• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ra's Abdah of the north Eastern Desert of Egypt:the roleof granitic dykes in the formation of radioactive mineralization,evidenced by zircon morphology and chemistry

    2016-11-21 02:09:45AliOmranOsamaDessouky
    Acta Geochimica 2016年4期

    Ali A.Omran·Osama K.Dessouky

    Ra's Abdah of the north Eastern Desert of Egypt:the role
    of granitic dykes in the formation of radioactive mineralization,evidenced by zircon morphology and chemistry

    Ali A.Omran1·Osama K.Dessouky1

    Syenogranitic dykes in the north of Egypt’s Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization.Zircon crystal morphology within the syenogranitic dykes allows precise definition of sub-alkaline series granites and crystallized at mean temperature of about 637°C.The growth pattern of the zircons suggest magmatic and hydrothermal origins of radioactive mineralization.Hydrothermal processes are responsible for the formation of significant zircon overgrowth;high U-zircon margins might have occurred contemporaneously with the emplacement of syenogranitic dykes which show anomalous uranium(eU)and thorium(eTh)contents of up to 1386 and 7330 ppm,respectively. Zircon chemistry revealed a relative increase of Hf consistent with decreasing Zr content,suggesting the replacement of Zr by Hf during hydrothermal activity. Visible uranium mineralization is present and recognized by the presence of uranophane and autunite.

    Syenogranitic dykes·Zircon·Morphology· Typology·Uranium·Egypt

    1 Introduction

    The role of felsic intrusions in the formation of post magmatic(hydrothermal)mineral deposit types is unquestionable,and mineralization associated with thesystems are frequently localized and proximal to granitic cupolas and(or)zones with a high density of dykes(Moore 1975;Derre et al.1986;Breiter 2002;Vallance et al.2003;Lentz 2005;?temprok et al.2008;Bineli Betsi and Lentz 2010).

    ? Osama K.Dessouky

    Osamakhairy25@gmail.com

    1Nuclear Materials Authority,P.O.Box 530,El Maadi,Cairo,Egypt

    Zircon,being highly resistant to chemical and physical influences,is a particularly useful mineral for petrological investigations.It is one of the most widely used minerals for understanding the petrogenesis of magmatic,metamorphic,and sedimentary rocks(Corfu et al.2003). Moreover,links between zircon growth and granitoid petrology have been argued in various studies.

    Ra’s Abdah is an example of the important relationship between magmatic intrusions and the localization of radioactive mineralization.The area under investigation was first reported to be radioactive by Omran(2005). Omran(2015)argued the high radioactivity measurements to poly-mineralized microgranite dykes invaded the older granitoid rocks.Here we present new data on the radioactive mineralization restricted to the syenogranitic dykes using zircon morphology,typology,and chemistry studies.

    2 Geologic background and petrographic inferences

    Generally,basement rocks of Egypt underlie the northwestern part of the Arabian-Nubian shield:the eastern limb of the U-shaped Pan-African fold belt that girdles the continent of Africa.The Egyptian sector of the Nubian-Arabian Shield(Eastern Desert of Egypt and Sinai)is essentially formed by metamorphosed oceanic-type basalts and island-arc to calc-alkaline igneous suites intruded by granitic batholiths(Kroner et al.1990;Stein and Goldstein1996).These granites are intruded by basic-acidic dyke swarms,which are related to an extensional tectonic regime developed during the late stages of the Pan-African cycle(Stern et al.1984;Stern and Hedge 1985).

    The studied area is located approximately 20 km southwest of Safaga City on the Red Sea between 26o42′50′and 26°44′28′N and 33°44′51′′and 33°47′59′′E(Fig.1).It consists of Precambrian basement rocks including older granitoids,younger gabbro,younger granites,and mafic and felsic dykes(the subject of the present work).Older granitoids are considered the oldest rock in the area of study,and range in composition from granodiorite to quartz diorite.Younger gabbros crop out at the northwestern part of the study area surrounding Wadi Abu Hadidah.These rocks form moderate-to-low relief hills. Younger gabbro intrudes the older granitoids and is intruded by felsic dykes.Younger granites are mainly represented by small elliptical masses in the western part of the mapped area.

    2.1Dyke phases

    The basement rocks of the study area are traversed by dykes which are emplaced along regional fractures varying in composition from felsic to mafic.These dykes show pronounced variation in direction.Based on field observations and cross-cutting relationships between the different dyke varieties,the studied dykes can be classified into two phases:early phase and late-stage phase.The early phase includes a series of mafic dykes,which are the oldest and most prevalent.These are unmetamorphosed and occur in closely parallel sets forming swarms.They are mainly basaltic in composition and trend WNW,NW,and NE in decreasing order of abundance.

    In the studied area,only basaltic dykes invade the Precambrian basement,never felsic ones(Fig.2).They have a distinct thickness from centimeters to five meters,extend for several kilometers beyond the limit of the study area,and generally show sharp contacts with the older granitoid rocks.Generally,these dykes are massive and range from black to greyish-green in color.

    Fig.2 General view showing basaltic dyke B extruding older granitoids(O.G)

    Fig.1 Geologic map of the studied area,north Eastern Desert of Egypt

    Fig.3 General view showing syenogranitic dyke(G)as well as basaltic dyke invading older granitoids(O.G)

    Fig.4 General view showing syenogranite dykes G intersect older granoitoids(O.G)

    Fig.5 Close up view showing manganese dendrites associated with syenogranite dykes

    The late-stage phase(felsic)dykes are represented by rhyolitic and granitic dykes.The rhyolitic dykes often occupy the middle part of the investigated area.They are highly weathered and form huge separated blocks in some parts.The rhyolitic dykes are fine-grained with massive appearance and are red to pink in color.

