indicates that CESM underestimated the BC and OC concentrations at the nine CAWNET sites in eastern China, with NMBs of 61.6% and 48.2%, respectively. Assuming that concentrations of BC and OC contribute linearly to AAOD, the annual mean AAOD of BC would increase from the value of 18.6 × 10-3in this work to 47.9 × 10-3, and that of OC would increase from 1.5 × 10-3to 2.8 × 10-3. Considering that fine-mode dust concentrations were underestimated by 11.9% after constraining emissions, the annual mean fine-mode dust AAOD would increase from 3.6 × 10-3to 4.1 × 10-3. As a result, the annual mean ratio of fine-mode dust AAOD to that of all fine-mode aerosols averaged over eastern China would decrease from 15.1% to 7.4%.

    6. Conclusion

    This study simulated the fine-mode dust AAOD in eastern China (29-41°N, 104-122°E) using CESM, version 1.2. The simulated emissions and concentrations of fine-mode dust were constrained using observations from nine CAWNET sites averaged over the twoyear period of 2006-2007. Using these measurement constraints, the simulated fine-mode dust concentrations averaged over eastern China in DJF, MAM, JJA,and SON were 5.0, 31.6, 14.2, and 24.1 μg m-3, respectively, with an annual mean value of 19.2 μg m-3. Considering all of the nine sites with dust measurements in eastern China, the NMB between the simulated and observed monthly mean surface-layer fine-mode dust concentrations was -11.9%, indicating that the model is able to capture the magnitude of fine-mode dust in eastern China.

    The horizontal distribution of simulated fine-mode dust AAOD was similar to that of the column burden of finemode dust. Averaged over eastern China, the simulated annual mean fine-mode dust AAOD was 3.6 × 10-3. The contribution of fine-mode dust to the AAOD of total finemode aerosols was simulated to be 3.4%, 25.2%, 12.5%,and 14.9% in DJF, MAM, JJA, and SON, respectively, with an annual mean value of 15.1%.

    The present results indicate that it is important to remove the contribution of fine-mode dust to AAOD when fine-mode AAOD derived from AERONET is used for the calculation of the radiative forcing of BC. However, it is important to note that this study was limited by the availability of mineral dust aerosol measurements. Simultaneous measurements of size-resolved mineral dust, BC, OC, and AAOD are required to estimate the contribution of finemode dust to the fine-mode AAOD of all aerosols more accurately.

    Funding

    This work was supported by the National Basic Research Program of China (973 Program, [grant number 2014CB441202])and the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDA05100503].

    References

    Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen,B. J. DeAngelo, and M. G. Flanner, et al. 2013. “Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment.” Journal of Geophysical Research 118 (11): 5380-5552. doi:10.1002/jgrd.50171.

    Cakmur, R. V., R. L. Miller, J. Perlwitz, I. V. Geogdzhayev, P. Ginoux, D. Koch, K. E. Kohfeld, I. Tegen, and C. S. Zender. 2006. “Constraining the Magnitude of the Global Dust Cycle by Minimizing the Difference between a Model and Observations.” Journal of Geophysical Research 111 (D06207): doi:10.1029/2005JD005791.

    Chin, M., T. Diehl, P. Ginoux, and W. Malm. 2007. “Intercontinental Transport of Pollution and Dust Aerosols: Implications for Regional Air Quality.” Atmospheric Chemistry and Physics 7(21): 5501-5517.

    Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker. 2002. “Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations.” Journal of the Atmospheric Sciences 59(3): 590-608. doi:10.1175/1520-0469(2002)059<0590:Voaao p>2.0.Co;2.

    Dubovik, O., and M. D. King. 2000. “A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements.” Journal of Geophysical Research 105 (D16): 20673-20696. doi:10.1029/2000JD900282.

    Fairlie, T. D., D. J. Jacob, and R. J. Park. 2007. “The Impact of Transpacific Transport of Mineral Dust in the United States.”Atmospheric Environment 41 (6): 1251-1266. doi:10.1016/j. atmosenv.2006.09.048.

