• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the dependence of the two-dimensional Ikeda model on the parameter

    2016-11-23 01:12:51LIQingZHENGQinbndZHOUShiZheng
    關(guān)鍵詞:性態(tài)參數(shù)值控制參數(shù)

    LI Qing, ZHENG Qin,bnd ZHOU Shi-Zheng

    aCollege of Science, PLA University of Science and Technology, Nanjing 211101, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Study on the dependence of the two-dimensional Ikeda model on the parameter

    LI Qianga, ZHENG Qina,band ZHOU Shi-Zhenga

    aCollege of Science, PLA University of Science and Technology, Nanjing 211101, China;bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Based on the property of solutions of the nonlinear differential equation, this paper focuses on the behavior of solutions to the two-dimensional Ikeda model, especially the dependence of the solutions on the parameter. The dependency relationship of the two-dimensional Ikeda model on the parameter is revealed by a large sample of proper numerical simulations. With the parameter varying from 0 to 1, the numerical solutions change from a point attractor to periodic solutions, then to chaos, and end up with a limit cycle. Furthermore, the route from bifurcation to chaos is shown to be continuous period-doubling bifurcations. The nonlinear structures presented by the solution of the two-dimensional Ikeda model indicate that, by setting different model parameters, one can test a new method that will be adopted to study atmospheric or oceanic predictability and/or stability. The corresponding test results provide some useful information on the ability of the new approach overcoming the impacts of strong nonlinearity.

    ARTICLE HISTORY

    Ikeda model; attractor;chaos; bifurcation

    中文題名:探究二維Ikeda模式解對參數(shù)的依賴

    研究目的:探索二維Ikeda模式數(shù)值解的性態(tài)及解對模式參數(shù)的依賴

    創(chuàng)新要點(diǎn):首次對二維Ikeda模式解的性態(tài)進(jìn)行全面細(xì)致的探究;結(jié)合非線性方程相關(guān)理論和數(shù)值試驗(yàn)結(jié)果給出解的分析;探究了各個(gè)分岔點(diǎn)大致的分岔值。

    研究方法:數(shù)值試驗(yàn)與理論分析相結(jié)合

    重要結(jié)論:二維Ikeda模式對于控制參數(shù)具有高度依賴性;參數(shù)值從0到1的變化過程中,模式經(jīng)歷了從單點(diǎn)吸引子、多點(diǎn)吸引子、產(chǎn)生混沌直至出現(xiàn)極限環(huán)的變化;模式通過倍周期分岔的方式從分岔到混沌,且分岔過程是連續(xù)的。

    Introduction

    To forecast a weather phenomenon or an ocean event, due to the effect of nonlinearity, the predictability of the phenomenon or event should be the first concern. A natural idea is to study practical dynamic models directly. However,considering the complexity of practical models, including high dimensionality and the complex interactions of the practical situation, this paper utilizes a simple idealized model, which can depict some important dynamic processes of the practical model, such as the nonlinear process to investigate the theory of, and methods for, predictability issues, and then apply the result to research on practical forecasting models (Mu and Duan 2003).

    Actually, the Lorenz model has been used as an idealized model in forecast research, not only for its simplicity and strong nonlinearity, but also for its comprehensive analysis of the property and stability of the solution. Some results from predictability studies based on the Lorenz model have been applied to help predict practical situations (Ding and Li 2012; Zheng et al. 2012).

    The Ikeda model was originally proposed by Kensuke Ikeda as a model of light going across a nonlinear optical resonator (ring cavity containing a nonlinear dielectric medium), and the two-dimensional Ikeda difference scheme is its most common form. As a nonlinear dynamic system model, the Ikeda model is less popular compared with the Lorenz model, despite being stronger.

    Owing to the interactions of nonlinearity, characters including attractors, saddle points, and chaos usually appear in different regions of nonlinear dynamic systems. An attractor, which exists in the phase plane, is an important concept in dynamics, used to describe the convergent features of movement. In short, an attractor is a set to which every point or orbit nearby converges (Xi and Xi 2007). An attractor can be in different forms, such as a fixed point, a limit cycle, an integer-dimension torus, and a singular one. A saddle point is a singular point that is stable along a certain direction, but unstable along another (Fu and Fan 2011). The chaotic phenomenon, referring to a certain but unpredictable movement, is currently a keyissue in nonlinear dynamics. It shows randomness, but is definitely a stochastic-like process from a deterministic system (Niu 2007). Chaos is commonly bifurcated by the fixed point, such as period-doubling bifurcation, fits-bifurcation,hysteresis, and elusive saltation and bifurcation controlled by double parameters. It is chaos that allowed Lorenz to propose the predictability issue for atmospheric motion.