    The granitic dykes are less abundant than the rhyolite. They are restricted only to a highly deformed,faulted,and sheared narrow zone,100 to 300 m in width and extending for more than 1.5 km in a NE to NNE direction.The zone has been spilt and dislocated into two parts under the action of a NW-SE left lateral strike-slip fault.The predominant host rocks of these dykes are the older granitoids and,to a lesser extent,younger gabbros.Generally,the granitic dykes show an extrusive relationship with the older granitoids(Figs.3 and 4),and were emplaced along pre-existing structures during their ascent.No xenoliths from the country rock are clearly observed within these dykes.The dykes vary from sub-vertical to vertical and are inclined with elliptical shaped bodies.Their outcrop dimensions range from a few meters to 100 m in length and from less than a meter up to tens of meters in width.These dykes have been affected by local strike-slip and normal faults leading to margin alteration in some parts.In other parts,these dykes show ample evidence of later hydrothermal activity through which several generations of fracture-filling veins consisting of quartz,chlorite,and epidote have developed in association with alteration of the wallrock including ferrugination,silicification,episyenitization,koalinization,and the formation of manganese dendrites(Fig.5).Individual granite dykes generally strike NE-SW,which is approximately compatible with the trend of predominating structure.

    Microscopically,this rock is mainly of syenogranitic composition and sometimes shows alkali feldspar granite varieties,with diagnostic aluminous minerals,equigranular texture,and fine-to medium grain size.The rock is essentially composed of alkali feldspars(about 52.7%),quartz(about 32.5%),and plagioclase(less than 10.1%),with subordinate amounts of biotite(about 1.8%)and muscovite(about 1.2%).On the other hand,the rock is highly charged with zircon(Fig.6),and Iron oxy-hydroxides in addition to radioactive minerals which represent the main accessories.

    3 Zircon morphology

    Zircon represents the main accessory mineral in the studied rock and ranges in concentration from 1646 ppm to more than 10,000 ppm(Omran 2015).Nine samples were collected from syenogranitic dykes for zircon studies.After separation,they were studied under the binocular microscope in order to exclude the damaged crystals,and to define morphological types and sub-types,color,and internal structures.Based on Pupin’s(1980)deductions,for accurate conclusions,the examined zircon crystals should exceed one hundred unbroken crystals for each sample. Only in four samples were we able to achieve thisrequirement.The present morphological studies including zircon typology were carried out over more than 538 grains of zircon,separated from four chosen samples of syenogranite dykes.The samples were photographed by SEM in order to observe the details of the crystalline forms and the external structures(overgrowth,corrosionfeatures).The studied zircon grains range in color from pale yellow to bright yellow,honey,and brown(Fig.7). Some zircon crystals show significant overgrowth features(Figs.7,8 category c,d).

    Fig.6 Photomicrographs showing euhedral zircon crystals(Zr)in syenogranite dykes.a Plagioclase enclosing minute crystal of zircon,C.N. b Euhedral crystal of zircon in syenogranite dykes,P.L.c Cracked zircon crystals enclosing inclusions,C.N

    Fig.7 Photomicrograph of different types of separated euhedral zircon grains from different samples of syenogranite dykes.a,c and d are showing slightly overgrowth of zircon grains,f is SEM analyses of the studied zircon

    Fig.8 Crystal morphology characteristics of zircon(SEM)from different samples of the studied syenogranitic dykes. Category a zircon crystals showing the development of pyramid{101}?{211}and prism{100}>{110},which are belong to S20.b zircon crystals showing the development of pyramid{101}?{211}and prism{100}?{110}which are belong to S25.c zircon crystals showing the development of pyramid{101}?{211}and prism{100}?{110}which are belong to subtype S24. d zircon crystals showing the development of pyramid{101}?{211}and prism{100}={110}which are belong to S15.e few samples of zircon crystals belonging to P5,S14 and S19 respectively

    Fig.9 a photomicrograph shows embayment into low-U regions in the zircon crystals(SEM),the white arrow pointed to uranophane as inclusions. b EDX for the detected uranophane inclusion in zircon

    However,most zircons fall into general color series of increasing radiation damage,pale yellow,straw,honey,brown,and black(Gastil et al.1967).In addition to radiation damage,the color may also be affected by trace element inclusion content.

    Fig.10 Zircon typological classification and corresponding geothermometric scale proposed by Pupin(1980).Index A reflects the Al/alkali ratio,controlling the development of zircon pyramids,whereas temperature affects the development of different zircon prisms

    Zircon is tetragonal and most commonly grows as doubly-terminated prismatic crystals with elongation(length-to-width)ratios ranging from 1 to 5.This ratio is commonly believed to reflect crystallization velocity. Indeed,needle-shaped acicular zircon crystals are common in rapidly crystallized,porphyritic,sub-volcanic intrusions;high-level granites;and gabbros,whereas stubby and equant forms are more common in deepseated,slowly cooled intrusions(Fig.8b,d).Some of the studied zircon grains show elongation(Fig.8c),suggesting a high fluid content of the magma and confirming the magmatic origin(Pupin et al.1978;Dardier 1999;El-Mansi et al.2004).

    Fig.11 Typologic frequency distribution of syenogranite zircons in the study area,n=the number of investigated zircon crystals

    Hydrothermal zircon growth has been described during late-stage magmatic or post-magmatism crystallization(Rubin et al.1989).The main characterization is the formation of high-U zircon margins,which in some cases form simple overgrowths,but more commonly are embayed into low-U regions in the zircon crystals(Fig.9). These high-U regions may have formed by recrystallization,or dissolution and re-precipitation during an event,which probably was accompanied by regional hydrothermal activity.