    Generoso, S., I. Bey, M. Labonne, and F. M. Bréon. 2008.“Aerosol Vertical Distribution in Dust Outflow over the Atlantic: Comparisons between GEOS-Chem and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation(CALIPSO).” Journal of Geophysical Research 113 (D24209). doi:10.1029/2008JD010154.

    Ghan, S. J., and R. A. Zaveri. 2007. “Parameterization of Optical Properties for Hydrated Internally Mixed Aerosol.” Journal of Geophysical Research 112 (D10201): doi:10.1029/2006JD007927.

    Han, Z. W., H. Ueda, K. Matsuda, R. J. Zhang, K. Arao, Y. Kanai,and H. Hasome. 2004. “Model Study on Particle Size Segregation and Deposition during Asian Dust Events in March 2002.” Journal of Geophysical Research 109 (D19205): doi:10.1029/2004JD004920.

    Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer,E. Vermote, et al. 1998. “AERONET - A Federated Instrument Network and Data Archive for Aerosol Characterization.”Remote Sensing of Environment 66 (1): 1-16. doi:10.1016/ S0034-4257(98)00031-5.

    Huang, J. P., B. Lin, P. Minnis, T. H. Wang, X. Wang, Y. X. Hu, Y. H. Yi,and J. K. Ayers. 2006. “Satellite-based Assessment of Possible Dust Aerosols Semi-Direct Effect on Cloud Water Path over East Asia.” Geophysical Research Letters 33 (L19802): doi:10.10 29/2006GL026561.

    Huang, J., Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao. 2009. “Taklimakan Dust Aerosol Radiative Heating Derived from CALIPSO Observations Using the Fu-Liou Radiation Model with CERES Constraints.” Atmospheric Chemistry and Physics 9 (12): 4011-4021.

    Huneeus, N., M. Schulz, Y. Balkanski, J. Griesfeller, J. Prospero,S. Kinne, S. Bauer, et al. 2011. “Global Dust Model Intercomparison in AeroCom Phase I.” Atmospheric Chemistry and Physics 11 (15): 7781-7816. doi:10.5194/acp-11-7781-2011.

    Johnson, M. S., N. Meskhidze, and V. P. Kiliyanpilakkil. 2012. “A Global Comparison of GEOS-Chem-Predicted and Remotely-Sensed Mineral Dust Aerosol Optical Depth and Extinction Profiles.” Journal of Advance Modeling Earth System 4 (3): 110-117. doi:10.1029/2011ms000109.

    Kirillova, E. N., A. Andersson, J. Han, M. Lee, and ?. Gustafsson. 2014. “Sources and Light Absorption of Water-Soluble Organic Carbon Aerosols in the Outflow from Northern China.” Atmospheric Chemistry and Physics 14 (3): 1413-1422. doi:10.5194/acp-14-1413-2014.

    Koike, M., N. Moteki, P. Khatri, T. Takamura, N. Takegawa, Y. Kondo,H. Hashioka, H. Matsui, A. Shimizu, and N. Sugimoto. 2014.“Case Study of Absorption Aerosol Optical Depth Closure of Black Carbon over the East China Sea.” Journal of Geophysical Research 119 (1): 122-136. doi:10.1002/2013JD020163.

    Lamarque, J. F., T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, et al. 2010. “Historical (1850-2000) Gridded Anthropogenic and Biomass Burning Emissions of Reactive Gases and Aerosols: Methodology and Application.”Atmospheric Chemistry and Physics 10 (15): 7017-7039. doi:10.5194/acp-10-7017-2010.

    Lau, K. M., M. K. Kim, and K. M. Kim. 2006. “Asian Summer Monsoon Anomalies Induced by Aerosol Direct Forcing: The Role of the Tibetan Plateau.” Climate Dynamics 26 (7-8): 855-864. doi:10.1007/s00382-006-0114-z.

    Liu, X., R. C. Easter, S. J. Ghan, R. Zaveri, P. Rasch, X. Shi, J. F. Lamarque, et al. 2012. “Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5.” Geoscientific Model Development 5 (3): 709-739. doi:10.5194/gmd-5-709-2012.

