• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    有機染料敏化太陽電池中激發(fā)態(tài)弛豫和電子注入的超快光譜研究

    2016-11-18 07:29:15林李陽陳淑張靜張
    物理化學(xué)學(xué)報 2016年1期
    關(guān)鍵詞:噻二唑激發(fā)態(tài)二氧化鈦

    楊 林李 陽陳 淑張 靜張 敏,*王 鵬

    (1中國科學(xué)院長春應(yīng)用化學(xué)研究所,高分子物理與化學(xué)國家重點實驗室,長春 130022;2中國科學(xué)院大學(xué),北京 100049)

    有機染料敏化太陽電池中激發(fā)態(tài)弛豫和電子注入的超快光譜研究

    楊 林1,2李 陽1,2陳 淑1,2張 靜1張 敏1,*王 鵬1

    (1中國科學(xué)院長春應(yīng)用化學(xué)研究所,高分子物理與化學(xué)國家重點實驗室,長春 130022;2中國科學(xué)院大學(xué),北京 100049)

    為了實現(xiàn)窄能隙有機光敏劑的理性設(shè)計,有必要全面理解發(fā)生在二氧化鈦/染料/電解質(zhì)復(fù)雜界面的激發(fā)態(tài)演化動力學(xué)。本文通過構(gòu)建分別以苯并噻二唑-苯甲酸(BTBA)和吡啶并噻二唑-苯甲酸(PTBA)為電子受體的有機給受體染料,借助超快瞬態(tài)吸收光譜測量與理論模擬,我們發(fā)現(xiàn)在實際的二氧化鈦/染料/電解質(zhì)界面存在激發(fā)態(tài)多步弛豫與多態(tài)電子注入的過程。密度泛函理論及含時密度泛函理論計算表明,二氧化鈦表面的光激發(fā)產(chǎn)生的“熱”激發(fā)態(tài)染料分子會通過分子片段間的扭轉(zhuǎn)運動發(fā)生顯著的多步結(jié)構(gòu)弛豫,最終形成共軛骨架具有醌式結(jié)構(gòu)、更加平面化的平衡構(gòu)型。通過對飛秒瞬態(tài)吸收光譜進行目標(biāo)分析,我們發(fā)現(xiàn)相對于以苯并噻二唑-苯甲酸為電子受體的染料,以吡啶并噻二唑-苯甲酸為電子受體的染料呈現(xiàn)出較慢的電子注入速率與較短的激發(fā)態(tài)壽命,導(dǎo)致總的電子注入產(chǎn)率較低,給出了基于該染料所制備的太陽電池的外量子產(chǎn)率峰值低的原因。

    太陽電池;有機染料;界面;激發(fā)態(tài);電荷轉(zhuǎn)移

    (1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China;2University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

    1 lntroduction

    In response to the growing global energy crisis, photoelectric conversion technologies characteristic of ecofriendly and low-cost have attracted widespread attention. In this regards, relentless innovative efforts have been devoted to dye-sensitized solar cells (DSCs)1based on a wide band gap semiconductor in conjunction with a photosensitizer and an electrolyte. A photosensitizer plays a vital role in determining the cell performance by influencing light absorption, carrier generation, and charge recombination2–11. In the past two decades, taking account of the resource scarcity of ruthenium polypyridines and the inferior stability of zinc porphyrins, metal-free organic dyes have attracted a large amount of research passion in virtue of unique properties such as plentiful raw materials, gorgeous colors, and flexible molecular tailoring, affording by far the highest power conversion efficiency of 14.3% in DSCs12.

    It is well recognized that narrowing the energy gap of donoracceptor (D-A) dye molecules is one of the basic strategies to augmented light absorption at desirable longer wavelengths. In this regard, the electronic structure of an electron acceptor has profound effects on the light harvesting capacity of a sensitizer by impacting the molecular energy levels, and some interfacial charge transfer dynamic processes such as excited state relaxation and electron injection. This recognition has guided some efforts in designing D-A organic dyes characteristic of various electron acceptors. Recently, benzothiadiazole-benzoic acid(BTBA) has been employed as an electron acceptor to construct metal-free D-A dyes13and zinc porphyrin complexes14, bringing forth crucial progress on power conversion efficiencies.

    In this paper, we have first synthesized a new metal-free D-A dye (LY-1, Fig.1) by attaching the BTBA segment to triphenylamine-thienodioxepine unit. To reduce the energy-gap, we have further employed a more electron-withdrawing unit pyridothiadiazole-benzoic acid (PTBA) to replace BTBA and constructed other new dye LY-2 (Fig.1). Our preliminary experiments have shown that there is much lower external quantum efficiency (EQE) summit for LY-2, which has also been observed in many of D-A infrared dyes with small energygaps. The key factor may be the low electron injection yield(?ei) resulting from the short excited state lifetimes of these organic dyes, which has not received wide recognition. Moreover, the excited state dynamics have only attracted very little attention15–21, resulting in an unclear mechanism of electronic injection dynamics, which cannot provide a rational guide in the further design of narrow energy-gap organic dyes in DSCs. Thereby, based upon these two new dyes, herein we will take a close look at the structure related dynamics of excited state evolution and charge transfer occurring at the titania/dye/electrolyte interface by joint theoretical calculations and experimental measurements.

    Fig.1 Chemical structures of LY-1 and LY-2, characteristic of BTBA (red) and PTBA (blue)

    2 Experimental

    2.1 Materials

    Chloroform (99.9%), ethanol (99.9%), acetonitrile (99.9%), tetrahydrofuran (THF, 99.9%), lithium bis(trifluoromentylsulfonyl)imide (LiTFSI, 99.9%), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI, 99.9%), and 4-tert-butylpyridine (TBP, 99.9%) were purchased from Sigma-Aldrich and used without further purification. The scattering TiO2paste was purchased from Dyesol and the transparent TiO2paste was prepared according to the literature method22. The details on the syntheses of LY-1 and LY-2 are described in the Supporting Information.

    2.2 Computational details

    All the calculations were performed with the Gaussian 09program23. The long hexyl substituent was reduced to ethyl to improve the computational efficiency. The hybrid PBE024and UPBE025functionals were selected in geometry optimizations for the ground state and photooxidized state, respectively, which have been previously demonstrated to be appropriate to describe the electronic and optical features of organic donor-acceptor dyes26. The MPW1K27functional was picked to calculate the vertical excitation energies and optimize the geometries of the lowest singlet excited state, which has been demonstrated to be a suitable for describing charge transfer like transitions on push-pull organic dyes28. The solvent effect on the geometries as well as the transition energies have been taken into account by means of the conductor-like polarizable continuum model(CPCM)29. The reorganization energies were calculated via the equation of λreg= [E(M+) + E+(M)] ? [E+(M+) + E(M)], where E(M+) denotes the energy of a neutral molecule at the optimized geometry of its single-electron oxidized form, E+(M) denotes the energy of a oxidized molecule at the optimized geometry of its neutral form, E+(M+) and E(M) denote the energies of the oxidized and neutral molecules at the optimized geometry of themselves, respectively. Considering the same electrolyte used for these two dyes, the difference of the Gibbs free energy for hole injection was derived from the calculated energy of the lowest unoccupied β orbital. The 6-311G(d,p) basisset was selected for all the calculation, which has been demonstrated perfectly adequate for most classes of organic dyes30.