    A zircon xenocrystic core occurs simply when a previously crystallized zircon is surrounded by later crystallized one,possibly generated during late-stage crystallization;the older zircon becomes a xenocrystic core in the newly formed zircon(Fig.8c).The presence of zircon cores is associated sometimes with iron oxy-hydroxides as well as allanite and could be attributed to the change of physicochemical parameters of magma conditions during formation.K?ksal et al.(2008),mentioned that,zircon typology method proposed by Pupin(1980)arranges morphological types of zircon on the zircon typologic diagram based on the relative development of{100}and{110}prisms and{101}and{211}pyramids(Fig.10).Chemical composition of the melt affects the relative growth of zircon pyramids according to Pupin(1980).For example,the{211}pyramid dominates in zircon originating in a hyperaluminous or hypoalkaline medium,while the{101}pyramid is characteristic of a hyperalkaline or hypoaluminous medium.The{301}pyramid is interpreted to be characteristic of zircon crystals formed in a potassium-rich alkaline medium(Pupin 1980).Thus,Pupin(1980)suggested that the alkaline ratio(Al)controls the A-index(A.I.)of a zircon population.Pupin(1980)proposed that the typologic study of zircon populations from granitic rocks can be used as a genetic classification,with three main divisions as(a)granitoids of crustal origin,(b)hybrid(crustal and mantle origin)granitoids,and(c)granitoids of mantle origin.On the typology diagram,granitoids ofdifferent origin show different zircon populations and distinct T.E.T.’s(Pupin 1980).

    Fig.12 Distribution of mean points and mean typological evolutionary trends of zircon populations(Pupin 1980)from:Aluminous anatectic granites 1 aluminous leucogranites;2(par)autochthonous monzogranites and granodiorites;3 intrusive aluminous monzogranites and granodiorites.-Hybrid granites of crustal+mantle origin:(4a,b,c)calc-alkaline series granites(dark doted area=granodiorites+monzogranites;clear doted area=monzogranites+alkaline granites);5 sub-alkaline series granites;6 alkaline series granites;7 tholeiitic series granites-Mu=limit of the muscovite granites(I.T=450)

    The zircon typology method(Pupin 1980),based on the external morphology of zircon crystals was applied to some syenogranitic dykes in the study area.The analysis indicates that the major zircon types are S20and S25,while the S24and S15types are less dominant.P5,S14,and S19types are present in minor amount in syenogranitic dykes(Fig.11).The typologic distribution has been determined and the coordinates in I.A.and I.T.(temperature index)space are computed(Pupin 1980),for the chosen four samples I.A.(1)=588,I.A.(2)=584,I.A.(3)=585,I.A.(4)=584with average I.A.≈585and I.T.(1)=625,I.T.(2)=632,I.T.(3)=632,I.T.(4)=662 with average I.T.≈637(Fig.11).The results of mean point of the investigated zircon grains of syenogranite dykes are plotted on the diagram(Fig.12).Morphology of the studied zircon crystals suggests that,these zircon crystals were crystallized at mean temperature of≈637°C and belong to sub-alkaline series granites.

    4 Chemistry of zircon

    The chemical compositions of the studied nine zircon samples are given in Table 1.Figure 13 shows the variation of oxides as well as HfO2to ZrO2/HfO2in zircon separated from syenogranite dykes.Zircon crystals of the studied syenogranitic dykes show slightly differences in ZrO2,SiO2,HfO2,UO2,ThO2contents and similar contents of Al2O3,F(xiàn)e2O3,CaO (Fig.13d).Figure 13 e is showing a noticeable increasing of UO2contents comparing to ThO2contents which could be attributed to the hydrothermal processes and its accompanying uranium enrichment.Because the abundance of hafnium in the continental crust is low,about 3 ppm,(Taylor and McLennan 1985),no Hf mineral crystallizes during the solidification of magmatic rocks.Hf always occurs together with Zr due to their identical behavior and concentrated in zircon(Bau 1996).Hafnium tends to replace Zr,especially along crystal peripheries,during hydrothermal activity(Correia et al.1974).On the diagram HfO2-ZrO2/HfO2(Fig.13f),Hf content shows relative increasing consistent with the decreasing of Zr content,suggesting the replacement of Zr by Hf during hydrothermal activity.

    Table 1 Chemical composition in percent of zircon separated from the studied syenogranite dykes

    Fig.13 Variation of oxides(wt.%)as well as HfO2-ZrO2/HfO2ratios,(from Wang et al.1992),of zircon crystals separated from syenogarnite dykes

    5 Radioactive mineralization

    Th/Uratios forgranitic rocks are thoughtto be normalifthey are within the range of3 to 5.Possible economic significance was proposed for granites with Th/U ratios either below or above this range(Nash 1979;Stuckless 1979).Post-magmatic hydrothermal processes reflected by their alteration imprints in the source rocks constitute the critical prerequisite for mobilization and redistribution of the primary magmatic uranium.Friedrich et al.(1987)discussed the various modes of hydrothermal source rock alteration in the light of its efficiency in mobilization of uranium.Solution which controlled uranium liberation takes place essentially along zones of fracturing and cataclasis that provide the transmissivity needed as pathways for the fluids.The nature of the fluids may vary between hypogene hvdrothermal and supergene meteoric.Favorable sites of adequate permeability are restricted to brittle structures,transcurrent ductile mylonite zones,and marginal segments of granitic dykes(Lespinasse and Pecher 1986).

    Through ground gamma ray spectrometric study,it has been observed that the late-stage syenogranitic dykes have the highest potential equivalent uranium and thorium exists comparing to the other exposed rock types in the study area.

    Fig.14 a eU(ppm)versus eTh(ppm)plot diagram of the studied syenogranitic dykes.b Uranium mobilization in the studied dykes.The equation eU-(eTh/3.5)reflects the uranium mobilization.If the result of this equation equals zero,it indicates absence or at least very restricted uranium mobilization.When it is greater than zero it means that uranium was enriched(added to rock).The negative values mean uranium leaching out

    Fig.15 Close up views showing visible uranophane and autunite

    The syenogranitic dykes show average equivalent uranium(eU)content 53.2 ppm,while the equivalent thorium(eTh)content is 228 ppm.The maximum contents of eU and eTh are 114.3 ppm and 413 ppm,respectively.Generally,syenogranite dykes showing contents of uranium and thorium are higher than the normal granites contents. This could be attributed to the high magma content of these elements(magmatic origin).