    Stemler and Judd (2009) applied the shadowing filter method to state estimation, preliminary data assimilation,and predictability research in the two-dimensional Ikeda model. In their numerical experiment, the parameter of the Ikeda model was set to a fixed value, and relevant analysis only focused on limited initial values. The result of the numerical experiment in Stemler and Judd (2009) indicates that the system develops to chaos just right with the parameter they selected, so the applicability of their method for other situations needs further exploration. Chen, Chen, and Ma(1990) analyzed the Ikeda instability of optical bistability and derived the Ikeda equation in another way, revealing the physical origin of the instability of optical bistability. However, they focused only on the physical origin of the Ikeda model, without further discussion of the solution of the model. Xie and Zhang (2007) investigated the adaptive synchronization of the Ikeda system and demonstrated the effectiveness of this method, without analyzing the Ikeda model. Chui et al. (2004) used Ikeda time series with variable parameters to verify the effectiveness of the support vector machine model they established in their article and noticed that the solutions of the two-dimensional Ikeda model change with the variation of the parameter. However, their aim was to predict with the model instead of discussing the dependence of the model on the parameter.

    Many scholars have worked on the two-dimensional Ikeda model since it was proposed (Chen, Chen, and Ma 1990; Chui et al. 2004; Liu 2009; Stemler and Judd 2009; Xie and Zhang 2007), but in most cases they used the model to study the issue of concern, without comprehensive and detailed discussion about the behavior of the model solution. Usually, one only uses the Ikeda model with a specific model parameter and initial condition to test the effectiveness of a new method in terms of the estimation of the model state, predictability and data assimilation(Chui et al. 2004; Stemler and Judd 2009; Xie and Zhang 2007). The present study attempts to comprehensively investigate the behavior of the Ikeda model solution by using the theory of nonlinear dynamic systems.

    The two-dimensional Ikeda model has stronger nonlinearity than the Lorenz model. Therefore, it can be an alternative to the Lorenz model when testing the ability of a new approach for overcoming the impacts of strong nonlinearity. In order to use this model more effectively,it is necessary to know the characteristics of the nonlinear interactions, such as attractors, saddle points, and the chaos demonstrated by the model solution. This is the objective of the present study. Based on the behavior and stability of the nonlinear differential equation solutions,this study aims to investigate the two-dimensional Ikeda model solution's behavior, and reveal the dependency of the solution on the model parameter by numerical experiments.

    The two-dimensional Ikeda model

    The Ikeda model is a series of delay differential equations,proposed by Kensuke Ikeda when he explored the nonlinear dielectric medium. Deduced through the Maxwell-Bloch equations (Ikeda 1979), it can be simplified as difference equations, as shown below:

    Here, i is the imaginary unit; t represents the time step; z stands for the electric field inside the ring cavity; and A, B,C are physical parameters. A is related to the intensity of the incident light and indicates laser light applied from the outside; B is called the dissipation parameter, characterizing the dissipation of the electric field; and C indicates the laser light applied from the outside. A two-dimensional case of Equation(1) is the common two-dimensional Ikeda model:

    In Equation (2), the value range of the parameter μ is[0, 1], and

    The values of a and b are usually 0.4 and 6, respectively. From the expression of the model we find that the trigonometric functions appear in Equation (2), and Equation(3) is a fraction whose denominator includes two quadratic components. Clearly, the two-dimensional Ikeda model has fairly strong nonlinearity, which means the solutions of the model will experience a fair amount of movement with the variation of the parameter.

    Behavior of the solutions and the dependence on the parameters of the model

    For the two-dimensional Ikeda model, Equation (2), it seems it is difficult to obtain the corresponding analytical solutions directly. Therefore, through a large sample of numerical experiments, this paper attempts to achieve a comprehensive and more accurate understanding of thebehavior of its solutions, to reveal the dependence of the model on the parameter.

    Figure 1.Solutions of the last 5000 steps when the model parameter μ = 0.402 and 0.403.

    Figure 2.Solutions of the last 5000 steps when μ = 0.500, 0.600, and 0.640.

    Figure 3.Solutions of the last 5000 steps when μ = 0.643, 0.644, and 0.650.

    Figure 4.Solutions of the last 5000 steps when μ = 0.902 and 1.000.

    Figure 5.Elusive saltation in a chaotic situation (solutions of the last 5000 steps are shown here when μ = 0.803, 0.806, 0.850, and 0.854t).