    2.3 Voltammetric, UV-Vis, and PL measurements

    Cyclic voltammograms of the THF solutions of dye molecules were measured on a CHI660C electrochemical workstation and all potentials were reported with the ferrocene/ferrocenium (Fc/Fc+) as reference. Steady-state electronic absorption spectra were carried out on an Agilent G1103A spectrometer. Stationary photoluminescence (PL) spectra were recorded with an ICCD camera with cw laser excitation at 490 nm. A dyed titania film for electronic absorption and PL measurements was assembled with another bare FTO with a 25-μmthickness Surlyn ring and the internal space was filled with an inert or cobalt electrolyte.

    2.4 Dynamic spectroscopic measurements

    The same laser source was employed in the femtosecond transient absorption (fs-TA) experiments as outlined in our previous paper31. A mode-locked Ti:sapphire laser (Tsunami, Spectra Physics) was used as a source of a regenerative amplifier(RGA, Spitfire, Spectra Physics) to afford 3.7 mJ, 130 fs pulses at 800 nm, which were split into two parts at a ratio of 9/1 with a beam splitter. The main part was delivered to an optical parametric amplifier (TOPAS-C, Light Conversion) to produce pump pulses. The pump light was focused on a rotating sample through a phase-locked chopper. A white light continuum generated by focusing the minor portion of the RGA output on a sapphire was split into two equal beams as the probe and reference lights, which were detected by two multi-channel optical sensors (1024 elements, MS 2022i, CDP Corp.). The polarization between pump and probe beams on a rotating sample was set at the magic angle. The processed signal was displayed with the ExciPRO software (CDP Corp.). All spectra were corrected for the group velocity dispersion of the white light continuum with the Surface Xplorer software (version 2.3) and further analyzed by using the free Glotaran software32. The fs-TA experiments were performed in super-clean laboratory with constant temperature (25 °C). The nanosecond TA measurements have been described in our previous paper33.

    2.5 Cell fabrication and characterization

    A bilayer (4.5 + 5.0) μm thickness) titania film was screenprinted on a pre-cleaned fluorine-doped tin oxide (FTO) conducting glass (Nippon Sheet Glass, Solar, 4 mm thickness) as the negative electrode of DSCs. The size of titania particles is 25 nm for a translucent layer and 350–450 nm for a light-scattering layer. A circular titania electrode (~0.28 cm2) was dyed by immersing it into a 150 mmol·L–1dye solution in the mixed solvent of chloroform and ethanol (V/V, 1/19) for 10 h. The dye-grafted titania electrode was assembled with a platinized FTO electrode by use of a 25-μm-thickness Surlyn ring to yield a thin-layer electrochemical cell. The infiltrated iodine electrolyte is composed of 0.25 mol·L–1tris(2,2'-bipyridine)cobalt(II)di[bis(trifluoromethanesulfonyl)imide], 0.05 mol·L–1tris(2,2'-bipyridine)cobalt(III) tris[bis(trifluoromethanesulfonyl)imide], 0.5 mol·L–1TBP, and 0.1 mol·L-1LiTFSI in acetonitrile. Details on EQE, photocurrent density–photovoltage (J?V), impedance spectroscopy, charge extraction (CE), and transient photovoltage decay (TPD) measurements can be found in our previous publications33,34.

    3 Results and discussion

    The influence of electron acceptor on the energy levels was first inspected by measuring cyclic voltammograms (Fig.2(a))of the dye solutions in THF to reckon the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels as tabulated in Table S1 (Supporting Information). The transformation of electron acceptor form BTBA to PTBA does not exert a distinct influence on the energy level of the HOMO, but brings forth a significant downwards displacement of 310 meV of the LUMO energy level, which can be ascribed to the more electron-deficient character of PTBA, resulting in a smaller energy-gap. Moreover, theoretical calculation disclosed that both S0→ S1transitions of LY-1 and LY-2 are mainly originated from the HOMO to LUMO(Table S1, Supporting Information). Thereby, the LY-2 dye with energy-gap shrinkage displays an obviously red-shift absorption peak at 555 nm with respect to that at 507 nm for LY-1 as shown in Fig.2(b).

    Fig.2 (a) Cyclic voltammograms of LY-1 and LY-2 in THF with 0.1 mol·L-1EMITFSI as the supporting electrolyte (working electrode: glassy carbon; scan rate: 5 mV·s-1); (b) molar extinction coefficients (ε)plotted as a function of wavelength (λ) for the THF solutions of LY-1 and LY-2

    We further examined the photocurrent action spectra(Fig.3(a) of DSCs made from LY-1 and LY-2 in conjunction with a cobalt electrolyte. The details for cell fabrication are described in the experimental section. As depicted in Fig.3(a), thereplacement of BTBA with PTBA brings on an ~100 nm redshiffing of the photocurrent onset wavelength. However, albeit the saturated absorption of the LY-2 grafted titania film in a broad visible spectral region (Fig.3(b)), the corresponding cell exhibits a remarkably lower EQE summit of 48%, contrasting that of 87% for LY-1.

    Fig.3 (a) Plots of external quantum efficiencies (EQE) as a function of wavelength (λ) for cells made with dye-grafted bilayer (4.5 + 5.0) μm thickness) titania films and a cobalt electrolyte. (b) Plots of light harvesting efficiencies (?lh) as a function of wavelength for 9-μmthickness, dye-grafted mesoporous titania films immersed in a cobalt electrolyte for DSC fabrication

    To comprehend the origin of the significant EQE maximum variation, we first scrutinized the dynamics of excited state evolution and carrier photogeneration to derive the ?eiby recording the fs-TA spectra of the dye-grafted mesoporous titania films perfused with a cobalt electrolyte (Fig.4(a, b). It is noted that there are very disparate kinetics traces for the whole tested spectral region as presented in Figs.S2 and S3 (Supporting Information), which indicated the presence of severe spectroscopic superposition in this recorded fs-TA spectra (Fig.4(a, b)). The lack of characteristic kinetics trace for carrier photogeneration makes it to be impossible to estimate the dynamics of electron injection via recording the signal trace at a selected wavelength in this spectral region.

    Fig.4 (a, b) fs-TA spectra of 2.1-μm-thickness, mesoporous titania films grafted with LY-1 (panel (a)) and LY-2 (panel (b)), which are also in contact with a cobalt electrolyte. The pulse fluence of pump light at 490 nm is 13.9 uJ·cm-2. (c) The dynamic model used in target analysis of fs-TA spectra of a 2.1-μm-thickness, dye grafted titania film. (d, e) Species-associated difference spectra of CT1, CT2, CT3, and CS for the LY-1 (panel (d) and LY-2(panel (e)) samples, which are generated via target analysis of the spectra in panels (a) and (b). (f, g) Kinetic traces generated by target analysis, for GS(dark yellow), CT1(red), CT2(green), CT3(blue), and CS (magenta) of the LY-1 (panel (f) and LY-2 (panel (g) samples. The grey lines in panels (e) and (f) represent the instrument response functions (IRF).