    The mineralized syenogranitic dykes are characterized by high uranium and thorium contents.They show thorium anomalies rather than the uranium where the eU average is 707.2 ppm while that of eTh is 4044 ppm.The maximum eTh content exceeds to 7331 ppm while that of eU reaches up to 1386 ppm.The mineralized zones occur as highly ferruginated,highly fractured and highly altered irregular bodies or patches confined to shear and fault planes at the contact area and also clearly observed as fracture filling on the walls of dykes.The noticeable increasing of eTh content comparing to eU in mineralized zones(Fig.14a,b),probably represent mobilization and redeposition of uranium by supergene processes,(including the predominance of meteoric water circulation),and accumulated near to the contacts of impermeable parts.The presence of the iron oxy-hydroxides alteration,which is the main alteration process,couldn’t be ignored.This may be due to the high ability of iron oxides to adsorb uranium from its bearing solutions and/or the prevalence of oxidation conditions and complexing ions that cause precipitation of uranium as complex uranyl ions(Hussein et al.1965).Visiblemineralization is present and recognized by the presence of uranophane and autunite as well as thorium minerals and thorium bearing minerals such as thorite,uranothorite and columbite(Figs.15 and 16).

    Fig.16 EDX and BSE images of thorite,uranothorite,uranophane and columbite as inclusions in zircon

    Fig.17 SEM photomicrograph shows the volume expansion of the U-rich metamict domain

    Metamictization is the process of lattice destruction by radiation damage(Williams 1992),and it occurs at temperature conditions at which annealing of the lattice is slower than the damage accumulates,and therefore more severe in zircon with high U and Th concentrations bond angles in zircon,which tends to be amorphous at full metamictization(Nasdala et al.2001).Some of zircon crystals that we studied have significant metamictization as results of uranium and thorium atoms substituting for zirconium in the crystal structure(Fig.17).

    6 Discussion and conclusions

    Ra’s Abdah area is located approximately 20 km to the southwest Safaga City on the Red Sea,north Eastern Desert of Egypt,and is limited by latitudes 26o42′50′′and 26o44′28′′N and longitudes 33o44′51′′and 33o47′59′′E.It is occupied by older granitoids,younger gabbro,younger granites and dyke phases.Syenogranitic dykes outcrop dimensions range from few meters to hundred meters in length and from less than a meter up to tens of meters in width.The separated zircon grains from syenogranitic dykes have no wide range of colour which are ranging from pale yellow,bright yellow,honey and brown with some crystals showing significant overgrowth.

    Despite of the widely accepted(Pupin 1980)classification of zircon typology;however we find that zircon from a single rock population can have widely varying morphologies.According to the proposed petrogenetic classification of Pupin(1980),the investigated zircons of syenogranite dykes belong to Sub-alkaline series granites and crystallized at mean temperature of about 637°C.In this study,we recognize different distinct zircon types on the basis of host rock and texture:(l)magmatic zircons,hosted by intrusive igneous rocks;(2)hydrothermal(or late-magmatic)overgrowths of zircon,associated with magmatic type.All the types have been observed in samples from syenogranitic dykes.Syenogranite dykes which have been emplaced at the late-magmatic phase are rich in radioactive mineralization reflecting the high background measurements.These dykes have been subjected to hydrothermal solutions rich in uranium and thorium elements evidenced by zircon overgrowth.

    Zircon chemistry revealed a relative increasing of Hf contents consistent with the decreasing of Zr contents suggesting replacement of Zr by Hf during hydrothermal activity.Some of zircon crystals have significant metamictization as results of uranium and thorium atoms substituting for zirconium in the crystal structure.The studied zircon crystals are characterized by the presence of high inclusions of thorite,uranophane and columbite minerals.

    At some mineralized parts the maximum eTh content exceeds7331 ppm while that of eU reaches up to1386 ppm.Visible uranium mineralization is present and recognized by the presence of uranophane and autunite.

    References

    Bau M (1996)Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems;evidence from Y/Ho,Zr/Hf,and lanthanide tetrad effect.Contrib Mineral Petrol 123:323-333

    Bineli Betsi T,Lentz DR(2010)The nature of‘quartz eyes’hosted by dykes associated with Au-Bi-As-Cu,Mo-Cu,and base-metal-Au-Ag mineral occurrences in the Mountain Freegold region(Dawson Range),Yukon,Canada.J Geosci 55:347-368

    Breiter K(2002)From explosive breccia to unidirectional solidification textures:magmatic evolution of a phosphorus-and fluorinerich granite system(Podlesí,Kru?néhory Mts.,Czech Republic). Bull Czech Geol Surv 77:67-92

    Cemal K?ksal S,G?ncuoglu M,Toksoy-K?ksal F,M?ller A,Kemnitz H(2008)Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia,Turkey.Mineral Petrol 93:185-211

    Corfu F,Hanchar JM,Hoskin PWO,Kinny P(2003)Atlas of zircon textures.In:Hanchar JM,Hoskin PWO(eds)Zircon.Reviews in mineralogy and geochemistry.Mineralogical Society of America,Chantilly

    Correia NJM,Lopes NJE,Sahama ThG(1974)High hafnium member of zircon-hafnon series from the granite pegmatites of Zambezia. Mozambique Contr Min Petr 48:73-80

    Dardier AM(1999)Morphology and geochemistry of zircon associated with uranium mineralization in Gattar granitic pluton,north Eastern Desert,Egypt.J Mineral Soc Egypt 11:91-104

    Derre C,Lecolle M,Roger G,de Freitas Tavares,Carval ho J(1986)Tectonics,magmatism,hydrothermalism and sets of flat joints locally filled by Sn-W aplite-pegmatite and quartz veins;southeastern border of the Serra de Estrela granitic massif(Beira Baixa,Portu gal).Ore Geol Rev 1:43-56

