• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    泡沫銅負(fù)載硫化亞銅電極高效電催化還原二氧化碳制備甲酸

    2016-11-18 07:29:01朱慶宮孫曉甫康欣晨錢慶利韓布興
    物理化學(xué)學(xué)報 2016年1期
    關(guān)鍵詞:電催化甲酸中國科學(xué)院

    朱慶宮 孫曉甫 康欣晨 馬 珺 錢慶利 韓布興

    (中國科學(xué)院化學(xué)研究所,中國科學(xué)院膠體界面與化學(xué)熱力學(xué)重點實驗室,北京分子科學(xué)國家實驗室,北京 100190)

    泡沫銅負(fù)載硫化亞銅電極高效電催化還原二氧化碳制備甲酸

    朱慶宮 孫曉甫 康欣晨 馬 珺 錢慶利 韓布興*

    (中國科學(xué)院化學(xué)研究所,中國科學(xué)院膠體界面與化學(xué)熱力學(xué)重點實驗室,北京分子科學(xué)國家實驗室,北京 100190)

    電催化還原二氧化碳制備甲酸是備受關(guān)注的熱點問題。而電極材料是決定還原效率的重要因素。本文通過電沉積方法在泡沫銅上直接制備納米結(jié)構(gòu)硫化亞銅薄膜,并采用掃描電鏡(SEM)、X射線衍射(XRD)對其結(jié)構(gòu)性能進(jìn)行了系統(tǒng)研究。以硫化亞銅作為陰極電催化材料、0.5 mol·L–11-丁基-3-甲基咪唑四氟硼酸鹽的乙腈溶液為電解液,在該體系中可高效催化轉(zhuǎn)化二氧化碳為甲酸。 結(jié)果表明,這一電解體系可有效實現(xiàn)電化學(xué)反應(yīng),甲酸的法拉第效率(FEHCOOH)可以達(dá)到85%,同時甲酸還原電流密度可達(dá)到5.3 mA·cm–2。

    硫化亞銅;泡沫銅;甲酸;電化學(xué);二氧化碳

    1 Introduction

    CO2is an abundant and inexpensive C1resource. Conversion of CO2into value-added chemicals is an interesting topic1–4. Among the chemical ways to convert CO2into useful products, the electrochemical method is one of the most efficient routes5–8.

    HCOOH is a very useful chemical. Electrochemical reduction of CO2to HCOOH has been studied extensively9–17. For example, tin and tin oxide electrodes have been reported to produce formate with a wide range of faradaic efficiencies. Tin particles found faradaic efficiency of 80%9, while a value of 58% was reported on tin oxide electrode10. This value was significantly increased to 93% when tin oxide nanocrystals were employed as the cathodic material11. It was also found that the faradaic efficiency for formate on carbon nanotube/Ir pincer dihydride complex/polyethylene composite was 96%. However, the current density was only 1.0 mA·cm–2in this reported sys-tem12. In and Pb metals are also well known catalysts for HCOOH formation13. The faradaic efficiencies were observed to be 90% and 45% on In and Pb metal electrodes, respectively. Unfortunately, the current density was limited to 2.0 mA·cm–2for either In or Pb electrode. Recent progress of Cu based material has found that, the annealed Cu2O electrode exhibits strong reduction activities towards CO2, and this electrode produced CO with 40% and HCOOH with 33% faradaic efficiencies14. These results indicate that it is very difficult to achieve satisfactory conversion rate of CO2and high selectivity to HCOOH simultaneously. Therefore, obviously development of efficient electrodes for electrochemical reduction of the CO2to HCOOH is highly desirable although some elegant work has been conducted on this interesting topic.

    As an environment-friendly and abundant material, copper sulfides have attracted considerable attention due to their various potential applications, such as dye-sensitized solar cell18, optical filters, and nanoscale switches19–21. The availability of Cu2S nanostructures with well-defined morphologies and dimensions may enable new types of applications. Due to their unique optical and electrical properties, they are also widely applied in thin films and composite materials22–24. The synthesis of new porous metal sulfide materials has great potential for exploring new electrode materials.