    At the complicated interface of a typical DSC with push-pull organic dyes, a pump pulse excites the dye molecules in the S1absorption band creating S1excitons via intramolecular charge transfer, which are initially in the ground state conformation. Herein, this optically generated “hot” Franck-Condon (FC) excited state was termed as “CT1” on account of its charge transfer character. In general, the molecular conformation of CT1will relax towards a new equilibrium state geometry by stepwise vibrational and torsional relaxations motion, processing tens of picoseconds timescale35,36. At the same time, the other electron transfer channels such as electron injection from the excited dye molecules to titania and de-excitation to the ground state (GS) will also occur. It is noteworthy that there are large energy losses during the excited state relaxations for both LY-1 and LY-2, which can be perceived from the static absorption and photoluminescence spectra of dye-grafted titania films as shown in Fig.S4 (Supporting Information), featuring large Stokes shifts of 0.64 and 0.65 eV for LY-1 and LY-2, respectively. These large energy losses have implied the occurrence of remarkably excited state relaxations, probably via conforma-tion change of excited state.

    Fig.5 Optimized structures of S0and S1states for LY-1 and LY-2 The hydrogen atoms are not shown.

    To further rationalize the speculation of the presence of significant excited state conformation change during the relaxation process, we simulated the molecular geometries in the ground state (S0) and the relaxed lowest singlet excited state (S1)using the density functional theory (DFT) and time dependent density functional theory (TDDFT) frameworks, respectively. It is well known that TDDFT employing conventional exchangecorrelation (x-c) functionals obtains large underestimations on the excitation energies for excited states with a significant longrange charge transfer character37. Herein, the hybrid MPW1K27functional including 42% of Hartree-Fock (HF) exchange was selected to treat the excited state, which has been demonstrated to be suitable for describing charge transfer like transitions on push-pull organic dyes28. By using this functional, TDDFT calculation can nicely reproduce the experimented absorption and PL spectra as well as Stokes shifts for both LY-1 and LY-2 as listed in Table S2 (Supporting Information). Herein, the equilibrium geometry of S0can be considered as the conformation of the optically generated “hot” CT1, according to the Franck-Condon principle38,39. The optimized S0geometries of the LY-1 and LY-2 dyes are shown in Fig.5, and the detailed structural parameters are presented in Figs.S5 and S6 (Supporting Information). It is noted that both the conjugated backbones in LY-1 and LY-2 feature large twisted conformation, but the dihedral angle between BA and PT units in LY-2 (12.3°) is evidently smaller than that between BA and BT segments in LY-1(35.2°), owing to the reduced steric hindrance. As presented in Fig.5, in general, the S1relaxation takes place along the whole molecular backbone (see the detailed parameters in Figs.S5 and S6), and the optimizations of the S1geometries of LY-1 and LY-2 indeed lead to obvious planarization of the conjugated backbones characteristic of quinoid character, which are typically accompanied by slightly twisted motions in the alkoxylsubstituted phenyl rings (Figs.S5 and S6). This torsional relaxation can cause stabilization of the S1which has also been observed in the other organic conjugated materials40,41, resulting in about 0.3 eV energy losses for both LY-1 and LY-2. Moreover, this complicated geometry displacements during the relaxation of S1may suggest the presence of multistep conformation change.

    In accordance with above analysis, by employing a dynamic model involving multiple state electron injection as presented in Fig.4(c), we further carried out target analysis and identified the presence of at least four key species during the excited state evolution, indicating that there are two stepwise relaxed excited charge-transfer states (CT2and CT3) apart from the CT1and the charge-separated state (CS). On the basis of the time constants of species evolution derived from the target analysis(Table 1), the dynamic traces at a suit of wavelengths (Figs.S2 and S3) and the difference spectra at a set of time delays can be nicely reproduced (Figs.S7 and S8 (Supporting Information). The species-associated difference spectra (SADS) of the key components of CT1, CT2, CT3, and CS were presented in Fig.4(d, e). Their kinetic traces were depicted in Fig.4(f, g).

    As listed in Table 1, the time constants (τ1) for the conformational relaxation from “hot” CT1to “partly relaxed” CT2of LY-1 and LY-2 are derived to be 1.9 and 0.7 ps, respectively. This could be ascribed to a relative coplanar conformation for LY-2 between PT and BA units, which has been observed in our previous study on other two donor-π-acceptor (D-π-A) molecules with the corresponding twisted and coplanar π-linkers.18Although the transformation of acceptor form BTBA to PTBA brings forth a significant downwards displacement of LUMO(310 meV), the time constant (τ2) of 12.9 ps for electron injection from CT1to the TiO2film for LY-2 just slightly increases with respect to that of 10.9 ps for LY-1, which can be ascribed to a stronger electron coupling of CT1and titania originated from a smaller torsion angle between the BA and PT segments. Furthermore, both of the two dyes possess distinctly larger time constants (> 20 ps) of the deexcitation from CT1to the ground state (GS) with respect to other two evolution channels of CT1.

    Table 1 Time constants derived from target analysis of fs-TA spectra of dye-grafted titania films

    Comparing with LY-1, the LY-2 dye has a faster structural relaxation from CT2to CT3, whereas the retarded electron injec-tion from CT2in combination with a swift deexcitation to GS jointly give rise to a lower branching ratio of electron injection from CT2for LY-2. The time constant (τ7) for electron injection from CT3is determined to be 398.6 ps for LY-2, which is two times slower than that of LY-1 (156.3 ps), which may be dominated by the smaller driving force. Moreover, the significantly increased τ7with respect to τ2for these two dyes can be mainly attributed to the energy losses along with the conformational relaxation. Overall, we derived the amplitude-averaged time constants (τei) for electron injection to be 83.2 ps for LY-1 and 173.4 ps for LY-2 by employing a three exponential growth function, ΔA = A0+ A1exp(t/τ1) + A2exp(t/τ2) + A3exp(t/τ3), to fit the generation of CS, where Aidenotes the fractional amplitude. Moreover, the ?eiare calculated to be 93% and 51% for LY-1 and LY-2, respectively, via equation, ?ei= τ1/(τ1+ τ2) + [τ2τ6/[(τ1+ τ2) × (τ4τ5+ τ4τ6+ τ5τ6)] × [τ4+ τ5τ8/(τ7+ τ8)], which reasonably clarify the origin of the lower EQE of LY-2 cell.The validness of measured photovoltaic parameters is evaluated by comparing the calculatedwith the experimentally measured Jsc.