    El-Mansi MM,Dardier AM,Abdel Ghani IM (2004)Crystal habit and chemistry of zircon as a guide for uranium redistribution in Gabal Ria El-Garrah area,Eastern Desert,Egypt.Delta J Sci 28:19-30

    Friedrich M,Cuney M,Pory B(1987)Friedrich M,Cuney M,Pory B(1987):uranium geochemistry in peraluminous leucogranites,in: concentration mechanisms of uranium in geological environments:a conference report.Uranium 3:353-358

    Gastil RG,DeLisle M,Morgan J(1967)Some effects of progressive metamorphism on zircons.Geol Soc Am Bull 78(7):879-906

    Hussein HA,F(xiàn)aris MI,Makram W (1965)Radioactivity of some accessory minerals especially zircon in some Egyptian granites and pegmatites.J Geol UAR 9(2):13-16

    Kroner A,Eyal M,Eyal Y(1990)Early Pan-African evolution of the basement around Elat,Israel,and the Sinai Peninsula revealed by single-zircon evaporation dating,and implications for crustal accretion rates.Geology 18:545-548

    Lentz DR(2005)Examination of dikes in ore-forming systems: analysis of geological,petrochemical,and geotectonic constraints.Actas Del XVI Congr Geol Argent,LaPlata,pp 403-411

    Lespinasse M,Pecher A(1986)Microfissuration and regional stress field:a study of the preferred orientation of fluid inclusion planes in a granite from the Massif Central,F(xiàn)rance.J Struct Geol 8:169-180

    Moore JM(1975)A mechanical interpretation of the vein and dyke systems of the S.W.England Ore field.Mineral Deposita 10:374-388

    Nasdala L,Beran A,Libowitzky E,Wolf D(2001)The incorporation of hydroxyl groups and molecular water in natural zircon(ZrSiO4).Am J Sci 301:831-857

    Nash,JT(1979)Uranium and thorium in granitic rocks of northeastern Washington and northern Idaho,with comments on uranium resource potential:U.S.Geological Survey Open-File Rept.79-233,p 39

    Omran AA(2005)Geological,petrochemical studies and potentiality of uranium-thorium occurrences in Gabal Um Taghir El-Tahtani area with emphasis on the granitic rocks,Central Eastern Desert,Egypt.Ph.D.thesis,Ain Shams University Cairo p 189

    Omran AA(2015)Geology,mineralogy and radioelements potentiality of microgranite dikes to the south of wadi abu hadieda area,northern eastern desert.in press

    Pupin JP(1980)Zircon and granite petrology.Contrib Mineral Petr 73:207-220

    Pupin JP,Bunin B,Tessier M,Turco G(1978)Role de l’eau sur les caracteres morphologiques,et la cristallisation du zircon dans les granites.Bull Soc Geol Fr 20:721-725

    Rubin JN,Henri CD,Price JG(1989)Hydrothermal zircons and zircon overgrowths,Sierra Blanca Peaks,Texas.Am Mineral 74:865-869

    Stein M,Goldstein SL(1996)From plume head to continental lithosphere in the Arabian-Nubian shield.Nature 383:773-778

    ?temprok M,Seifert T,Holub FV,Chlupá?ováM,Dolej?D,Novák JK,Pivec E,Lang M(2008)Petrology and geochmemistry of Variscan dykes from the Jáchymov(Joachimsthal)ore district,Czech Republic.J Geosci 53:65-104

    Stern RJ,Hedge CE(1985)Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern desert of Egypt.American Journal Science 285:97-127

    Stern RJ,Gottfried DG,Hedge CE(1984)Late Precambrian rifting and crustal evolution in the North Eastern Desert of Egypt. Geology 12:168-172

    Stuckless JS(1979)Uranium and thorium concentrations in Precambrian granites as indicators of a uranium province in central Wyoming.Contrib Geol 17(2):173-178

    Taylor SR,McLennan SM(1985)The continental crust:its composition and evolution.Blackwell Scientific Publication,Carlto n,p 312

    Vallance J,Cathelineau M,Boiron MC,F(xiàn)ourcade S,Shepherd TJ,Naden J(2003)Fluid-rock interactions and the role of late Hercynian aplite intrusion in the genesis of the Castromil gold deposit,northern Portugal.Chem Geol 194:201-224

    Wang RC,F(xiàn)ontan F,Monchoux P(1992)Minéraux disséminés comme indicateurs du caracte`re pegmatitique du granite de Beauvoir,massif d’échassieres,Allier,F(xiàn)rance.Can Mineral 30:763-770

    Williams IS(1992)Some observations on the use of zircon U-Pb geochemistry in the study of granitic rocks.Trans R Soc Edinb 83:447-458