    Herein we report the first work on electrochemical reduction of CO2to produce HCOOH using Cu2S modified Cu foam electrode. Cu foam with three-dimensional open network structure was used as the substrate of Cu2S formation, on which the nanostructure Cu2S was formed directly. The morphology and thickness of Cu2S layer can be easily controlled by varying the deposition potential and time. It was found that the Cu2S/Cufoam electrode was very efficient for the CO2reduction to HCOOH. As far as we know, this is the first work for the electrocatalytic reduction of CO2to HCOOH using Cu2S cathode.

    2 Experimental

    2.1 Materials

    1-Butyl-3-methylimidazolium tetrafluoroborate (BmimBF4, purity > 99%) was purchased from the Centre of Green Chemistry and Catalysis, LICP, CAS, P. R. China. Acetonitrile (A. R. grade) and acetone (A. R. grade), were provided by Sinopharm Chemical Reagent Co., Ltd., P. R. China. Nafion N-117 membranes (0.180 mm thick, ≥ 0.90 meq·g–1exchange capacity)were purchased from Alfa Aesar China Co., Ltd. Cu-foam was purchased from Kunshan Jiasheng Electronics Co. Ltd., P. R. China. Before used, the ionic liquids (ILs) were dried in vacuum oven at 80 °C for 48 h and the water content was less than 1.0 g·L–1as determined by Karl-Fischer method25.

    2.2 Preparation and characterization of Cu2S electrodes

    The Cu-foam was pretreated by degreasing in acetone, etching in 4.0 mol·L–1HCl for 15 min, and rinsing thoroughly with ultrapure water prior to use. Arrays of Cu2S on copper foam were prepared via anodization of copper foam followed by thermal treatments. The electrodeposition procedure was performed on DC power supply LW6020KD (Longwei Instrument Co. Ltd, HK), which was similar to that reported in the literature26,27. The anodization was carried out in an electrochemical cell with a copper foam anode, a platinum foil cathode. The electrolyte was 0.145 mol·L–1Na2S aqueous solution. The anodization was performed by applying a constant voltage of 0.6 V to the copper foam for 300 s at 55 °C during which a faintblue film was formed on the copper foam surface. The anodized copper foam was then washed with distilled water and heat-treatment. The deposition underwent mainly following electrochemical processes.

    X-ray diffraction (XRD) analysis of the samples was performed on the X-ray diffractometer (Model D/MAX2500, Rigaka Denki Co., Ltd., Japan) with Cu-Kαradiation, and the scan speed was 5 (°)·min–1. The morphologies of Cu2S/Cufoam electrodes were characterized by a HITACHI S-4800 scanning electron microscope (Hitachi High-Technologies CO., Japan).

    2.3 CV study

    An electrochemical workstation (CHI 6081E, Shanghai CH Instruments Co., China) was used for the experiments. Cyclic voltammetry (CV) measurements were carried out in a single compartment cell with three-electrode configuration, which was similar to that reported previously28. The cell consisted of Cu2S/Cu-foam or Cu-foam electrode, a platinum gauze auxiliary electrode, and Ag/Ag+(0.01 mol·L–1AgNO3in 0.1 mol·L–1TBAP-MeCN) reference electrode. Prior to experiment, the electrolyte was bubbled with CO2(or N2) for 30 min until CO2-saturated solution (or N2-saturated solution) was formed. CV measurements in gas-saturated electrolyte were taken between–0.8 and –2.2 V (vs Ag/Ag+) at a sweep rate of 20 mV·s–1. For better mixing, slight magnetic stirring was applied in the process.