    Park, H.-S., and B. J. Sohn. 2010. “Recent Trends in Changes of Vegetation over East Asia Coupled with Temperature and Rainfall Variations.” Journal of Geophysical Research 115(D14101): doi:10.1029/2009JD012752.

    Ridley, D. A., C. L. Heald, and B. Ford. 2012. “North African Dust Export and Deposition: A Satellite and Model Perspective.” Journal of Geophysical Research 117 (D02202): doi:10.1029/2011JD016794.

    Textor, C., M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer,T. Berntsen, et al. 2006. “Analysis and Quantification of the Diversities of Aerosol Life Cycles within AeroCom.”Atmospheric Chemistry and Physics 6: 1777-1813.

    Volz, F. E. 1973. “Infrared Optical-constants of Ammonium Sulfate, Sahara Dust, Volcanic Pumice, and Flyash.” Applied Optics 12 (3): 564-568. doi:10.1364/Ao.12.000564.

    Wu, Z. J., Y. F. Cheng, M. Hu, and B. Wehner. 2009. “Dust Events in Beijing, China (2004-2006): Comparison of Ground-based Measurements with Columnar Integrated Observations.”Atmospheric Chemistry and Physics 9 (18): 6915-6932.

    Xia, X., H. Chen, P. Goloub, W. Zhang, B. Chatenet, and P. Wang. 2007. “A Compilation of Aerosol Optical Properties and Calculation of Direct Radiative Forcing over an Urban Region in Northern China.” Journal of Geophysical Research 112(D12203): doi:10.1029/2006JD008119.

    Yu, X. N., T. T. Cheng, J. M. Chen, and Y. Liu. 2006. “A Comparison of Dust Properties between China Continent and Korea,Japan in East Asia.” Atmospheric Environment 40 (30): 5787-5797. doi:10.1016/j.atmosenv.2006.05.013.

    Yu, X. N., C. Z. Shi, J. Ma, B. Zhu, M. Li, J. Wang, S. Y. Yang,and N. Kang. 2013. “Aerosol Optical Properties during Firework, Biomass Burning and Dust Episodes in Beijing.”Atmospheric Environment 81: 475-484. doi:10.1016/j. atmosenv.2013.08.067.

    Yu, X. N., B. Zhu, Y. Yin, J. Yang, Y. W. Li, and X. L. Bu. 2011.“A Comparative Analysis of Aerosol Properties in Dust and Haze-Fog Days in a Chinese Urban Region.”Atmospheric Research 99 (2): 241-247. doi:10.1016/j. atmosres.2010.10.015.

    Zender, C. S., H. S. Bian, and D. Newman. 2003. “Mineral Dust Entrainment and Deposition (DEAD) Model: Description and 1990s Dust Climatology.” Journal of Geophysical Research 108(D14): 4416. doi:10.1029/2002JD002775.

    Zhang, X. Y., Y. Q. Wang, T. Niu, X. C. Zhang, S. L. Gong, Y. M. Zhang,and J. Y. Sun. 2012. “Atmospheric Aerosol Compositions in China: Spatial/Temporal Variability, Chemical Signature,Regional Haze Distribution and Comparisons with Global Aerosols.” Atmospheric Chemistry and Physics 12 (2): 779-799. doi:10.5194/acp-12-779-2012.