    29 September 2015/Revised:29 February 2016/Accepted:15 March 2016/Published online:23 March 2016

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    中亚洲国语对白在线视频| 桃色一区二区三区在线观看| 久久人人精品亚洲av| 黄色成人免费大全| 丁香六月欧美| 一卡2卡三卡四卡精品乱码亚洲| 香蕉国产在线看| 男女视频在线观看网站免费 | АⅤ资源中文在线天堂| 99re在线观看精品视频| 91麻豆精品激情在线观看国产| 国产一区二区三区在线臀色熟女| 香蕉国产在线看| 亚洲第一欧美日韩一区二区三区| 日日摸夜夜添夜夜添小说| 久久香蕉精品热| 精品不卡国产一区二区三区| 美女午夜性视频免费| 变态另类丝袜制服| 日韩大码丰满熟妇| 欧美丝袜亚洲另类 | 黄色 视频免费看| 每晚都被弄得嗷嗷叫到高潮| 国产av一区二区精品久久| 亚洲精品中文字幕一二三四区| 一边摸一边抽搐一进一小说| 在线观看免费日韩欧美大片| 校园春色视频在线观看| 免费观看精品视频网站| 久久精品91蜜桃| av中文乱码字幕在线| 精品国产美女av久久久久小说| 国产三级黄色录像| 男人的好看免费观看在线视频 | 香蕉国产在线看| 这个男人来自地球电影免费观看| 国产麻豆成人av免费视频| 中文字幕久久专区| 精品国产超薄肉色丝袜足j| 亚洲欧美日韩无卡精品| 久久久水蜜桃国产精品网| 色精品久久人妻99蜜桃| 色综合欧美亚洲国产小说| 国产成人av激情在线播放| 亚洲 欧美一区二区三区| 国产精品一区二区精品视频观看| 搡老岳熟女国产| 十八禁网站免费在线| 国产高清有码在线观看视频 | 一本综合久久免费| 麻豆一二三区av精品| 亚洲av中文字字幕乱码综合| 国产精品久久久久久久电影 | 少妇熟女aⅴ在线视频| 身体一侧抽搐| 亚洲av美国av| 国产成人精品无人区| 欧美乱妇无乱码| 国产单亲对白刺激| 国产av麻豆久久久久久久| av免费在线观看网站| 久久久国产欧美日韩av| 90打野战视频偷拍视频| 麻豆国产av国片精品| 色尼玛亚洲综合影院| 久久精品亚洲精品国产色婷小说| 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 亚洲一码二码三码区别大吗| 亚洲av电影不卡..在线观看| 亚洲成人免费电影在线观看| 亚洲激情在线av| 亚洲av第一区精品v没综合| 久久久久久亚洲精品国产蜜桃av| 中文资源天堂在线| 午夜影院日韩av| 草草在线视频免费看| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| 国产片内射在线| 最新在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产成+人综合+亚洲专区| 免费看a级黄色片| 久久久久久久午夜电影| 热99re8久久精品国产| 国产av麻豆久久久久久久| 亚洲一区二区三区色噜噜| 美女午夜性视频免费| 丝袜美腿诱惑在线| 久99久视频精品免费| 看片在线看免费视频| 亚洲欧美日韩东京热| 午夜福利在线在线| videosex国产| 欧美一级毛片孕妇| 色老头精品视频在线观看| 999久久久精品免费观看国产| 88av欧美| 久久久国产成人免费| 中文在线观看免费www的网站 | 日韩高清综合在线| 亚洲第一电影网av| 每晚都被弄得嗷嗷叫到高潮| 亚洲av美国av| 亚洲成av人片免费观看| 国产精品久久电影中文字幕| 在线观看免费视频日本深夜| 在线永久观看黄色视频| 久久人妻福利社区极品人妻图片| 97超级碰碰碰精品色视频在线观看| 99热这里只有精品一区 | 丝袜美腿诱惑在线| 午夜亚洲福利在线播放| 男女视频在线观看网站免费 | 热99re8久久精品国产| 欧美色欧美亚洲另类二区| 欧美日韩福利视频一区二区| av片东京热男人的天堂| 正在播放国产对白刺激| 热99re8久久精品国产| 免费在线观看亚洲国产| 别揉我奶头~嗯~啊~动态视频| 欧美人与性动交α欧美精品济南到| 国产熟女午夜一区二区三区| 免费在线观看亚洲国产| 亚洲国产中文字幕在线视频| 黄色丝袜av网址大全| 久久精品国产综合久久久| 国产免费男女视频| 欧美精品亚洲一区二区| 夜夜看夜夜爽夜夜摸| 亚洲全国av大片| 国产精品香港三级国产av潘金莲| 日韩欧美三级三区| 亚洲人成77777在线视频| 听说在线观看完整版免费高清| 国产高清有码在线观看视频 | 黄色a级毛片大全视频| 岛国在线观看网站| 欧美午夜高清在线| 免费看十八禁软件| 午夜激情福利司机影院| 亚洲免费av在线视频| 男男h啪啪无遮挡| 波多野结衣高清无吗| 亚洲无线在线观看| www国产在线视频色| 成人永久免费在线观看视频| av中文乱码字幕在线| 99国产综合亚洲精品| 午夜精品久久久久久毛片777| 黑人欧美特级aaaaaa片| 亚洲 欧美 日韩 在线 免费| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 日韩精品中文字幕看吧| 国产91精品成人一区二区三区| 男插女下体视频免费在线播放| 久久精品国产亚洲av香蕉五月| 欧美午夜高清在线| 后天国语完整版免费观看| 高清在线国产一区| 黄色 视频免费看| 亚洲熟妇熟女久久| 久久久国产成人精品二区| 国产精品乱码一区二三区的特点| 国产又色又爽无遮挡免费看| 99久久无色码亚洲精品果冻| 国产成人av激情在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 最近在线观看免费完整版| 亚洲在线自拍视频| 精品一区二区三区视频在线观看免费| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 日韩大尺度精品在线看网址| 12—13女人毛片做爰片一| 国产精品精品国产色婷婷| 国产激情久久老熟女| 欧美日韩黄片免| 亚洲九九香蕉| 国产av一区在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 欧美最黄视频在线播放免费| 久久亚洲精品不卡| 久久久国产成人免费| 欧美 亚洲 国产 日韩一| 99热只有精品国产| 欧美一级毛片孕妇| 亚洲av成人不卡在线观看播放网| 亚洲人成77777在线视频| 真人一进一出gif抽搐免费| 久久伊人香网站| 国产精品98久久久久久宅男小说| 国产精品九九99| 狂野欧美激情性xxxx| 精品国产超薄肉色丝袜足j| av在线天堂中文字幕| 精品久久久久久久久久久久久| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 