    2.4 CO2reduction electrolysis and product analysis

    The appratus and procedures were similar to those reported previously for electrochemical reduction of CO2to CH428. Briefly, the electrolysis was performed under room temperature (25 °C) in an H-type cell (Fig.1). The cathode and anode compartments were separated by a proton exchange membrane(Nafion 117). MeCN containing 0.5 mol·L–1BmimBF4and 0.5mol·L–1H2SO4aqueous solution were used as cathodic and anodic electrolytes, respectively. Before measurements, CO2was bubbled through the catholyte for 30 min with stirring and electrolysis was conducted under a steady flow of CO2(5.0 cm3·min–1), the gaseous product was collected in a gas sampling bag. After a desired electrolysis time, the gaseous product was analyzed by gas chromatography (GC, HP 4890D;Agilent Technologies, Inc., Wilmington, United States), which was equipped with thermal conductivity detector (TCD) andflame ionization detector (FID) using helium as the internal standard. Products soluble in the catholyte were analyzed by proton nuclear magnetic resonance (1H-NMR) method, which recorded on a Bruker Avance III 400 HD spectrometer (Bruker, Karlsruhe, Germany) in DMSO-d6with tetramethylsilane(TMS) as an internal standard. The total current density and faradaic efficiency of the products were calculated on the basis of GC and NMR analyses. The faradaic efficiency of the products was calculated from GC analysis data28,29. The experiments were run at different potentials.

    Fig.2 (a) XRD patterns of Cu2S; (b) photographs of Cu-foam electrodes before and after deposition of Cu2S; (c) SEM images of Cu-foam;(d) SEM images of Cu2S/Cu-foam

    3 Results and discussion

    3.1 Material characterization

    Growing oxide or sulfide films on top of a metallic surface by electrodeposition is a widely used method of producing structured electrode surfaces on different types of substrates29–31. We choose the copper foam as substrate electrode, because it possesses a three-dimensional (3D) open network structure, provided a high volumetric specific surface area. In this study, the Cu2S film was obtained by anodizing a Cu foam in Na2S aqueous solution. The crystal structure of the Cu2S powders scratched from Cu2S/Cu-foam was characterized by XRD. The XRD pattern is shown in Fig.2a, which is consistent with that of monoclinic Cu2S22,24. There was no characteristic peak for impurities. So the XRD results indicated that pure phase Cu2S was formed on Cu foam. Fig.2b shows photographs of the Cu-foam and Cu2S/Cu-foam. A uniform faint-blue film was formed on the copper foam surface in the Cu2S/Cu-foam, and the coating basically reproduced the surface architecture of the Cu foam. The morphology of the Cu2S/Cu-foam was examined by scan-ning electron microscopy (SEM). Figs.2c and 2d show some typical SEM images of Cu-foam and Cu2S/Cu-foam at different magnifications, respectively. The surface morphology of the microspheres could be clearly observed in Fig.2d, which had two-dimensional (2D) nanosheet-assembled flowerlike pattern. These nanosheets were aligned perpendicular to the surface of Cu-foam, and covered the Cu-foam surface completely and compactly. Since the deposited Cu2S packed densely on the entire copper foam skeleton, the Cu2S/Cu-foam has good mass transport property for electrolyte diffusion.

    3.2 Electrocatalytic study

    The Cu2S/Cu-foam was then used as the electrode for selective reduction of CO2to HCOOH in MeCN with 0.5 mol·L–1BmimBF4as the electrolyte, which is commonly used in electrochemical reduction of CO232,33. The CO2reduction efficiency of Cu2S/Cu-foam electrode was examined by cyclic voltammetry (CV) with applied voltage from –0.8 to –2.2 V (vs Ag/Ag+) (Fig.3a). The onset of irreversible cathodic wave with higher current densities than in N2-saturated system is indicative of CO2reduction process. For comparison, the CV curves using Cu-foam electrode is determined and the results are presented in Fig.3b. The Cu2S/Cu-foam electrode yielded much higher current density than the Cu-foam electrode in the CO2-saturated system, as can be known by comparing Figs.3a and 3b.