    Table 2 Averaged photovoltaic parameters of four cells measured at an irradiance of 100 mW·cm-2, simulated AM1.5 sunlighta

    We further inspected the dynamics of dual-channel chargetransfer reactions of the oxidized dye molecules (D+) with the photoinjected electrons in titania and the electron-donating species in electrolyte to derive the hole injection efficiency (?hi) by performing nanosecond TA experiments. A dye-grafted titania film infiltrated with an inert electrolyte consisting of 0.1 mol·L–1LiTFSI, and 0.5 mol·L–1TBP in acetonitrile was employed to assemble a control cell. The half lifetimeof charge recombination reaction of the photoinjected electrons in titania with the holes on the photooxidized dye molecules can be derived from the transient absorption traces (Fig.6(a)) of the control cells, being 1500 μs for the LY-2 dye with PT segment, which is over 5 times shorter than that of 8500 μs for the LY-1 dye involved BT unit. Considering the comparable distribution of titania surface states in these cells (see the following discussion), the spatial location of hole on the photooxidized dye molecule relative to the titania surface may play a key influence on the this charge recombination reaction. On the other side, the addition of the cobalt redox couple into the inert electrolyte brings forth significantly accelerated absorption decays for both the LY-1 and LY-2 cells (Fig.6(b)), indicating the occurrence of swift hole injection from the photooxidized dye molecules to the cobalt redox electrolyte. The half lifetimeof hole injection for LY-2 is about 27.9 μs, 8 times smaller than that of 223.9 μs for LY-1. DFT calculations have disclosed that LY-1and LY-2 possess the same reorganization energy of 0.22 eV for hole injection reaction, and similar hole distribution of oxidized dye molecules as shown in Fig.S9 (Supporting Information), indicating that the reorganization energy and coupling factor are not likely to exert a distinct influence on the kinetics of hole injection. Moreover, DFT calculation also revealed that the photooxidized state of LY-2 has a 20 meV larger Gibbs free energy than that of LY-1, which may be one of the crucial factors in modulating the almost 8 times kinetic variation of hole injection, apart from the possible influence of the microstructure of self-assemble dye layer. Overall, both dyes exhibit close-to-unity ?hi, which are not the governing factor of EQE summits.

    Fig.6 Absorption traces at a probe wavelength of 785 nm upon 5 ns laser excitation for the 4.5-μm-thick ness, dye-grafted titania films immersed in the inert (panel (a) and iodine (panel (b) electrolytes

    The photocurrent density–voltage (J–V) characteristics(Fig.7(a) of these two cells were further recorded at an irradiance of 100 mW·cm–2, simulated AM1.5 sunlight, and the detailed parameters were listed in Table 2. In agreement with the EQE measurement, the LY-2 dye with a narrow energy gap exhibits a considerably reduced short-circuit photocurrent density(Jsc) of 10.70 mA·cm–2with respect to that of 14.95 mA·cm–2for LY-1. Moreover, the replacement of BTBA with PTBA brings forth an obviously decreased open-circuit photovoltage(Voc) from 885 to 818 mV, resulting in a remarkably lower power conversion efficiency (PCE) of 6.4% for LY-2 in contrast to that of 9.0% for LY-1. times in titaniaas a function of charge

    Fig.7 (a) Current density-voltage (J-V) characteristics measured at an irradiance of 100 mW·cm-2, simulated AM1.5 sunlight. An antireflection film was adhered to the testing cells during measurements. The aperture area of the employed metal mask is 0.160 cm2. (b) The relationship of charge stored (Q) in the dye-grafted titania film and open-circuit photovoltage (Voc). (c) Plots of electron half-life-

    Note that for a fixed redox electrolyte in DSCs, the fluctuation of Vocmainly stems from the movement of the electron quasi-Fermi-level (EF,n) of TiO2, which originates from a change of conduction band edge (Ec) and/or a variation of electron density of TiO242. Considering the 100% of ?hifor both dyes, the electron density is mainly determined by the interfacial charge recombination of photoinjected electron with Co(III) anions in electrolyte at a given flux of photocarrier generation. Hence, we further carried out the charge extraction43and transient photovoltage decay44measurements to clarify the origins of difference in Vocbetween LY-1 and LY-2. As showed in Fig.7(b), the LY-1 and LY-2 cells feature the same charges (Q) stored in the TiO2at a fixed Voc, indicating a similar Ecfor both dyes. So the aforesaid diminution of Vocfor LY-2 compared with LY-1, mainly arises from over one order of magnitude shorter half lifetimeof the interfacial charge recombination at a given Q as presented in Fig.7(c). Further impedance spectroscopy measurements45have disclosed that the LY-2 cell features similar electron diffusion lengths (Fig.S10)with respect to LY-1 cell at a given density of state (DOS), suggesting the electron collection efficiency is not likely the key factor of controlling EQE summits.

    4 Conclusions

    In summary, we have tuned the energy-gaps of triarylaminebased organic donor-acceptor dyes by employing benzothiadiazole-benzoic acid and pyridothiadiazole-benzoic acid as the electron acceptors. Through a joint theoretical simulations and experimental measurements, we have proved that the substitution of benzothiadiazole with a more electron-deficient pyridothiadiazole can endow the dye with a reduced energy-gap for an augmented light absorption at desirable longer wavelengths by lowering the LUMO energy level. DFT and TDDFT calculations demonstrated that the equilibrium excited states of these two dyes both feature a more planar conjugated backbone with respect to the optically generated “hot” excited state by undergoing torsion-induced excited state relaxations. Ultrafast spectroscopic measurements have revealed that the sluggish electron injection from low-lying excited states and the short lifetime of excited state jointly lead to a much lower overall electron injection yield for the dye with pyridothiadiazole, accounting for its lower maximum of external quantum efficiencies. Our study has underlined the importance of long-lived excited states for an organic dye with a low LUMO energy level, which should be seriously considered in the further rational design of narrow energy-gap organic dyes in dye-sensitized solar cells.

    Supporting lnformation: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)O'Regan, B.; Gr?tzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    (2)Robertson, N. Angew. Chem. Int. Edit. 2006, 45, 2338. doi: 10.1002/anie.200503083

    (3)Imahori, H.; Umeyama, T.; Ito, S. Accounts Chem. Res. 2009, 42, 1809. doi: 10.1021/ar900034t

    (4)Mishra, A.; Fischer, M. K. R.; B?uerle, P. Angew. Chem. Int. Edit. 2009, 48, 2474. doi: 10.1002/anie.v48:14

    (5)Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.;Falaras, P. Coord. Chem. Rev. 2011, 255, 2602. doi: 10.1016/j.ccr.2010.11.006

    (6)Li, C.; Wonneberger, H. Adv. Mater. 2012, 24, 613. doi: 10.1002/adma.201104447

    (7)Yen, Y. S.; Chou, H. H.; Chen, Y. C.; Hsu, C. Y.; Lin, J. T. J. Mater. Chem. 2012, 22, 8734. doi: 10.1039/c2jm30362k

    (8)Li, L. L.; Diau, E. W. G. Chem. Soc. Rev. 2013, 42, 291. doi: 10.1039/C2CS35257E