亚洲av美国av| 久久伊人香网站| 波多野结衣高清无吗| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 亚洲精品国产一区二区精华液| 日韩精品中文字幕看吧| 嫩草影院精品99| 欧美中文综合在线视频| 欧美一区二区精品小视频在线| 国产成人精品久久二区二区91| 成人一区二区视频在线观看| 嫩草影视91久久| 免费人成视频x8x8入口观看| 国产av麻豆久久久久久久| 日本五十路高清| 久久精品国产亚洲av高清一级| 亚洲欧美激情综合另类| 亚洲自偷自拍图片 自拍| 色噜噜av男人的天堂激情| 国产亚洲精品久久久久5区| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 69av精品久久久久久| 欧美久久黑人一区二区| 男人舔奶头视频| 日本 欧美在线| 非洲黑人性xxxx精品又粗又长| 黄色毛片三级朝国网站| 99国产极品粉嫩在线观看| 天天添夜夜摸| 日韩欧美在线二视频| 色哟哟哟哟哟哟| 1024香蕉在线观看| 97超级碰碰碰精品色视频在线观看| 国产乱人伦免费视频| 88av欧美| x7x7x7水蜜桃| 动漫黄色视频在线观看| 国产精品av久久久久免费| 人妻久久中文字幕网| 国产爱豆传媒在线观看 | 久久伊人香网站| 99国产极品粉嫩在线观看| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 久久99热这里只有精品18| 国产熟女午夜一区二区三区| 曰老女人黄片| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 丁香欧美五月| 免费在线观看亚洲国产| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 成人一区二区视频在线观看| 日韩精品免费视频一区二区三区| 在线观看免费午夜福利视频| 国产一区二区三区视频了| 亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| 久久精品91蜜桃| 久久久久久久精品吃奶| 色综合婷婷激情| 亚洲美女视频黄频| 老司机午夜福利在线观看视频| 久久国产精品影院| 久久久精品欧美日韩精品| 91老司机精品| 久久精品夜夜夜夜夜久久蜜豆 | 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 久久中文字幕一级| 正在播放国产对白刺激| 国产三级中文精品| 在线观看免费日韩欧美大片| 亚洲自偷自拍图片 自拍| 一进一出好大好爽视频| 一级作爱视频免费观看| 一级毛片女人18水好多| 久久精品亚洲精品国产色婷小说| www.www免费av| 操出白浆在线播放| 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| 亚洲乱码一区二区免费版| 午夜a级毛片| 久久久久久国产a免费观看| 十八禁人妻一区二区| 日本一区二区免费在线视频| 九色国产91popny在线| 亚洲成人免费电影在线观看| 久久天堂一区二区三区四区| 国产精品乱码一区二三区的特点| 亚洲国产精品合色在线| 国产男靠女视频免费网站| 琪琪午夜伦伦电影理论片6080| 99精品久久久久人妻精品| 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 黄色女人牲交| 99riav亚洲国产免费| 国产又黄又爽又无遮挡在线| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 在线永久观看黄色视频| 男女视频在线观看网站免费 | 在线国产一区二区在线| 久久亚洲精品不卡| 真人一进一出gif抽搐免费| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| tocl精华| 在线观看www视频免费| 亚洲九九香蕉| 免费观看精品视频网站| 久久中文看片网| 午夜成年电影在线免费观看| av天堂在线播放| 18禁裸乳无遮挡免费网站照片| 男女那种视频在线观看| 免费在线观看完整版高清| 欧美一级毛片孕妇| 国产99白浆流出| 精品乱码久久久久久99久播| 国产单亲对白刺激| 久久久久久人人人人人| 色精品久久人妻99蜜桃| 少妇熟女aⅴ在线视频| www.999成人在线观看| 午夜福利视频1000在线观看| 亚洲av片天天在线观看| 1024香蕉在线观看| 亚洲精品国产一区二区精华液| 国内精品一区二区在线观看| 制服丝袜大香蕉在线| 日韩大尺度精品在线看网址| 两个人免费观看高清视频| 免费在线观看亚洲国产| 欧美精品亚洲一区二区| а√天堂www在线а√下载| 一级毛片高清免费大全| 深夜精品福利| 久久久精品大字幕| 国内揄拍国产精品人妻在线| 狂野欧美激情性xxxx| 国产一级毛片七仙女欲春2| a在线观看视频网站| 欧美精品啪啪一区二区三区| 丝袜美腿诱惑在线| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 国产97色在线日韩免费| 亚洲va日本ⅴa欧美va伊人久久| 十八禁网站免费在线| 成人亚洲精品av一区二区| 一边摸一边做爽爽视频免费| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 91字幕亚洲| 国产精品 国内视频| 国产视频内射| 国产亚洲精品综合一区在线观看 | 国产免费av片在线观看野外av| 免费高清视频大片| 久99久视频精品免费| 观看免费一级毛片| 午夜免费成人在线视频| 国产高清有码在线观看视频 | 一级毛片女人18水好多| 91字幕亚洲| 亚洲av电影在线进入| 国模一区二区三区四区视频 | 亚洲狠狠婷婷综合久久图片| www.www免费av| 免费观看精品视频网站| 99国产极品粉嫩在线观看| 黄频高清免费视频| 精品一区二区三区av网在线观看| 精品一区二区三区视频在线观看免费| 久久久精品欧美日韩精品| 久久久久久亚洲精品国产蜜桃av| 精品国产亚洲在线| 黄片小视频在线播放| 在线观看免费午夜福利视频| 特级一级黄色大片| av国产免费在线观看| 91成年电影在线观看| 夜夜夜夜夜久久久久| 亚洲欧美日韩东京热| 国产私拍福利视频在线观看| 久久久久九九精品影院| 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 欧美人与性动交α欧美精品济南到| 免费观看精品视频网站| 12—13女人毛片做爰片一| 免费观看人在逋| 久久久久国产一级毛片高清牌| 岛国在线观看网站| 亚洲男人天堂网一区| 