    ARTICLE HISTORY 26 April 2015 Accepted 21 September 2015

    CONTACT LIAO Hong hongliao@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    觀測(cè)網(wǎng)沙塵氣溶膠
    什么是沙塵天氣?
    國土綠化(2024年3期)2024-04-17 01:02:22
    氣溶膠傳播之謎
    氣溶膠中210Po測(cè)定的不確定度評(píng)定
    可怕的沙塵天氣
    四川盆地秋季氣溶膠與云的相關(guān)分析
    海底觀測(cè)網(wǎng)水下環(huán)境實(shí)時(shí)監(jiān)控系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
    海底觀測(cè)網(wǎng)岸基站供配電系統(tǒng)設(shè)計(jì)
    探測(cè)地震活動(dòng)新思路:衛(wèi)星與地溫觀測(cè)網(wǎng)相結(jié)合
    太空探索(2014年4期)2014-07-19 10:08:58
    大氣氣溶膠成核監(jiān)測(cè)
    av超薄肉色丝袜交足视频| 神马国产精品三级电影在线观看 | 777久久人妻少妇嫩草av网站| 又大又爽又粗| 精品不卡国产一区二区三区| 好男人在线观看高清免费视频 | 高清在线国产一区| 午夜亚洲福利在线播放| 自线自在国产av| 国产精华一区二区三区| АⅤ资源中文在线天堂| 久久国产乱子伦精品免费另类| 91字幕亚洲| 丁香六月欧美| 法律面前人人平等表现在哪些方面| 久久香蕉国产精品| 12—13女人毛片做爰片一| 精品国内亚洲2022精品成人| 亚洲av电影不卡..在线观看| 国产亚洲av嫩草精品影院| 男女之事视频高清在线观看| 国产精品香港三级国产av潘金莲| 韩国av一区二区三区四区| 久久人人爽av亚洲精品天堂| 女警被强在线播放| 一个人免费在线观看的高清视频| 国产精品久久久av美女十八| 亚洲专区国产一区二区| 国产精品电影一区二区三区| 操出白浆在线播放| 久久人妻福利社区极品人妻图片| 大型黄色视频在线免费观看| 美女国产高潮福利片在线看| 亚洲色图综合在线观看| 久久人人爽av亚洲精品天堂| 日本在线视频免费播放| 夜夜夜夜夜久久久久| 午夜福利视频1000在线观看 | 一个人观看的视频www高清免费观看 | 99在线视频只有这里精品首页| 波多野结衣av一区二区av| 国产精品久久久久久亚洲av鲁大| 亚洲精品在线美女| 一边摸一边做爽爽视频免费| 亚洲精品国产色婷婷电影| 99久久国产精品久久久| 欧美在线一区亚洲| 亚洲中文av在线| 国产主播在线观看一区二区| 亚洲中文字幕一区二区三区有码在线看 | 村上凉子中文字幕在线| 久久伊人香网站| 国产精品秋霞免费鲁丝片| 日韩一卡2卡3卡4卡2021年| 黄色片一级片一级黄色片| 欧美日韩一级在线毛片| bbb黄色大片| 日本免费a在线| 国产不卡一卡二| 午夜福利高清视频| 国产成+人综合+亚洲专区| 日韩大尺度精品在线看网址 | 少妇粗大呻吟视频| 乱人伦中国视频| 麻豆久久精品国产亚洲av| 亚洲午夜理论影院| 亚洲一卡2卡3卡4卡5卡精品中文| 久久亚洲真实| 男女下面插进去视频免费观看| 日韩欧美免费精品| 久久久精品欧美日韩精品| а√天堂www在线а√下载| 国产又色又爽无遮挡免费看| 神马国产精品三级电影在线观看 | 久久香蕉国产精品| 18禁国产床啪视频网站| 精品国产美女av久久久久小说| 亚洲精品在线观看二区| 亚洲中文字幕一区二区三区有码在线看 | 一进一出抽搐动态| 老鸭窝网址在线观看| 淫秽高清视频在线观看| 亚洲精品美女久久av网站| 美女午夜性视频免费| 人人妻,人人澡人人爽秒播| 亚洲五月色婷婷综合| 777久久人妻少妇嫩草av网站| 老司机在亚洲福利影院| 欧美绝顶高潮抽搐喷水| 久久久久久久久免费视频了| 91精品三级在线观看| 成人欧美大片| 久久久久久亚洲精品国产蜜桃av| 久久性视频一级片| 