    Fig.3 CV scans at 20 mV·s-1under N2-saturated and CO2-saturated MeCN containing 0.5 mol·L-1BmimBF4of(a) Cu2S/Cu-foam electrode and (b) Cu-foam electrode

    3.3 Long-term electrolysis study

    To explore the electrocatalytic response shown in Fig.3, the controlled potential electrolysis (CPE) experiments were carried out in an electrolysis device shown in Fig.1. After initiating the CPE at different voltages (from –1.5 to –2.2 V, vs Ag/Ag+) for 5 h, the gas in the headspace was collected and analyzed by GC, and the liquid mixture was analyzed by1HNMR. It was found that H2was the only product in gas, HCOOH and CH3OH were observed in liquid mixtures, respectively. HCOOH was found to be the major product through all the applied potential. The faradaic efficiency for HCOOH(FEHCOOH) as a function of applied potential using the Cu2S/Cufoam electrode is shown in Fig.4a. It can be concluded that current densities increased with applied potentials, while the FEHCOOHreached a maximum (85%) at –2.0 V (vs Ag/Ag+). HCOOH was produced slowly as the applied potentials were more positive than –2.0 V (vs Ag/Ag+), while the FEHCOOHdecreased when the applied potential was more negative than –2.0 V (vs Ag/Ag+). The Cu-foam electrode was also used in the electrolysis and the results are also given in Fig.4a. The FEHCOOHof the Cu-foam electrode was much lower (maximum 38.9% at–1.8 V (vs Ag/Ag+) than that of the Cu2S/Cu-foam electrode, i.e., the selectivity to HCOOH over the Cu2S/Cu-foam electrode was higher than that over Cu-foam electrode.

    The CPE was also performed to investigate the effect of applied potentials on the partial current density of HCOOH. Fig.4b displays the plots of the partial current density versus the applied potential for the production of HCOOH as a function of catalyst. We observed that the current density increased continuously with the applied potential. The current density on the Cu2S/Cu-foam was much higher than that on the Cu-foam electrodes, indicating that the Cu2S/Cu-foam electrode was much more efficient than Cu-foam electrode. We also studied the dependence of the current density on electrolysis time on the electrodes up to 6 h (Fig.4c). The current density was not changed with time, indicating that the electrodes were stable in the electrolysis process.

    We propose that the high selectivity of the catalyst toward HCOOH could be attributed to the surface morphology of the Cu2S film. At the end of the reaction, the surface of the electrode was again examined by XRD and the result is shown in Fig.4d. Indeed, only Cu0reflexions were observed in the XRD patterns of the reduced film, which indicates that the bulk of the Cu2S films has reduced to metallic Cu during the course of the CO2reduction. We assume that the sulfide state of a Cu2S film has been proposed to be partially conserved during the initial phase of the CO2reduction process. Cu+ions were thus suggested to be catalytic active species for reducing CO2initially. However, the surface of a Cu2S film reduces and remains as metallic Cu particles during electrochemical CO2reduction. We thus believe that Cu0particles are the catalytic active species forreducing CO229,30. This finding is in agreement with many reports presented earlier14,34,35. When the steady state currents were compared, the electrodes deposited with Cu2S films exhibited higher current density compared with Cu foam (Fig.4c). This can be attributed to the former's larger surface roughness and, hence, electrochemically active surface areas. The remarkable electrocatalytic conversion behavior between Cu2S and Cu foams also suggests that the active sites on the surfaces of sulfide derived Cu nanoparticles enable better stabilization forintermediate than the sites on polycrystalline Cu.