国产精品香港三级国产av潘金莲| 午夜福利视频1000在线观看| 人人妻人人看人人澡| 国产av一区二区精品久久| 两性夫妻黄色片| 99久久99久久久精品蜜桃| 草草在线视频免费看| 99精品久久久久人妻精品| 成人国产综合亚洲| 在线永久观看黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 免费看日本二区| 午夜日韩欧美国产| 在线永久观看黄色视频| 久久九九热精品免费| 欧美日韩国产亚洲二区| 国产高清视频在线观看网站| 18禁国产床啪视频网站| 国产一区二区三区在线臀色熟女| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看 | 国产在线精品亚洲第一网站| 日韩欧美 国产精品| 免费看美女性在线毛片视频| 国产成人精品久久二区二区免费| 成熟少妇高潮喷水视频| 国产精品,欧美在线| 国产69精品久久久久777片 | 最近最新中文字幕大全电影3| 久久亚洲精品不卡| 91麻豆av在线| 可以在线观看的亚洲视频| 看片在线看免费视频| 在线免费观看的www视频| 国产成人影院久久av| 狂野欧美激情性xxxx| 国产午夜精品论理片| 天天躁夜夜躁狠狠躁躁| 99精品欧美一区二区三区四区| 女人被狂操c到高潮| 中文在线观看免费www的网站 | 丁香欧美五月| av在线天堂中文字幕| 国产精品美女特级片免费视频播放器 | 亚洲av电影不卡..在线观看| 国产精品亚洲美女久久久| www.自偷自拍.com| 波多野结衣高清作品| 亚洲精品久久国产高清桃花| 欧美色欧美亚洲另类二区| 黄色毛片三级朝国网站| 999精品在线视频| 在线免费观看的www视频| 中国美女看黄片| 国产久久久一区二区三区| 免费在线观看视频国产中文字幕亚洲| 久久久久亚洲av毛片大全| 欧美日韩中文字幕国产精品一区二区三区| 久久九九热精品免费| 九色国产91popny在线| 香蕉av资源在线| 国产成人av激情在线播放| 久久久国产欧美日韩av| 国产日本99.免费观看| 亚洲精品一区av在线观看| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 欧美黑人巨大hd| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 国内精品一区二区在线观看| 99久久无色码亚洲精品果冻| 国产精品免费视频内射| 中亚洲国语对白在线视频| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添小说| 亚洲熟妇熟女久久| 精品国产乱子伦一区二区三区| 两个人免费观看高清视频| 99热这里只有精品一区 | 免费在线观看影片大全网站| av在线天堂中文字幕| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清专用| 国产一区二区三区视频了| 麻豆成人午夜福利视频| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 午夜福利在线在线| 欧美丝袜亚洲另类 | 1024香蕉在线观看| 国产精华一区二区三区| 制服人妻中文乱码| 精品国产亚洲在线| 国产亚洲欧美在线一区二区| 日本撒尿小便嘘嘘汇集6| 成人高潮视频无遮挡免费网站| 黄色女人牲交| 亚洲色图 男人天堂 中文字幕| 一级毛片精品| av中文乱码字幕在线| cao死你这个sao货| 久久热在线av| 亚洲全国av大片| 性色av乱码一区二区三区2| 日日夜夜操网爽| 十八禁网站免费在线| 国产av麻豆久久久久久久| 国产亚洲欧美在线一区二区| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| or卡值多少钱| 9191精品国产免费久久| 欧美日韩乱码在线| 色老头精品视频在线观看| 亚洲一码二码三码区别大吗| 亚洲成av人片在线播放无| 日本a在线网址| 国产v大片淫在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产黄a三级三级三级人| 久久这里只有精品19| 麻豆成人av在线观看| 亚洲七黄色美女视频| 成年版毛片免费区| 亚洲五月婷婷丁香| 三级男女做爰猛烈吃奶摸视频| www.www免费av| 久久婷婷成人综合色麻豆| 一进一出抽搐动态| 久久精品人妻少妇| 三级毛片av免费| 久久国产乱子伦精品免费另类| 91麻豆av在线| 两个人免费观看高清视频| 老司机午夜福利在线观看视频| 不卡一级毛片| 国产成人精品久久二区二区91| 脱女人内裤的视频| 中文字幕人成人乱码亚洲影| 亚洲欧美日韩高清专用| 国内精品一区二区在线观看| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 少妇裸体淫交视频免费看高清 | 成人一区二区视频在线观看| 国产不卡一卡二| 欧美日韩福利视频一区二区| 欧美绝顶高潮抽搐喷水| 国产成年人精品一区二区| 久久久国产成人精品二区| 久久久久久免费高清国产稀缺| 少妇裸体淫交视频免费看高清 | 国产熟女xx| 岛国视频午夜一区免费看| 成年女人毛片免费观看观看9| 每晚都被弄得嗷嗷叫到高潮| 人成视频在线观看免费观看| 中文字幕高清在线视频| 久久中文看片网| 色综合欧美亚洲国产小说| 亚洲专区中文字幕在线| 亚洲精品久久国产高清桃花| 欧美乱色亚洲激情| 18禁美女被吸乳视频| 婷婷精品国产亚洲av| 十八禁人妻一区二区| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 国产成人系列免费观看| 亚洲国产精品久久男人天堂| av天堂在线播放| 99在线视频只有这里精品首页| 国产黄片美女视频| 免费看美女性在线毛片视频| 亚洲 欧美一区二区三区| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| av在线播放免费不卡| 亚洲人成网站高清观看| 中文字幕人妻丝袜一区二区| 法律面前人人平等表现在哪些方面| 亚洲真实伦在线观看| 麻豆国产av国片精品| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 91在线观看av| 亚洲国产欧美人成| 精品久久久久久久久久免费视频| 欧美黑人精品巨大| 精品久久蜜臀av无| 男女午夜视频在线观看| 女警被强在线播放| 日本黄色视频三级网站网址| a级毛片在线看网站| 在线十欧美十亚洲十日本专区| 精品久久久久久久毛片微露脸| 日韩大尺度精品在线看网址| 1024香蕉在线观看| 色尼玛亚洲综合影院| 美女午夜性视频免费| 国产单亲对白刺激| 国产野战对白在线观看|