    To explore the influence of different parameter values on the behavior of the model solutions, the internal [0, 1] is equally divided into 1000 segments and the value of every 1/1000 equant point is assigned to the model parameter μ. The initial value chosen in this paper is (x0, y0) = (0.25, -0.325). For every value of the parameter, the model is integrated 10,000 steps along with time. This paper chooses and analyzes several representative situations, the results of which are shown in Figures 1-6. A more comprehensive statistical result of the numerical tests is given in Table 1. Since the observation of attractors may be affected by the irregular trajectory of points before the model reaches a plateau, in this paper the first five figures only show results of the last 5000 steps,when the model becomes stable.

    Figure 6.Behavior of solutions from chaos to a limit cycle (solutions are shown here when μ = 0.903, 0.950, 0.990, and 0.999).

    Table 1.The relationship between solutions and the parameter.

    Figure 1 shows the result of the last 5000 steps when the parameter μ = 0.402 and 0.403. The abscissa and the ordinate represent two components of the state in the model (the same in subsequent figures). The result shows that when the value of μ is set between 0 and 0.402, the model solutions will evolve to one point after a certain period. That is to say, the system has a point attractor on this occasion. The number of the convergence point increases when the value of μ is equal to or greater than 0.403. In Figure 1, when μ varies from 0.402 to 0.403, the system changes from a point attractor to a periodic solution with a cycle of 2. Clearly, a bifurcation exists between 0.402 and 0.403, and the critical value of the parameter,namely the bifurcation value, is between the two values of μ.

    Comparing the three sub-graphs of Figure 2, along with the variation of μ from 0.500 to 0.600 the model experiences a bifurcation from two convergence points to four, which means the cycle of the periodic solution changes from two to four. Analogously, the cycle of the solution turns into eight from four as μ varies from 0.600 to 0.640.

    From Figure 3 it can be clearly seen that the cycle of the solutions changes from eight to sixteen as the value of μ changes from 0.643 to 0.644. When μ continues to increase to 0.650, the system will lose its periodic solution.

    As shown in Figure 4, when μ = 0.900, obvious chaos appears in the system; and when μ = 1.000, the system presents a limit cycle. Results also show that the system gradually develops towards chaos when the value of μ varies from 0.646 to 0.700. As the value of μ varies from 0.700 to 0.902, the system has apparent chaos. Elusive saltationin chaotic cases occurs when the value of μ varies from 0.803 to 0.808, μ = 0.850 and 0.854, as shown in Figure 5.

    Meanwhile, with variation of μ from 0.903 to 0.999, the system presents chaos at first, and then breaks away from chaos until a singular attractor appears in a new region(shown in Figure 6).

    Combining the numerical test results with Figures 1-6,and consulting the theory of the behavior and the stability of the nonlinear differential equation solution, we obtain the relationship between the behavior of the two-dimensional Ikeda model solutions and the model parameter μ,as shown in Table 1.

    Conclusion

    From the numerical experiment described in this paper we find that the solutions of the model change with the variation of the parameter. Moreover, small parametric variation may result in great differences of solutions in certain ranges. The conclusion above reflects the high dependence of the two-dimensional Ikeda model on the parameter. Specifically, when the parameter varies from 0 to 1, the numerical solutions change from a point attractor to periodic solutions, then to chaos, and finally become a limit cycle. According to the bifurcation theory of the behavior and stability of the nonlinear differential equation solutions, we conclude that the varying process of the solutions of the two-dimensional Ikeda model along with the variation of the parameter is actually a course from bifurcation to chaos through continuous period-doubling bifurcations. With the increase of the model parameter μ, the numerical solutions of this model possess a range of nonlinear behavior, which perfectly corresponds to analyses of nonlinear theory. Its nonlinear characteristics presented by the movement from bifurcation to chaos make the model an alternative to the Lorenz model. In view of the results of this study,one can choose a special model parameter to verify the effectiveness of an estimation method for different characteristic solutions of the two-dimensional Ikeda model. Since the Ikeda model has stronger nonlinearity than the Lorenz model, it is more significant to study predictability problems based on the Ikeda model. Also, we can use the Ikeda model to explore the influence of model parameter error on data assimilation according to the critical parameter values obtained in this paper. In addition, both the accuracy of the bifurcation values and the transition of the model from chaos to a limit cycle deserve further research in the future.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant number 41331174].