    Fig.4 (a) Applied electrolysis potential dependence of FEHCOOHfor Cu2S/Cu-foam and Cu-foam electrodes; (b) reduced current density of HCOOH vs potential for Cu2S/Cu-foam and Cu-foam electrodes; (c) total current density profiles for Cu2S/Cu-foam and Cu-foam electrodes (potential applied: -2.0 V (vs Ag/Ag+), electrolyte: MeCN containing 0.5 mol·L-1BmimBF4); (d) XRD pattern of the Cu2S/Cu-foam after electrolysis

    4 Conclusions

    In summary, we have fabricated Cu2S/Cu-foam electrode by an electrodeposition method, which is utilized as cathodic electrode in the electrochemical reduction of CO2to HCOOH. The as-synthesized Cu2S/Cu-foam electrode exhibited very high activity, selectivity, and stability for electrochemical reaction in MeCN with 0.5 mol·L–1BmimBF4. The current density and selectivity depend strongly on the reduction potential. At optimized condition, the selectivity of HCOOH can be as high as 85% with a reduced current density of higher than 5.3 mA·cm–2. Control experiments show that the Cu2S/Cu-foam electrode is much more efficient than the Cu-foam electrode.

    (1)He, M. Y.; Sun, Y. H.; Han, B. X. Angew. Chem. Int. Edit. 2013, 52, 9620. doi: 10.1002/anie.201209384

    (2)Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A

    (3)Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.;Pérez-Ramírez, Z. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E

    (4)Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627

    (5)Zhao, C. C.; He, X. M.; Wang, L.; Guo, J. W. Chem. Ind. En. Pro. (China) 2013, 32, 373. [趙晨辰, 何向明, 王 莉, 郭建偉.化工進(jìn)展, 2013, 32, 373.]

    (6)Zhou, F.; Liu, S. M.; Alshammari, A. S.; Deng, Y. Q. Chin. Sci. Bull. 2015, 60, 2466. [周 峰, 劉士民, Alshammari, A. S., 鄧友全. 科學(xué)通報, 2015, 60, 2466.] doi: 10.1360/N972015-00339

    (7)Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G

    (8)Rosen, B. A.; Salehi-khojin, A.; Thorson, M. R.; Zhu, W.;Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786

    (9)Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. ChemSusChem 2011, 4, 1301. doi: 10.1002/cssc.201100220

    (10)Chen, Y. H.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799

    (11)Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885

    (12)Kang, P.; Zhang, S.; Meer, T. J.; Brookhart, M. Angew. Chem.Int. Edit. 2014, 53, 8709. doi: 10.1002/anie.201310722

    (13)Watkins, J. D.; Bocarsly, A. B. ChemSusChem 2014, 7, 284. doi: 10.1002/cssc.201300659

    (14)Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 34, 7231. doi: 10.1021/ja3010978

    (15)Kortlever, R.; Peter, I.; Koper, S.; Koper, M. T. M. ACS Catal. 2015, 5, 3916. doi: 10.1021/acscatal.5b00602

    (16)Lu, X.; Leung, D. Y. C.; Wang, H. Z.; Leung, M. K. H.; Xuan, J. ChemElectroChem 2014, 1, 836. doi: 10.1002/celc.201300206

    (17)Huan, T. N.; Andreiadis, E.; Heidkamp, J.; Simon, P.; Derat, E.;Cobo, S.; Royal, G.; Berqmann, A.; Strasser, P.; Dau, H.; Artero, V.; Fontecave, M. J. Mater. Chem. A 2015, 3, 3901. doi: 10.1039/C4TA07022D

    (18)Zhu, J.; Yu, X. C.; Wang, S. M.; Dong, W. W.; Hu, H. L.; Fang, X. D.; Dai, S. Y. Acta. Phys. -Chim. Sin. 2013, 29, 533. [朱 俊,余學(xué)超, 王時茂, 董偉偉, 胡華林, 方曉東, 戴松元. 物理化學(xué)學(xué)報, 2013, 29, 533.] doi: 10.3866/PKU.WHXB201212124

    (19)Chung, J. S.; Sohn, H. J. J. Power Sources 2002, 108, 226. doi: 10.1016/S0378-7753(02)00024-1