    (9)Liang, M.; Chen, J. Chem. Soc. Rev. 2013, 42, 3453. doi: 10.1039/c3cs35372a

    (10)Zhang, S.; Yang, X.; Numata, Y.; Han, L. Energy Environ. Sci. 2013, 6, 1443. doi: 10.1039/c3ee24453a

    (11)Wu, Y.; Zhu, W. Chem. Soc. Rev. 2013, 42, 2039. doi: 10.1039/C2CS35346F

    (12)Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.;Hanaya, M. Chem. Commun., 2015, 51, 15894. doi: 10.1039/C5CC06759F

    (13)Zhang, M.; Wang, Y.; Xu, M.; Ma, W.; Li, R.; Wang, P. Energy Environ. Sci. 2013, 6, 2944. doi: 10.1039/c3ee42331j

    (14)Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.;Nazeeruddin, M. K.; Gr?tzel, M. Nat. Chem. 2014, 6, 242. doi: 10.1038/nchem.1861

    (15)Martín, C.; Zió?ek, M.; Marchena, M.; Douhal, A. J. Phys. Chem. C 2011, 115, 23183. doi: 10.1021/jp203489u

    (16)Zió?ek, M.; Cohen, B.; Yang, X.; Sun, L.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Douhal, A. Phys. Chem. Chem. Phys. 2012,14, 2816. doi: 10.1039/c2cp23825j

    (17)Wang, Y.; Yang, L.; Xu, M.; Zhang, M.; Cai, Y.; Li, R.; Wang, P. J. Phys. Chem. C 2014, 118, 16441. doi: 10.1021/jp410929g

    (18)Yao, Z.; Yang, L.; Cai, Y.; Yan, C.; Zhang, M.; Cai, N.; Dong, X.; Wang, P. J. Phys. Chem. C 2014, 118, 2977. doi: 10.1021/jp412070p

    (19)Yao, Z.; Yan, C.; Zhang, M.; Li, R.; Cai, Y.; Wang, P. Adv. Energy Mater. 2014, 4, 1400244.

    (20)Zhang, M.; Yao, Z.; Yan, C.; Cai, Y.; Ren, Y.; Zhang, J.; Wang, P. ACS Photonics 2014, 1, 710. doi: 10.1021/ph5001346

    (21)Zhang, M.; Yang, L.; Yan, C.; Ma, W.; Wang, P. Phys. Chem. Chem. Phys. 2014, 16, 20578. doi: 10.1039/C4CP03230F

    (22)Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Gr?tzel, M. J. Phys. Chem. B 2003, 107, 14336. doi: 10.1021/jp0365965

    (23)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.

    (24)Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029. doi: 10.1063/1.478401

    (25)Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. doi: 10.1063/1.478522

    (26)Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofine, I.;Adamo, C. J. Chem. Theory Comput. 2008, 4, 123. doi: 10.1021/ct700187z

    (27)Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. doi: 10.1021/jp000497z

    (28)Pastore, M.; Mosconi, E.; De Angelis, F.; G?tzel, M. J. Phys. Chem. C 2010, 114, 7205. doi: 10.1021/jp100713r

    (29)Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189

    (30)Perpete, E. A.; Jacquemin, D. J. Photochem. Photobiol. A: Chem. 2007, 187, 40. doi: 10.1016/j.jphotochem.2006.09.010

    (31)Wang, Y.; Yang, L.; Zhang, J.; Li, R.; Zhang, M.; Wang, P. ChemPhysChem 2014, 15, 1037. doi: 10.1002/cphc.201301006

    (32)Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. J. Stat. Softw. 2012, 49, 1

    (33)Liu, J.; Li, R.; Si, X.; Zhou, D.; Shi, Y.; Wang, Y.; Wang, P. Energy Environ. Sci. 2010, 3, 1924. doi: 10.1039/c0ee00304b

    (34)Cai, N.; Wang, Y.; Xu, M.; Fan, Y.; Li, R.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 1846. doi: 10.1002/adfm.v23.14

    (35)Kukura, P.: McCamant, D. W.; Yoon, S.; Wandschneider, D. B.;Mthies, R. A. Science 2005, 310, 1006. doi: 10.1126/science.1118379

    (36)Tamai, N.; Miyasaka, H. Chem. Rev. 2000, 100, 1875. doi: 10.1021/cr9800816

    (37)Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys. 2003, 119, 2943. doi: 10.1063/1.1590951

    (38)Frank, J. Trans. Faraday Soc. 1926, 21, 536. doi: 10.1039/tf9262100536

    (39)Condon, E. Phys. Rev. 1926, 28, 1182. doi: 10.1103/PhysRev.28.1182

    (40)Lanzani, G.; Nisoli, M.; De Silvestri, S.; Barbarella, G.;Zambianchi, M.; Tubino, R. Phys. Rev. B 1996, 53, 4453. doi: 10.1103/PhysRevB.53.4453

    (41)Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. Accounts Chem. Res. 2014, 47, 1155. doi: 10.1021/ar400263p

    (42)O'Regan, B. C.; Durrant, J. R. Accounts Chem. Res. 2009, 42, 1799. doi: 10.1021/ar900145z

    (43)Duffy, N. W.; Peter, L. M.; Rajapakse, R. M. G.; Wijayant, K. G. U. Electrochem. Commun. 2000, 2, 658. doi: 10.1016/S1388-2481(00)00097-7

    (44)O'Regan, B. C.; Bakker, K.; Kroeze, J.; Smit, H.; Sommeling, P.;Durrant, J. R. J. Phys. Chem. B 2006, 110, 17155. doi: 10.1021/jp062761f

    (45)Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360. doi: 10.1039/b310907k

    Ultrafast Spectroscopic Studies of Excited State Relaxation and Electron lnjection in Organic Dye-Sensitized Solar Cells

    YANG Lin

    Unlocking the dynamics of the eνolution of the excited state at the complicated titania/dye/ electrolyte interface in organic dye-sensitized solar cells is crucial to proνide a basis for the rational design of low-energy-gap organic photosensitizers. By constructing two organic donor-acceptor dyes composed of benzothiadiazole-benzoic acid (BTBA) and pyridothiadiazole-benzoic acid (PTBA) as electron acceptors, we haνe identified the images of multiple-step relaxations of the excited state and multiple-state electron injections at the titania/dye/electrolyte interface using ultrafast transient absorption spectroscopic measurements in conjunction with theoretical simulations. Density functional theory and time-dependent density functional theory calculations indicate that there should be torsion-induced excited state relaxations from an optically generated “hot” excited state to the equilibrium excited state characteristic of a more planar conjugated backbone and a quinonoid structure for dye molecules on the titania surface, suggesting the probable presence of multiple-state electron injections at the titania/dye/electrolyte interface. In νirtue of a target analysis of femtosecond transient absorption spectra, we haνe found that the dye with PTBA features a much lower oνerall electron injection yield with respect to the dye with BTBA owing to the sluggish electron injection and short lifetime of the excited state, accounting for a lower maximum of external quantum efficiencies of the deνice made from the dye with PTBA as an acceptor.