    References

    Chen, L. X., J. S. Chen, and A. Q. Ma. 1990. “Instability Analysis of Optical Bistability in Ring Cavity and the Physical Origin of the Ikeda Instability.” Journal of Natural Science of Heilongjiang University 7 (4): 59-64.

    Chui, W. Z., C. C. Zhu, W. X. Bao, and J. H. Liu. 2004. “Prediction of the Chaotic Time Series Using Support Vector Machines.” Acta Physica Sinica 53 (10): 3303-3310.

    Ding, R. Q., and J. P. Li. 2012. “Relationships between the Limit of Predictability and Initial Error in the Uncoupled and Coupled Lorenz Models.” EGU General Assembly 2013 29 (5): 1078-1088. Fu, X. L., and J. J. Fan. 2011. Nonlinear Differential Equation. Beijing: Science Press.

    Ikeda, K. 1979. “Multiple-valued Stationary State and Its Instability of the Transmitted Light by a Ring Cavity System.”O(jiān)ptics Communications 30 (2): 257-261.

    Liu, Z. Z. 2009. “Non-resnonant Double Hopf Bifurcation in an Ikeda Model and a Van Der Pol-Duffing Oseillator with Time Delay.” M.S.'s thesis, Zhengzhou University.

    Mu, M., and W. S. Duan. 2003. “A New Approach to Studying ENSO Predictability: Conditional Nonlinear Optimal Perturbation.”Chinese Science Bulletin 48 (10): 1045-1047.

    Niu, H. 2007. “Stability Analysis of Nonlinear Differential Equations.” M.S.'s thesis, Liaoning University of Technology.

    Stemler, T., and K. Judd. 2009. “A Guide to Using Shadowing Filters for Forecasting and State Estimation.” Physica D: Nonlinear Phenomena 238 (14): 1260-1273.

    Xi, D. X., and Q. Xi. 2007. Nonlinear Physics. Nanjing: Nanjing University Press.

    Xie, Y. H., and H. G. Zhang. 2007. “Adaptive Synchronization for a Class of Delayed Ikeda Chaotic Systems.” Journal of Northeastern University (Natural Science) 28 (4): 481-484.

    Zheng, Q., Y. Dai, L. Zhang, J. X. Sha, and X. Q. Lu. 2012. “On the Application of Genetic Algorithm to the Predictability Problems Involving “on-off” Switches.” Advances in Atmospheric Sciences 29 (2): 422-434.