69av精品久久久久久| 母亲3免费完整高清在线观看| av在线天堂中文字幕| 18美女黄网站色大片免费观看| 欧美在线一区亚洲| 国产亚洲欧美在线一区二区| 欧美激情 高清一区二区三区| 天天添夜夜摸| 日韩欧美三级三区| 99国产精品免费福利视频| 巨乳人妻的诱惑在线观看| 12—13女人毛片做爰片一| 黄色 视频免费看| 老熟妇仑乱视频hdxx| 久久欧美精品欧美久久欧美| 嫩草影视91久久| 男女午夜视频在线观看| 欧美在线黄色| 悠悠久久av| 亚洲一区二区三区色噜噜| 色婷婷久久久亚洲欧美| 久久精品亚洲精品国产色婷小说| 国产97色在线日韩免费| 午夜精品久久久久久毛片777| 国产av又大| 国产免费av片在线观看野外av| 国产高清激情床上av| 天堂动漫精品| 免费高清在线观看日韩| 制服诱惑二区| 日韩一卡2卡3卡4卡2021年| 可以免费在线观看a视频的电影网站| 91麻豆av在线| 精品国内亚洲2022精品成人| 看片在线看免费视频| 亚洲av五月六月丁香网| 变态另类成人亚洲欧美熟女 | 村上凉子中文字幕在线| 99re在线观看精品视频| 久久天堂一区二区三区四区| 亚洲国产精品sss在线观看| 亚洲中文字幕一区二区三区有码在线看 | 免费女性裸体啪啪无遮挡网站| 精品免费久久久久久久清纯| 91av网站免费观看| 亚洲精华国产精华精| 人人妻人人澡人人看| 一进一出抽搐动态| 久久九九热精品免费| 国产精华一区二区三区| 在线观看日韩欧美| 国产欧美日韩一区二区精品| a在线观看视频网站| 一夜夜www| 日韩大码丰满熟妇| 日本一区二区免费在线视频| 婷婷丁香在线五月| 我的亚洲天堂| 中文字幕高清在线视频| netflix在线观看网站| 757午夜福利合集在线观看| 韩国av一区二区三区四区| 久久精品国产综合久久久| 亚洲国产欧美网| 色播在线永久视频| 女人被狂操c到高潮| 中文字幕最新亚洲高清| 黄色丝袜av网址大全| 国产精品国产高清国产av| 女性被躁到高潮视频| 欧美激情久久久久久爽电影 | 亚洲国产精品999在线| 深夜精品福利| 日本 欧美在线| 十分钟在线观看高清视频www| 亚洲成a人片在线一区二区| 精品国产一区二区久久| 久久这里只有精品19| 国内毛片毛片毛片毛片毛片| 91国产中文字幕| 日韩高清综合在线| 午夜福利视频1000在线观看 | 久久青草综合色| 91老司机精品| 欧美日本视频| 亚洲自偷自拍图片 自拍| 精品少妇一区二区三区视频日本电影| 欧美一区二区精品小视频在线| 国产一级毛片七仙女欲春2 | 黄网站色视频无遮挡免费观看| 中文亚洲av片在线观看爽| 欧美亚洲日本最大视频资源| 久久人人爽av亚洲精品天堂| 国内久久婷婷六月综合欲色啪| 国产免费男女视频| 自线自在国产av| АⅤ资源中文在线天堂| 日韩欧美三级三区| 色综合站精品国产| 久久久久久久午夜电影| 一夜夜www| 国产欧美日韩综合在线一区二区| 欧美成人免费av一区二区三区| 日日摸夜夜添夜夜添小说| 无限看片的www在线观看| 日韩免费av在线播放| 男人舔女人下体高潮全视频| 精品国产美女av久久久久小说| 成在线人永久免费视频| 久久天躁狠狠躁夜夜2o2o| 一进一出抽搐动态| 亚洲avbb在线观看| 亚洲午夜理论影院| 女性被躁到高潮视频| 亚洲精品在线美女| 中文字幕人成人乱码亚洲影| 精品国产美女av久久久久小说| 一区二区日韩欧美中文字幕| 免费高清在线观看日韩| 69av精品久久久久久| 大型av网站在线播放| 国产欧美日韩综合在线一区二区| 老司机福利观看| 国产激情久久老熟女| 日韩欧美在线二视频| 免费在线观看日本一区| 手机成人av网站| 中文亚洲av片在线观看爽| 日韩欧美一区视频在线观看| 美女高潮喷水抽搐中文字幕| 成在线人永久免费视频| 精品一区二区三区四区五区乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一青青草原| 日韩av在线大香蕉| 在线观看免费午夜福利视频| 成人亚洲精品av一区二区| 两人在一起打扑克的视频| 国产亚洲欧美精品永久| 国产成人av激情在线播放| 在线观看舔阴道视频| 又紧又爽又黄一区二区| 