    (20)Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.;Chen, L. J. J. Mater. Chem. 2010, 20, 6638. doi: 10.1039/C0JM00434K

    (21)Yu, X. C.; Zhu, J.; Liu, F.; Wei, J. F.; Hu, L. H.; Dai, S. Y. Sci. China Chem. 2013, 56, 977. doi: 10.1007/s11426-012-4810-8

    (22)Ni, S. B.; Li, T. L.; Yang, X. L. Thin Solid Films 2012, 520, 6705. doi: 10.1016/j.tsf.2012.06.074

    (23)Ni, S. B.; Lv, X. H.; Li, T.; Yang, X. L. Mater. Chem. Phys. 2013, 143, 349. doi: 10.1016/j.matchemphys.2013.09.008

    (24)Kar, P.; Farsinezhad, S.; Zhang, X. J.; Shankar, K. Nanoscale 2014, 6, 14305. doi: 10.1039/C4NR05371K

    (25)Sun, X. F.; Tian, Q. Q.; Xue, Z. M.; Zhang, Y. W.; Mu, T. C. RSC Adv. 2014, 4, 30282. doi: 10.1039/C4RA02594F

    (26)Anuar, K.; Zainal, Z., Hussein, M. Z.; Saravanan, N.; Haslina, I. Sol. Energy Mater. Sol. Cells 2002, 73, 351. doi: 10.1016/S0927-0248(01)00219-7

    (27)Ghahremaninezhad, A.; Asselin, E.; Dixon, D. G. J. Phys. Chem. C 2011, 115, 9320. doi: 10.1021/jp108283z

    (28)Kang, X. C.; Zhu, Q. G.; Sun, X. F.; Hu, J. Y.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, doi: 10. 1039/c5sc03291a

    (29)Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q

    (30)Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.;Baltrusaitis, J. Phys. Chem. Chem. Phys. 2014, 16, 12194. doi: 10.1039/C4CP01520G

    (31)Chen, Y.; Davoisne, C.; Tarascon, J. M.; Guéry, C. J. Mater. Chem. 2012, 22, 5295. doi: 10.1039/C2JM16692E

    (32)DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, 8789. doi: 10.1021/ja4033549

    (33)Medina-Ramos, J.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2014, 136, 8361. doi: 10.1021/ja501923g

    (34)Lee, S.; Kim, D.; Lee, J. Angew. Chem. Int. Edit. 2015, 127, 14914. doi: 10.1002/ange.201505730

    (35)Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969. doi: 10.10.1021/ja309317u

    Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2to Formic Acid

    ZHU Qing-Gong SUN Xiao-Fu KANG Xin-Chen MA Jun QIAN Qing-Li HAN Bu-Xing*
    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China)

    The electrocatalytic reduction of CO2to HCOOH is an interesting topic and the efficiency usually depends strongly on the materials of the electrodes. Herein, nanostructured Cu2S on Cu-foam was prepared by electro-deposition method and characterized by means of scanning electron microscope(SEM) and X-ray diffraction (XRD). The Cu2S/Cu-foam electrode was used for the first time in the electrocatalytic reduction of CO2to HCOOH, and acetonitrile (MeCN) with 0.5 mol·L–11-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) was used as the electrolyte. It was demonstrated that the electrolysis system was νery efficient for the electrochemical reaction, and faradaic efficiency of HCOOH(FEHCOOH) and reduction current density could reach 85% and 5.3 mA·cm–2, respectiνely.

    Copper(I) sulfide; Copper foam; Formic acid; Electrochemistry; CO2reduction

    O646

    10.3866/PKU.WHXB201512101

    Received: October 24, 2015; Revised: December 10, 2015; Published on Web: December 10, 2015.

    *Corresponding author. Email: hanbx@iccas.ac.cn; Tel: +86-10-62562821.

    The project was supported by the National Natural Science Foundation of China (21403253, 21533011, 21321063).