    Ikeda模式; 吸引子; 混沌; 分岔

    9 April 2015 Accepted 6 July 2015

    CONTACT ZHENG Qin qinzheng@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    性態(tài)參數(shù)值控制參數(shù)
    高超聲速飛行器滑??刂茀?shù)整定方法設(shè)計(jì)*
    飛控與探測(2022年6期)2022-03-20 02:16:14
    例談不等式解法常見的逆用
    帶有阻尼項(xiàng)的Boussinesq方程解的大時(shí)間性態(tài)
    淺議初等函數(shù)的性態(tài)
    不等式(組)參數(shù)取值范圍典例解析
    帶inflow邊界條件的Landau方程解的性態(tài)研究
    Birkhoff系統(tǒng)穩(wěn)定性的動力學(xué)控制1)
    2020 Roadmap on gas-involved photo- and electro- catalysis
    一類共位群內(nèi)捕食模型的復(fù)雜動力學(xué)性態(tài)
    逆向思維求三角函數(shù)中的參數(shù)值
    亚洲午夜理论影院| 免费一级毛片在线播放高清视频 | 精品人妻1区二区| 麻豆久久精品国产亚洲av| 亚洲精品中文字幕在线视频| 一a级毛片在线观看| 亚洲av日韩精品久久久久久密| 18禁裸乳无遮挡免费网站照片 | www.精华液| 好看av亚洲va欧美ⅴa在| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩精品亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人澡人人看| 人人澡人人妻人| 一本综合久久免费| 精品久久久久久,| 啦啦啦 在线观看视频| 高清毛片免费观看视频网站| 日韩欧美国产在线观看| 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 免费观看人在逋| 操出白浆在线播放| 99久久99久久久精品蜜桃| 黄色 视频免费看| 亚洲视频免费观看视频| 中国美女看黄片| 久久精品国产99精品国产亚洲性色 | 激情在线观看视频在线高清| 涩涩av久久男人的天堂| 国产精品自产拍在线观看55亚洲| 美女 人体艺术 gogo| 久久久久久久久免费视频了| 中文亚洲av片在线观看爽| 在线观看免费视频网站a站| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器 | 国产三级在线视频| 国产伦人伦偷精品视频| 成熟少妇高潮喷水视频| 国产免费男女视频| 成人三级黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 久久香蕉国产精品| 欧美老熟妇乱子伦牲交| 一个人免费在线观看的高清视频| 国产精品秋霞免费鲁丝片| 黄色a级毛片大全视频| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 亚洲九九香蕉| 国内精品久久久久久久电影| 99久久综合精品五月天人人| 欧美中文综合在线视频| 日日爽夜夜爽网站| 欧美绝顶高潮抽搐喷水| 精品不卡国产一区二区三区| 亚洲一区二区三区色噜噜| 久久国产精品男人的天堂亚洲| 91麻豆精品激情在线观看国产| or卡值多少钱| 亚洲一码二码三码区别大吗| 欧美成人一区二区免费高清观看 | 久久久久久久精品吃奶| 精品欧美国产一区二区三| 日本撒尿小便嘘嘘汇集6| 级片在线观看| 男男h啪啪无遮挡| 一边摸一边抽搐一进一出视频| 黄色成人免费大全| 亚洲全国av大片| 亚洲第一av免费看| 一二三四社区在线视频社区8| 叶爱在线成人免费视频播放| www.www免费av| 精品国产一区二区久久| 亚洲天堂国产精品一区在线| 亚洲人成网站在线播放欧美日韩| 久久精品aⅴ一区二区三区四区| 免费人成视频x8x8入口观看| 亚洲欧美激情综合另类| 亚洲国产精品合色在线| 国产主播在线观看一区二区| 69av精品久久久久久| 色av中文字幕| 久久香蕉精品热| 丰满的人妻完整版| 18禁裸乳无遮挡免费网站照片 | 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av在线| 露出奶头的视频| 非洲黑人性xxxx精品又粗又长| 国产精品野战在线观看| 91成人精品电影| 男女之事视频高清在线观看| 欧美丝袜亚洲另类 | 国产精品 国内视频| e午夜精品久久久久久久| 男男h啪啪无遮挡| 韩国精品一区二区三区| 男女之事视频高清在线观看| 成熟少妇高潮喷水视频| 97人妻天天添夜夜摸| 久久狼人影院| 在线观看午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 一级a爱视频在线免费观看| 一区福利在线观看| www.www免费av| 亚洲天堂国产精品一区在线| 黄色 视频免费看| 99国产精品免费福利视频| 欧美成狂野欧美在线观看| 人人澡人人妻人| 免费在线观看影片大全网站| 免费高清在线观看日韩| 午夜久久久在线观看| 精品不卡国产一区二区三区| avwww免费| 精品人妻1区二区| 少妇的丰满在线观看| 精品久久蜜臀av无| 一区在线观看完整版| 18禁黄网站禁片午夜丰满| 久久香蕉激情| 日韩大码丰满熟妇| 狠狠狠狠99中文字幕| 亚洲狠狠婷婷综合久久图片| 高清黄色对白视频在线免费看| av福利片在线| 色尼玛亚洲综合影院| 久久精品亚洲精品国产色婷小说| 国产成人欧美| 两个人免费观看高清视频| 国产av精品麻豆| 久久午夜亚洲精品久久| 亚洲av电影不卡..