    Solar cell; Organic dye; Interface; Excited state; Charge transfer

    O644

    10.3866/PKU.WHXB2015110311,2LI Yang1,2CHEN Shu1,2ZHANG Jing1ZHANG Min1,*WANG Peng1

    Received: October 2, 2015; Revised: November 2, 2015; Published on Web: November 3, 2015.

    *Corresponding author. Email: min.zhang@ciac.ac.cn; Tel: +86-431-85262953.

    The project was supported by the National Natural Science Foundation of China (51473158, 91233206, 51125015).

    國家自然科學(xué)基金(51473158, 91233206, 51125015)資助項目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    噻二唑激發(fā)態(tài)二氧化鈦
    1,3,4-噻二唑取代的氮唑類化合物的合成及體外抗真菌活性
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    1,3,4-噻二唑類衍生物在農(nóng)藥活性方面的研究進展
    亞砷酸鹽提高藻與蚤培養(yǎng)基下納米二氧化鈦的穩(wěn)定性
    1,3,4-噻二唑衍生物的合成與應(yīng)用
    鐵摻雜二氧化鈦的結(jié)構(gòu)及其可見或紫外光下對有機物催化降解的行為探析
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    二氧化鈦納米管的制備及其應(yīng)用進展
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    美女xxoo啪啪120秒动态图| 亚洲av二区三区四区| 婷婷色综合大香蕉| 亚洲精品自拍成人| 两个人的视频大全免费| 国产高清不卡午夜福利| 国产av精品麻豆| 男的添女的下面高潮视频| 国产男女超爽视频在线观看| 国产成人aa在线观看| 一级,二级,三级黄色视频| 精品少妇内射三级| 女人久久www免费人成看片| 一边亲一边摸免费视频| 男女啪啪激烈高潮av片| 久久久久久人妻| 一区二区三区四区激情视频| 男女边摸边吃奶| 日韩 亚洲 欧美在线| 国产一区二区在线观看av| 久久久久久久久久久久大奶| 老司机影院毛片| av国产久精品久网站免费入址| 多毛熟女@视频| 一区在线观看完整版| 欧美三级亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91 | av免费观看日本| av有码第一页| 一本一本综合久久| 午夜久久久在线观看| 亚洲av中文av极速乱| 国产精品一区二区三区四区免费观看| 久久久久久久久久久久大奶| 亚洲精品日本国产第一区| 又粗又硬又长又爽又黄的视频| av在线app专区| 大片免费播放器 马上看| 99热这里只有精品一区| 国产精品久久久久久av不卡| 欧美性感艳星| 久久久久久久久久久久大奶| 亚洲精品456在线播放app| 久久 成人 亚洲| 自拍欧美九色日韩亚洲蝌蚪91 | 日本wwww免费看| 免费观看av网站的网址| 国产精品99久久久久久久久| 国产精品不卡视频一区二区| 97超碰精品成人国产| 欧美老熟妇乱子伦牲交| 亚洲性久久影院| 不卡视频在线观看欧美| 欧美激情国产日韩精品一区| 日日啪夜夜爽| 国产亚洲91精品色在线| 视频区图区小说| 亚洲一区二区三区欧美精品| 久久久午夜欧美精品| 你懂的网址亚洲精品在线观看| 三级经典国产精品| 成年人午夜在线观看视频| av又黄又爽大尺度在线免费看| 深夜a级毛片| 看免费成人av毛片| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 欧美日韩亚洲高清精品| 夜夜爽夜夜爽视频| 这个男人来自地球电影免费观看 | 久热久热在线精品观看| 久久久久国产精品人妻一区二区| 91在线精品国自产拍蜜月| 夫妻午夜视频| 少妇人妻 视频| 黄色配什么色好看| 黄色视频在线播放观看不卡| 亚州av有码| 国产熟女午夜一区二区三区 | 亚洲精品国产成人久久av| 99re6热这里在线精品视频| 2021少妇久久久久久久久久久| 蜜臀久久99精品久久宅男| av福利片在线观看| 国产精品一区二区在线观看99| 九九爱精品视频在线观看| 国产成人aa在线观看| 在线观看免费高清a一片| 性色avwww在线观看| 国产美女午夜福利| 色视频www国产| av卡一久久| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久精品精品| 国产精品无大码| 国产在线免费精品| 伦理电影大哥的女人| 久久狼人影院| 久久精品久久久久久久性| 91精品国产国语对白视频| 国产精品久久久久久av不卡| 日本欧美国产在线视频| 另类精品久久| 特大巨黑吊av在线直播| 内地一区二区视频在线| 韩国高清视频一区二区三区| 91精品国产九色| 亚洲精品乱码久久久v下载方式| 乱码一卡2卡4卡精品| 男女无遮挡免费网站观看| 男人和女人高潮做爰伦理| 亚洲国产欧美在线一区| 全区人妻精品视频| 国产精品一区二区性色av| 国产又色又爽无遮挡免| 成人免费观看视频高清| 亚洲电影在线观看av| 亚洲一区二区三区欧美精品| 久久这里有精品视频免费| 老司机影院毛片| 国产日韩欧美在线精品| 大香蕉久久网| 天堂俺去俺来也www色官网| 精品一区二区三卡| 麻豆乱淫一区二区| 日韩一区二区三区影片| 免费观看性生交大片5| 免费在线观看成人毛片| 国产精品久久久久久av不卡| 少妇 在线观看| 中文字幕av电影在线播放| 国产精品人妻久久久影院| 国精品久久久久久国模美| 久久精品久久久久久噜噜老黄| 精品午夜福利在线看| 亚洲av.av天堂| 国产精品福利在线免费观看| 99热网站在线观看| 免费观看在线日韩| 99国产精品免费福利视频| 免费看光身美女| av在线app专区| 赤兔流量卡办理| 狠狠精品人妻久久久久久综合| 97超碰精品成人国产| 中文字幕人妻熟人妻熟丝袜美| 91成人精品电影| 久久精品国产鲁丝片午夜精品| 亚洲av电影在线观看一区二区三区| 91在线精品国自产拍蜜月| 国产精品人妻久久久影院| www.