亚洲少妇的诱惑av| avwww免费| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 黄频高清免费视频| a级毛片在线看网站| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 国内精品久久久久精免费| 成人永久免费在线观看视频| 亚洲精品在线美女| 亚洲美女黄片视频| 成人免费观看视频高清| 99国产精品免费福利视频| 中文字幕人妻熟女乱码| 熟妇人妻久久中文字幕3abv| 国产精品亚洲一级av第二区| 黄片小视频在线播放| 久久精品国产亚洲av高清一级| 精品国产一区二区久久| 在线观看舔阴道视频| 亚洲专区中文字幕在线| 欧美日本中文国产一区发布| 香蕉国产在线看| 大码成人一级视频| 熟妇人妻久久中文字幕3abv| 村上凉子中文字幕在线| or卡值多少钱| 人人妻人人澡人人看| 日韩大尺度精品在线看网址 | 啦啦啦 在线观看视频| 在线观看免费午夜福利视频| 久久热在线av| 日韩精品中文字幕看吧| 久久国产乱子伦精品免费另类| 丰满的人妻完整版| а√天堂www在线а√下载| 一进一出抽搐动态| 欧美最黄视频在线播放免费| 精品卡一卡二卡四卡免费| 色哟哟哟哟哟哟| 国产男靠女视频免费网站| 香蕉丝袜av| 97超级碰碰碰精品色视频在线观看| 法律面前人人平等表现在哪些方面| 色婷婷久久久亚洲欧美| 国产野战对白在线观看| 亚洲黑人精品在线| 首页视频小说图片口味搜索| 国产激情欧美一区二区| 亚洲精品在线美女| 18禁国产床啪视频网站| 午夜福利在线观看吧| 亚洲精品国产色婷婷电影| 亚洲欧美精品综合一区二区三区| 国产又爽黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲第一欧美日韩一区二区三区| 国产免费男女视频| 最好的美女福利视频网| 久久久久九九精品影院| 午夜日韩欧美国产| 欧美在线黄色| 久久久久久久午夜电影| 国产三级黄色录像| 久久久久久久午夜电影| 亚洲欧美激情综合另类| 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| 免费高清视频大片| av在线天堂中文字幕| 久久久国产成人精品二区| 99久久99久久久精品蜜桃| 妹子高潮喷水视频| 国产91精品成人一区二区三区| 一级,二级,三级黄色视频| 亚洲国产精品久久男人天堂| 国产乱人伦免费视频| 日本 av在线| 亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 黑人操中国人逼视频| 亚洲国产欧美日韩在线播放| 黄片小视频在线播放| 亚洲成av人片免费观看| 精品第一国产精品| 国产精品亚洲一级av第二区| 日韩成人在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 日本 欧美在线| 欧美一级毛片孕妇| 国产伦一二天堂av在线观看| 自线自在国产av| 日韩av在线大香蕉| 中文字幕av电影在线播放| 精品久久久久久,| 亚洲狠狠婷婷综合久久图片| 久久久国产成人精品二区| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| 女性生殖器流出的白浆| 少妇的丰满在线观看| 日韩精品中文字幕看吧| 午夜福利,免费看| 无人区码免费观看不卡| 啦啦啦韩国在线观看视频| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 欧美乱妇无乱码| 夜夜躁狠狠躁天天躁| 嫩草影视91久久| 一个人免费在线观看的高清视频| 精品无人区乱码1区二区| 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品久久久久5区| 中文字幕色久视频| 国产精品一区二区精品视频观看| 成人亚洲精品一区在线观看| 好男人在线观看高清免费视频 | 国产97色在线日韩免费| √禁漫天堂资源中文www| 一二三四在线观看免费中文在| 黄色视频,在线免费观看| 人妻丰满熟妇av一区二区三区| 