在线观看| 黄色毛片三级朝国网站| 午夜两性在线视频| 久久国产乱子伦精品免费另类| 国产精品九九99| 一个人观看的视频www高清免费观看 | 99久久99久久久精品蜜桃| av免费在线观看网站| 日韩欧美国产一区二区入口| 欧美激情 高清一区二区三区| 黄频高清免费视频| 国产精品美女特级片免费视频播放器 | 免费久久久久久久精品成人欧美视频| 亚洲av片天天在线观看| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 男女之事视频高清在线观看| 国产成人一区二区三区免费视频网站| 脱女人内裤的视频| 在线观看免费视频日本深夜| 国产成人系列免费观看| 国产一区二区三区在线臀色熟女| 欧美人与性动交α欧美精品济南到| 中文字幕久久专区| 美女国产高潮福利片在线看| 少妇粗大呻吟视频| 免费看美女性在线毛片视频| 精品第一国产精品| 无遮挡黄片免费观看| 男女下面插进去视频免费观看| 91大片在线观看| 免费在线观看影片大全网站| 久久精品国产亚洲av高清一级| 亚洲国产中文字幕在线视频| 老司机靠b影院| 露出奶头的视频| 大码成人一级视频| 亚洲一区二区三区色噜噜| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 国产精品亚洲美女久久久| 日韩 欧美 亚洲 中文字幕| 久久精品成人免费网站| 久久久久久久久中文| 国产成人系列免费观看| 久久午夜亚洲精品久久| 国产熟女xx| 国产不卡一卡二| 久久精品91无色码中文字幕| 91老司机精品| 一级a爱片免费观看的视频| 久久久久久久久久久久大奶| 一级毛片高清免费大全| 国产蜜桃级精品一区二区三区| 制服诱惑二区| 欧美性长视频在线观看| 国产精品一区二区三区四区久久 | 99香蕉大伊视频| 91在线观看av| 1024香蕉在线观看| 女人被狂操c到高潮| 国产精品98久久久久久宅男小说| 在线天堂中文资源库| 欧美丝袜亚洲另类 | 日韩有码中文字幕| 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 露出奶头的视频| 99久久精品国产亚洲精品| 老熟妇乱子伦视频在线观看| 国产成年人精品一区二区| 国产精品秋霞免费鲁丝片| 又黄又爽又免费观看的视频| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| 999久久久精品免费观看国产| 亚洲av电影在线进入| 精品日产1卡2卡| 日本黄色视频三级网站网址| 国产亚洲精品久久久久5区| 正在播放国产对白刺激| 日韩成人在线观看一区二区三区| 一个人观看的视频www高清免费观看 | 999精品在线视频| 黑丝袜美女国产一区| 国产精品久久电影中文字幕| 欧美+亚洲+日韩+国产| 色播亚洲综合网| 人妻丰满熟妇av一区二区三区| 欧美日本亚洲视频在线播放| cao死你这个sao货| 久久青草综合色| 久久久国产欧美日韩av| 国产亚洲av嫩草精品影院| 精品卡一卡二卡四卡免费| 啦啦啦免费观看视频1| 欧美乱妇无乱码| 黑人操中国人逼视频| 日韩 欧美 亚洲 中文字幕| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 嫩草影视91久久| 99国产精品一区二区蜜桃av| 欧美最黄视频在线播放免费| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 国产精品1区2区在线观看.| 国产亚洲欧美在线一区二区| 午夜成年电影在线免费观看| 老司机靠b影院| cao死你这个sao货| 久久精品国产综合久久久| 久久亚洲精品不卡| 日本vs欧美在线观看视频| 精品不卡国产一区二区三区| 高清黄色对白视频在线免费看| 最新美女视频免费是黄的| 99国产极品粉嫩在线观看| 久久久久国内视频| 国产aⅴ精品一区二区三区波| 欧美精品亚洲一区二区| 成人三级黄色视频| 亚洲熟妇中文字幕五十中出| 两个人视频免费观看高清| 老司机午夜福利在线观看视频| 色播在线永久视频| 国产精品综合久久久久久久免费 | 一区二区三区精品91| 色尼玛亚洲综合影院| 一边摸一边做爽爽视频免费| 久久天堂一区二区三区四区| 一区二区三区精品91| 50天的宝宝边吃奶边哭怎么回事| 精品一区二区三区视频在线观看免费| 天堂√8在线中文| 三级毛片av免费| 国产亚洲精品一区二区www| 久久国产精品男人的天堂亚洲| 中亚洲国语对白在线视频| 精品卡一卡二卡四卡免费| 在线免费观看的www视频| www国产在线视频色| 12—13女人毛片做爰片一| a级毛片在线看网站| 久久精品国产综合久久久| 国产91精品成人一区二区三区| 国产亚洲欧美98| 亚洲成人久久性| 一级,二级,三级黄色视频| 