色视频.com| 搡女人真爽免费视频火全软件| 久久久久久久久久久久大奶| 国产一区二区在线观看av| 最新的欧美精品一区二区| 国内揄拍国产精品人妻在线| 高清黄色对白视频在线免费看 | 3wmmmm亚洲av在线观看| 亚洲电影在线观看av| 边亲边吃奶的免费视频| 纵有疾风起免费观看全集完整版| 三级经典国产精品| 精品人妻熟女毛片av久久网站| 99国产精品免费福利视频| 亚洲不卡免费看| 又爽又黄a免费视频| 99热这里只有是精品在线观看| 在线 av 中文字幕| 熟女人妻精品中文字幕| 一区二区三区四区激情视频| 免费看av在线观看网站| 热re99久久国产66热| 一级毛片我不卡| 成人漫画全彩无遮挡| 少妇丰满av| 狂野欧美激情性xxxx在线观看| 亚洲天堂av无毛| 亚洲欧美精品专区久久| 亚洲欧美精品自产自拍| 久久久亚洲精品成人影院| 你懂的网址亚洲精品在线观看| 欧美老熟妇乱子伦牲交| 国产有黄有色有爽视频| 欧美日本中文国产一区发布| 国产真实伦视频高清在线观看| 日韩欧美 国产精品| 一区二区三区乱码不卡18| 欧美精品亚洲一区二区| 能在线免费看毛片的网站| 香蕉精品网在线| 中文字幕精品免费在线观看视频 | 99re6热这里在线精品视频| 欧美精品高潮呻吟av久久| tube8黄色片| 国产欧美日韩一区二区三区在线 | 妹子高潮喷水视频| 简卡轻食公司| 国产乱人偷精品视频| 亚洲成人一二三区av| av在线老鸭窝| 18禁动态无遮挡网站| tube8黄色片| 日韩亚洲欧美综合| 高清欧美精品videossex| 亚洲婷婷狠狠爱综合网| 亚洲人与动物交配视频| 99久久精品国产国产毛片| 美女内射精品一级片tv| 精品少妇内射三级| av国产精品久久久久影院| 精品一区二区三区视频在线| av不卡在线播放| 少妇人妻精品综合一区二区| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区激情| 精品亚洲乱码少妇综合久久| 在线观看一区二区三区激情| kizo精华| 欧美区成人在线视频| 亚洲电影在线观看av| 久久久久精品久久久久真实原创| 久久久国产一区二区| 99九九在线精品视频 | 久久久久久久久久久免费av| 亚洲av中文av极速乱| 另类亚洲欧美激情| 国产毛片在线视频| 最新的欧美精品一区二区| 大片电影免费在线观看免费| 午夜91福利影院| 纯流量卡能插随身wifi吗| 美女视频免费永久观看网站| 涩涩av久久男人的天堂| 久久亚洲国产成人精品v| 久久热精品热| 一级片'在线观看视频| 成年人午夜在线观看视频| 两个人免费观看高清视频 | 五月天丁香电影| 一区二区三区四区激情视频| 欧美另类一区| 街头女战士在线观看网站| 久久午夜综合久久蜜桃| 国产精品欧美亚洲77777| 精品一区二区三区视频在线| 精品视频人人做人人爽| .国产精品久久| 观看av在线不卡| 五月伊人婷婷丁香| 亚洲欧美精品自产自拍| 久久精品国产自在天天线| 亚洲精品色激情综合| 少妇人妻 视频| 色视频在线一区二区三区| 丝袜脚勾引网站| 六月丁香七月| 最后的刺客免费高清国语| 久久国内精品自在自线图片| 插阴视频在线观看视频| 国产黄色视频一区二区在线观看| 成年女人在线观看亚洲视频| 婷婷色麻豆天堂久久| 26uuu在线亚洲综合色| 日韩大片免费观看网站| 精品国产乱码久久久久久小说| xxx大片免费视频| av一本久久久久| 精品国产国语对白av| 久久人人爽人人片av| 黑人巨大精品欧美一区二区蜜桃 | 欧美bdsm另类| 夫妻午夜视频| 美女cb高潮喷水在线观看| 成年av动漫网址| 欧美高清成人免费视频www| 成人毛片a级毛片在线播放| 免费人妻精品一区二区三区视频| 免费av中文字幕在线| 国产亚洲精品久久久com| 丁香六月天网| av天堂中文字幕网| 这个男人来自地球电影免费观看 | 欧美日韩亚洲高清精品| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 亚洲精品乱久久久久久| 国产在视频线精品| 国产乱人偷精品视频| 夫妻性生交免费视频一级片| 菩萨蛮人人尽说江南好唐韦庄| 精品卡一卡二卡四卡免费| 丁香六月天网| 成年人免费黄色播放视频 | av线在线观看网站| 国产av一区二区精品久久| 少妇高潮的动态图| 边亲边吃奶的免费视频| 精品久久久久久电影网| 成人18禁高潮啪啪吃奶动态图 | 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 中文字幕免费在线视频6| 中国美白少妇内射xxxbb| av播播在线观看一区| 丰满迷人的少妇在线观看| 国产精品一二三区在线看| 国产亚洲一区二区精品| 日韩一区二区视频免费看| 亚洲欧美精品自产自拍| 爱豆传媒免费全集在线观看| 最近手机中文字幕大全| 成人美女网站在线观看视频| 亚洲精品aⅴ在线观看| 成人特级av手机在线观看| 在线观看www视频免费| 欧美日韩亚洲高清精品| 久久久精品免费免费高清| 日本黄色日本黄色录像| 亚洲精品日韩在线中文字幕| 精品国产乱码久久久久久小说| 9色porny在线观看| 中文字幕精品免费在线观看视频 | 精品国产一区二区三区久久久樱花| 天堂中文最新版在线下载| 五月玫瑰六月丁香| 国产精品久久久久成人av| 亚洲图色成人| 国产精品.久久久| 日韩av在线免费看完整版不卡| 伦理电影免费视频| 一级黄片播放器| 国产又色又爽无遮挡免| 欧美区成人在线视频| 久久久久视频综合| 免费观看的影片在线观看| 久久狼人影院| 人妻制服诱惑在线中文字幕| 亚洲精品日韩在线中文字幕| 国产av国产精品国产| 国产深夜福利视频在线观看| 伊人亚洲综合成人网| 一二三四中文在线观看免费高清| 丝袜喷水一区| 高清午夜精品一区二区三区| 97超视频在线观看视频| 久久国内精品自在自线图片| 极品教师在线视频| 久久久久国产网址| h视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看日韩| 观看美女的网站| 人妻系列 视频| 国产午夜精品一二区理论片| 边亲边吃奶的免费视频| 日本猛色少妇xxxxx猛交久久| 亚洲欧美清纯卡通| 欧美精品高潮呻吟av久久| a级毛片在线看网站| 色视频在线一区二区三区| 精品亚洲乱码少妇综合久久| 久久人妻熟女aⅴ| 噜噜噜噜噜久久久久久91| 三上悠亚av全集在线观看 | a级毛片免费高清观看在线播放| 国产精品久久久久久精品古装| 亚洲成色77777| 午夜激情久久久久久久| 五月天丁香电影| 久热这里只有精品99| 久久久久久久久久久久大奶| 亚洲av电影在线观看一区二区三区| 亚洲成人一二三区av| 三级经典国产精品| 777米奇影视久久| 麻豆乱淫一区二区| 欧美变态另类bdsm刘玥| 午夜福利在线观看免费完整高清在| 自拍欧美九色日韩亚洲蝌蚪91 | 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 国产 精品1| 国产白丝娇喘喷水9色精品| 日韩制服骚丝袜av| 嫩草影院入口| 老女人水多毛片| 制服丝袜香蕉在线| a级毛片免费高清观看在线播放| 