97碰自拍视频| 99riav亚洲国产免费| 看黄色毛片网站| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 亚洲欧美日韩另类电影网站| 美女高潮到喷水免费观看| 色综合欧美亚洲国产小说| 亚洲成人免费电影在线观看| 黄频高清免费视频| 亚洲精品国产色婷婷电影| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看 | 91精品三级在线观看| 欧美成人免费av一区二区三区| 999精品在线视频| videosex国产| 最新美女视频免费是黄的| 久久久久亚洲av毛片大全| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 欧美午夜高清在线| 欧美人与性动交α欧美精品济南到| 窝窝影院91人妻| 国产精品影院久久| 51午夜福利影视在线观看| 中文字幕最新亚洲高清| 国产精品久久久久久亚洲av鲁大| 亚洲一码二码三码区别大吗| 国产精品久久电影中文字幕| 在线观看免费视频日本深夜| 久久中文看片网| av福利片在线| 又黄又爽又免费观看的视频| 午夜福利一区二区在线看| 中亚洲国语对白在线视频| 亚洲国产精品久久男人天堂| 老熟妇乱子伦视频在线观看| 亚洲久久久国产精品| 黄色片一级片一级黄色片| 国产激情欧美一区二区| 久热爱精品视频在线9| 色综合亚洲欧美另类图片| 一区二区三区精品91| 最新美女视频免费是黄的| 亚洲专区中文字幕在线| 国产一区二区激情短视频| 久久精品国产99精品国产亚洲性色 | 亚洲avbb在线观看| 精品少妇一区二区三区视频日本电影| 亚洲男人天堂网一区| 桃色一区二区三区在线观看| 在线观看66精品国产| 国产午夜精品久久久久久| 国产麻豆69| 久久久久国产精品人妻aⅴ院| 日本 av在线| 两个人视频免费观看高清| 老司机午夜福利在线观看视频| 亚洲专区国产一区二区| 99国产精品免费福利视频| 国产极品粉嫩免费观看在线| 欧美绝顶高潮抽搐喷水| 人人妻人人爽人人添夜夜欢视频| x7x7x7水蜜桃| 看黄色毛片网站| 高清黄色对白视频在线免费看| 久久精品影院6| 久久久精品国产亚洲av高清涩受| 成年版毛片免费区| 一夜夜www| 国产亚洲精品综合一区在线观看 | 在线观看免费日韩欧美大片| 91在线观看av| 丰满的人妻完整版| 欧美中文日本在线观看视频| 成人国产一区最新在线观看| a级毛片在线看网站| 国产精品野战在线观看| 国产主播在线观看一区二区| bbb黄色大片| 日本黄色视频三级网站网址| cao死你这个sao货| 啦啦啦观看免费观看视频高清 | 女人被狂操c到高潮| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 国产男靠女视频免费网站| 久久性视频一级片| 侵犯人妻中文字幕一二三四区| 亚洲男人天堂网一区| 97超级碰碰碰精品色视频在线观看| 美女国产高潮福利片在线看| 深夜精品福利| 两人在一起打扑克的视频| 悠悠久久av| 国产精品 国内视频| 国产免费男女视频| 美女高潮到喷水免费观看| 我的亚洲天堂| 国产精品香港三级国产av潘金莲| 欧美乱妇无乱码| 欧美 亚洲 国产 日韩一| 一二三四社区在线视频社区8| 欧美丝袜亚洲另类 | 成人亚洲精品av一区二区| 999久久久国产精品视频| 69av精品久久久久久| 91老司机精品| 丁香欧美五月| 久久午夜亚洲精品久久| 一边摸一边抽搐一进一出视频| 成在线人永久免费视频| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 男人操女人黄网站| 国产乱人伦免费视频| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 国产一区在线观看成人免费| 女警被强在线播放| 久久久久久免费高清国产稀缺| 桃红色精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 