9191精品国产免费久久| 亚洲男人天堂网一区| 亚洲欧美精品综合久久99| 男人舔女人的私密视频| 波多野结衣一区麻豆| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 看免费av毛片| 亚洲av美国av| 天堂影院成人在线观看| 国产一区在线观看成人免费| 性欧美人与动物交配| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 女性被躁到高潮视频| 久久精品人人爽人人爽视色| 日韩av在线大香蕉| 99国产精品一区二区三区| 成人亚洲精品一区在线观看| 精品久久久久久久人妻蜜臀av | 女人被狂操c到高潮| 91字幕亚洲| 在线观看免费日韩欧美大片| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 99国产精品99久久久久| 19禁男女啪啪无遮挡网站| 正在播放国产对白刺激| 久久精品国产亚洲av香蕉五月| 97超级碰碰碰精品色视频在线观看| 999精品在线视频| 中国美女看黄片| 欧美性长视频在线观看| 制服丝袜大香蕉在线| 一区二区三区国产精品乱码| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 国产高清激情床上av| 成人国语在线视频| 午夜影院日韩av| 午夜精品久久久久久毛片777| 一边摸一边做爽爽视频免费| 久久精品成人免费网站| av免费在线观看网站| 搡老妇女老女人老熟妇| 国产免费男女视频| 制服丝袜大香蕉在线| 午夜日韩欧美国产| videosex国产| 久久国产亚洲av麻豆专区| 亚洲第一青青草原| 国产片内射在线| 亚洲国产看品久久| 精品日产1卡2卡| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 久久人人97超碰香蕉20202| 欧美成狂野欧美在线观看| 变态另类成人亚洲欧美熟女 | 色哟哟哟哟哟哟| 中国美女看黄片| 亚洲av五月六月丁香网| 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 午夜福利免费观看在线| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 欧美另类亚洲清纯唯美| 涩涩av久久男人的天堂| 欧美日韩一级在线毛片| 国产亚洲av高清不卡| 极品教师在线免费播放| 国产精品久久电影中文字幕| 久久婷婷成人综合色麻豆| 国产成人精品在线电影| 两个人看的免费小视频| 巨乳人妻的诱惑在线观看| 精品国产一区二区久久| 亚洲午夜精品一区,二区,三区| 91麻豆精品激情在线观看国产| 两人在一起打扑克的视频| 亚洲精品一卡2卡三卡4卡5卡| 变态另类丝袜制服| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 久久久久久久精品吃奶| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 久久久精品欧美日韩精品| 高清在线国产一区| 91成人精品电影| 后天国语完整版免费观看| 99国产精品一区二区三区| 亚洲精品粉嫩美女一区| 亚洲第一电影网av| 亚洲少妇的诱惑av| 国产精华一区二区三区| 又黄又爽又免费观看的视频| 午夜福利免费观看在线| 精品第一国产精品| 一a级毛片在线观看| 免费在线观看亚洲国产| 悠悠久久av| 这个男人来自地球电影免费观看| 欧美乱色亚洲激情| 久久香蕉国产精品| 欧美大码av| av欧美777| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产毛片av蜜桃av| 非洲黑人性xxxx精品又粗又长| 精品国产亚洲在线| 久久久国产成人免费| 日本免费一区二区三区高清不卡 | 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| 国产xxxxx性猛交| 成人三级做爰电影| 午夜免费观看网址| 啦啦啦韩国在线观看视频| 国产精品九九99| 亚洲av成人一区二区三| 久久人妻熟女aⅴ| 不卡av一区二区三区| 最近最新中文字幕大全免费视频| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色 | 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 亚洲熟妇熟女久久| netflix在线观看网站| 午夜福利免费观看在线| 91老司机精品| 亚洲av电影在线进入| 热re99久久国产66热| 国产av精品麻豆| 天天一区二区日本电影三级 | 日韩中文字幕欧美一区二区| 欧美人与性动交α欧美精品济南到| 久久久国产成人精品二区| 亚洲伊人色综图| 国产成人一区二区三区免费视频网站| 国产成人系列免费观看| 国产av一区在线观看免费| 男女床上黄色一级片免费看| 色综合欧美亚洲国产小说| 美女大奶头视频| 免费在线观看亚洲国产| 人人妻人人澡欧美一区二区 | 国产免费男女视频| 人人妻人人澡欧美一区二区 | 黑人巨大精品欧美一区二区蜜桃| 欧美中文日本在线观看视频| 日韩 欧美 亚洲 中文字幕| 中文字幕色久视频| 丰满的人妻完整版| 久久人人爽av亚洲精品天堂| 