韩国高清视频一区二区三区| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| 黄色怎么调成土黄色| 伊人久久国产一区二区| 国产精品99久久久久久久久| 哪个播放器可以免费观看大片| 亚洲情色 制服丝袜| 成年人午夜在线观看视频| 精品人妻一区二区三区麻豆| 肉色欧美久久久久久久蜜桃| 国产国拍精品亚洲av在线观看| 人妻系列 视频| 国产精品一区二区三区四区免费观看| 各种免费的搞黄视频| 三级国产精品片| 国产高清不卡午夜福利| av又黄又爽大尺度在线免费看| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆| 成人亚洲欧美一区二区av| 99热网站在线观看| 午夜福利影视在线免费观看| 男女无遮挡免费网站观看| a级毛片在线看网站| av在线播放精品| 在线观看人妻少妇| 久久久久久久久久久久大奶| 久久97久久精品| 日韩视频在线欧美| 一区二区三区精品91| 六月丁香七月| 秋霞伦理黄片| 观看av在线不卡| 曰老女人黄片| av有码第一页| 免费av中文字幕在线| 狠狠精品人妻久久久久久综合| 日韩欧美 国产精品| 国产成人a∨麻豆精品| 两个人免费观看高清视频 | 亚洲人与动物交配视频| 久久久精品免费免费高清| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 99精国产麻豆久久婷婷| av福利片在线| 黄色视频在线播放观看不卡| 久久人妻熟女aⅴ| 精品国产国语对白av| 国产在线免费精品| 亚洲内射少妇av| 久久久久久久精品精品| 久久久精品免费免费高清| 七月丁香在线播放| 中文在线观看免费www的网站| 久久国产乱子免费精品| 另类精品久久| 免费观看a级毛片全部| 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 中文字幕精品免费在线观看视频 | 久久99热这里只频精品6学生| 成人美女网站在线观看视频| 一本色道久久久久久精品综合| 亚洲精品乱码久久久v下载方式| 国产精品秋霞免费鲁丝片| 亚洲av在线观看美女高潮| 亚洲国产av新网站| 国产欧美日韩一区二区三区在线 | 国产中年淑女户外野战色| 女的被弄到高潮叫床怎么办| av在线app专区| a级片在线免费高清观看视频| 日韩精品有码人妻一区| 欧美xxxx性猛交bbbb| 成人免费观看视频高清| 3wmmmm亚洲av在线观看| 久久久久国产精品人妻一区二区| h日本视频在线播放| 国产亚洲最大av| 免费黄频网站在线观看国产| 亚洲精品久久久久久婷婷小说| 中文字幕精品免费在线观看视频 | 亚洲一区二区三区欧美精品| 国模一区二区三区四区视频| 高清视频免费观看一区二区| 精品久久久久久久久av| 亚洲av综合色区一区| 久久久久久久久久久免费av| 国产视频首页在线观看| 自线自在国产av| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 国产精品国产av在线观看| 国产欧美日韩综合在线一区二区 | 国产精品麻豆人妻色哟哟久久| 免费人妻精品一区二区三区视频| 国产精品嫩草影院av在线观看| 国产成人精品福利久久| 成人漫画全彩无遮挡| 欧美一级a爱片免费观看看| 一区二区av电影网| 热re99久久精品国产66热6| 在线看a的网站| 亚洲国产最新在线播放| 一个人看视频在线观看www免费| 精品久久久久久久久av| videos熟女内射| 少妇被粗大猛烈的视频| 99热全是精品| 高清黄色对白视频在线免费看 | 国产成人一区二区在线| 少妇的逼好多水| 午夜影院在线不卡| 亚洲av成人精品一二三区| 国产中年淑女户外野战色| 国产成人精品无人区| 一区二区三区免费毛片| 久久毛片免费看一区二区三区| 日韩中字成人| 亚洲国产最新在线播放| 日韩电影二区| 国产一区二区三区av在线| 亚洲婷婷狠狠爱综合网| 夜夜爽夜夜爽视频| freevideosex欧美| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 91午夜精品亚洲一区二区三区| 偷拍熟女少妇极品色| 亚洲国产精品国产精品| 欧美日韩综合久久久久久| 九色成人免费人妻av| 国产欧美日韩一区二区三区在线 | 丝袜喷水一区| 日本色播在线视频| av女优亚洲男人天堂| 久久久久久久久久久免费av| 狂野欧美激情性xxxx在线观看| av在线老鸭窝| 免费高清在线观看视频在线观看| 99久久综合免费| 精品一区二区三卡| 欧美bdsm另类| a级毛色黄片| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 亚洲国产毛片av蜜桃av| 中文欧美无线码| 能在线免费看毛片的网站| 少妇的逼水好多| 女人精品久久久久毛片| 国产亚洲一区二区精品| 久久久久久久久久久免费av| 伦理电影免费视频| 在线观看人妻少妇| 日本色播在线视频| 国产精品99久久99久久久不卡 | tube8黄色片| 最黄视频免费看| 国产中年淑女户外野战色| 一级毛片黄色毛片免费观看视频| 色视频在线一区二区三区| 不卡视频在线观看欧美| 大码成人一级视频| 成年av动漫网址| 在线观看av片永久免费下载| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡 | 国产高清三级在线| 美女国产视频在线观看| 亚洲图色成人| 日韩中字成人| 中文字幕亚洲精品专区| 欧美精品一区二区免费开放| 免费黄色在线免费观看| 日日啪夜夜撸| 国产精品一二三区在线看| 国产精品偷伦视频观看了| 国产亚洲一区二区精品| av福利片在线| 97在线人人人人妻| 国产精品国产三级国产av玫瑰| 老女人水多毛片| 亚州av有码| 夜夜爽夜夜爽视频| 久久久国产一区二区| 国产欧美日韩精品一区二区| 亚洲欧洲日产国产| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 伦理电影大哥的女人| 男男h啪啪无遮挡| .国产精品久久| 性色avwww在线观看| 你懂的网址亚洲精品在线观看| 99九九在线精品视频 | 欧美日韩国产mv在线观看视频| 国产有黄有色有爽视频| 国产淫片久久久久久久久| 欧美亚洲 丝袜 人妻 在线| 亚洲av不卡在线观看| 一本—道久久a久久精品蜜桃钙片| 久久婷婷青草| 亚洲国产精品一区三区| 十八禁网站网址无遮挡 | 日韩成人伦理影院| av天堂久久9| 麻豆成人av视频| 久久久久久久精品精品| 日韩,欧美,国产一区二区三区| 亚洲精品久久午夜乱码| 成年人免费黄色播放视频 | 国产69精品久久久久777片| 美女主播在线视频| 亚洲不卡免费看| 国产成人精品婷婷| 色5月婷婷丁香| 国产精品久久久久久av不卡| 插逼视频在线观看| 黄色视频在线播放观看不卡| 欧美日韩视频精品一区| 精品亚洲成国产av| 国产视频首页在线观看|