午夜福利免费观看在线| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久,| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一出视频| 亚洲精品粉嫩美女一区| 国产精品永久免费网站| 日韩精品青青久久久久久| 男人的好看免费观看在线视频 | 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 日韩大尺度精品在线看网址 | av天堂久久9| 日本欧美视频一区| 国产区一区二久久| 91成人精品电影| 日本vs欧美在线观看视频| 激情视频va一区二区三区| 1024视频免费在线观看| 亚洲专区国产一区二区| 亚洲一码二码三码区别大吗| 黑人操中国人逼视频| 91成年电影在线观看| 日日摸夜夜添夜夜添小说| 少妇被粗大的猛进出69影院| 操美女的视频在线观看| 欧美日韩黄片免| 电影成人av| 精品国产国语对白av| 99精品欧美一区二区三区四区| 精品午夜福利视频在线观看一区| 纯流量卡能插随身wifi吗| 成年人黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看 | 97碰自拍视频| 国产熟女午夜一区二区三区| 一区二区三区激情视频| av网站免费在线观看视频| 亚洲一区二区三区不卡视频| 亚洲精品美女久久av网站| 黄片播放在线免费| 国产私拍福利视频在线观看| 美女扒开内裤让男人捅视频| 亚洲全国av大片| tocl精华| 亚洲国产高清在线一区二区三 | 97碰自拍视频| 操出白浆在线播放| 日本五十路高清| 国产97色在线日韩免费| 国产精品综合久久久久久久免费 | 两个人看的免费小视频| 99国产精品免费福利视频| 窝窝影院91人妻| 亚洲精品美女久久久久99蜜臀| 日韩欧美国产在线观看| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 国产精品,欧美在线| 校园春色视频在线观看| 国产亚洲精品第一综合不卡| 在线观看日韩欧美| 亚洲精品在线美女| 性色av乱码一区二区三区2| 欧美激情久久久久久爽电影 | 欧美最黄视频在线播放免费| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久免费视频| 久久婷婷人人爽人人干人人爱 | 精品人妻在线不人妻| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 老司机午夜福利在线观看视频| 在线观看免费视频网站a站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女黄片视频| 伊人久久大香线蕉亚洲五| a在线观看视频网站| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 日本免费一区二区三区高清不卡 | 久久精品91蜜桃| 一本久久中文字幕| 欧美成人午夜精品| 男人的好看免费观看在线视频 | 中亚洲国语对白在线视频| 欧美精品亚洲一区二区| 中亚洲国语对白在线视频| 精品国产亚洲在线| 免费在线观看黄色视频的| 成人av一区二区三区在线看| 热99re8久久精品国产| 亚洲第一av免费看| 国产成人啪精品午夜网站| 午夜a级毛片| 亚洲欧洲精品一区二区精品久久久| 99精品欧美一区二区三区四区| 黄色a级毛片大全视频| 免费高清视频大片| 日日爽夜夜爽网站| 大陆偷拍与自拍| 黄色成人免费大全| 久9热在线精品视频| 男人舔女人的私密视频| 欧美人与性动交α欧美精品济南到| 免费在线观看影片大全网站| 69精品国产乱码久久久| 天天躁夜夜躁狠狠躁躁| 精品一区二区三区四区五区乱码| 人人妻人人澡欧美一区二区 | 国产成人欧美| 99久久国产精品久久久| 国产又爽黄色视频| 淫妇啪啪啪对白视频| 美女高潮到喷水免费观看| 午夜日韩欧美国产| 久久中文字幕人妻熟女| 久久青草综合色| 国产精品日韩av在线免费观看 | 欧美午夜高清在线| 国产人伦9x9x在线观看| 色综合站精品国产| 女性被躁到高潮视频| 禁无遮挡网站| 色在线成人网| 最新美女视频免费是黄的| 一个人免费在线观看的高清视频|