久热这里只有精品99| 国产精品一区二区免费欧美| 国产真人三级小视频在线观看| 在线播放国产精品三级| 亚洲一区二区三区色噜噜| 一区二区三区精品91| 国产欧美日韩一区二区三区在线| 久久久国产成人免费| 人人妻,人人澡人人爽秒播| 日日干狠狠操夜夜爽| 老司机在亚洲福利影院| 男人的好看免费观看在线视频 | 成人手机av| 久久国产亚洲av麻豆专区| 亚洲人成77777在线视频| 国产极品粉嫩免费观看在线| 女人被躁到高潮嗷嗷叫费观| 97人妻天天添夜夜摸| 亚洲九九香蕉| 久久国产亚洲av麻豆专区| 久久中文看片网| 两个人免费观看高清视频| 少妇粗大呻吟视频| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 欧美绝顶高潮抽搐喷水| ponron亚洲| 高清黄色对白视频在线免费看| 在线国产一区二区在线| 欧美午夜高清在线| 国产区一区二久久| 一边摸一边抽搐一进一出视频| 欧美黄色片欧美黄色片| 1024视频免费在线观看| 亚洲avbb在线观看| 亚洲欧美日韩高清在线视频| 韩国精品一区二区三区| 精品欧美国产一区二区三| 亚洲第一欧美日韩一区二区三区| 国产精品综合久久久久久久免费 | 精品电影一区二区在线| 91成年电影在线观看| av福利片在线| 999久久久精品免费观看国产| 久久久水蜜桃国产精品网| 免费看十八禁软件| 两性午夜刺激爽爽歪歪视频在线观看 | 久久香蕉精品热| 亚洲av熟女| www.精华液| 免费少妇av软件| 18禁裸乳无遮挡免费网站照片 | 欧美黄色片欧美黄色片| 好男人在线观看高清免费视频 | 精品国产美女av久久久久小说| 老司机福利观看| 人妻丰满熟妇av一区二区三区| 午夜激情av网站| 亚洲狠狠婷婷综合久久图片| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 两性夫妻黄色片| 久久精品91蜜桃| www.自偷自拍.com| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 真人做人爱边吃奶动态| 午夜久久久久精精品| 黄色a级毛片大全视频| 美女午夜性视频免费| 香蕉丝袜av| 18禁黄网站禁片午夜丰满| 制服人妻中文乱码| 黑人巨大精品欧美一区二区蜜桃| 一个人免费在线观看的高清视频| 在线av久久热| 国产99白浆流出| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看 | 亚洲 欧美一区二区三区| 欧美黄色片欧美黄色片| 在线观看午夜福利视频| 成人亚洲精品av一区二区| 国产男靠女视频免费网站| 99国产精品免费福利视频| 高清在线国产一区| 久久香蕉精品热| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 神马国产精品三级电影在线观看 | 丁香欧美五月| 国产97色在线日韩免费| 日本黄色视频三级网站网址| 性少妇av在线| 精品乱码久久久久久99久播| 久久久国产成人精品二区| 欧美黑人欧美精品刺激| 成人国语在线视频| 亚洲成av片中文字幕在线观看| 国产精品亚洲美女久久久| 69av精品久久久久久| 日本免费一区二区三区高清不卡 | 亚洲一区二区三区色噜噜| 老司机午夜福利在线观看视频| 一级a爱片免费观看的视频| 看免费av毛片| 一进一出好大好爽视频| 亚洲情色 制服丝袜| 天天添夜夜摸| 欧美乱色亚洲激情| 两性夫妻黄色片| 又黄又爽又免费观看的视频| 国产欧美日韩综合在线一区二区| 国产免费av片在线观看野外av| 国产精品久久电影中文字幕| 国产成人精品在线电影| 亚洲欧美激情在线| 亚洲精华国产精华精| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| 一二三四在线观看免费中文在| aaaaa片日本免费| 免费看a级黄色片| 亚洲在线自拍视频| 在线观看免费视频网站a站| 国产1区2区3区精品| 欧美日本亚洲视频在线播放| 少妇的丰满在线观看| 国产欧美日韩精品亚洲av| 免费在线观看日本一区| 欧美成人性av电影在线观看| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 一区二区三区激情视频| av超薄肉色丝袜交足视频| 神马国产精品三级电影在线观看 | 一级a爱视频在线免费观看| 18美女黄网站色大片免费观看| 国产伦一二天堂av在线观看| 男人操女人黄网站| 久久久久久人人人人人| 国产精品久久电影中文字幕| 一个人免费在线观看的高清视频| 亚洲国产日韩欧美精品在线观看 | 国产精品国产高清国产av| 一个人免费在线观看的高清视频| 黑人欧美特级aaaaaa片| av在线天堂中文字幕| 热re99久久国产66热| 久久久久久久精品吃奶| 一级毛片女人18水好多| 最近最新中文字幕大全免费视频| 午夜精品国产一区二区电影| 久久午夜亚洲精品久久| av欧美777| 久久久久精品国产欧美久久久| 中文字幕久久专区| 美女高潮喷水抽搐中文字幕| 国产亚洲精品久久久久5区| 窝窝影院91人妻| 久久中文字幕人妻熟女| 我的亚洲天堂| 精品久久久久久久毛片微露脸| 色尼玛亚洲综合影院| 精品人妻在线不人妻| 国产精品 欧美亚洲| 午夜福利一区二区在线看|