    國家自然科學(xué)基金(21403253, 21533011, 21321063)資助項目?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    電催化甲酸中國科學(xué)院
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    甲酸治螨好處多
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    填充床電極反應(yīng)器在不同電解質(zhì)中有機物電催化氧化的電容特性
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    甲酸鹽鉆井液完井液及其應(yīng)用之研究
    基于環(huán)己烷甲酸根和2,2′-聯(lián)吡啶配體的雙核錳(Ⅱ)配合物的合成與表征
    曰老女人黄片| 啦啦啦免费观看视频1| 变态另类成人亚洲欧美熟女 | 极品教师在线免费播放| 国产激情久久老熟女| 日韩欧美免费精品| 大型黄色视频在线免费观看| 欧美中文综合在线视频| 精品乱码久久久久久99久播| 亚洲国产欧美日韩在线播放| 美国免费a级毛片| 悠悠久久av| 国产免费福利视频在线观看| 国产精品自产拍在线观看55亚洲 | 午夜福利,免费看| 在线永久观看黄色视频| 热99久久久久精品小说推荐| 亚洲av电影在线进入| 国产伦理片在线播放av一区| 国产成人av教育| 另类亚洲欧美激情| 亚洲成人手机| 老司机福利观看| 国产精品成人在线| cao死你这个sao货| 久久精品人人爽人人爽视色| 99在线人妻在线中文字幕 | 日本欧美视频一区| 亚洲五月色婷婷综合| 中文字幕精品免费在线观看视频| 国产精品 欧美亚洲| 国产又爽黄色视频| 久久人人97超碰香蕉20202| 日日爽夜夜爽网站| 亚洲一码二码三码区别大吗| 中文字幕另类日韩欧美亚洲嫩草| 精品人妻在线不人妻| 伊人久久大香线蕉亚洲五| 欧美精品av麻豆av| 亚洲精品国产精品久久久不卡| 日韩视频在线欧美| 757午夜福利合集在线观看| 国产成人av激情在线播放| 青青草视频在线视频观看| 亚洲中文字幕日韩| 老司机亚洲免费影院| 真人做人爱边吃奶动态| 黄色毛片三级朝国网站| 久久久久精品国产欧美久久久| 亚洲精品乱久久久久久| 无人区码免费观看不卡 | 男女午夜视频在线观看| 精品乱码久久久久久99久播| 亚洲黑人精品在线| 大片电影免费在线观看免费| 在线观看舔阴道视频| 欧美日韩av久久| 岛国在线观看网站| 97在线人人人人妻| 十八禁网站网址无遮挡| 18在线观看网站| 极品人妻少妇av视频| 亚洲精品国产一区二区精华液| av国产精品久久久久影院| 另类精品久久| 岛国毛片在线播放| 操美女的视频在线观看| 国产97色在线日韩免费| tocl精华| 在线永久观看黄色视频| 国产av一区二区精品久久| 波多野结衣av一区二区av| av天堂在线播放| 乱人伦中国视频| 国产精品久久久久成人av| 777米奇影视久久| 亚洲免费av在线视频| 一区在线观看完整版| 91国产中文字幕| 99riav亚洲国产免费| 久久精品91无色码中文字幕| 最近最新中文字幕大全免费视频| 99国产精品免费福利视频| 日韩精品免费视频一区二区三区| 久久国产精品影院| 黑人欧美特级aaaaaa片| 免费不卡黄色视频| 男女床上黄色一级片免费看| 亚洲精品一二三| 成年人午夜在线观看视频| 热re99久久精品国产66热6| 成人三级做爰电影| 欧美成狂野欧美在线观看| 欧美日韩福利视频一区二区| 18禁裸乳无遮挡动漫免费视频| 国产成+人综合+亚洲专区| 日日爽夜夜爽网站| 99九九在线精品视频| 色老头精品视频在线观看| 国产一区二区三区视频了| 国产日韩欧美在线精品| 午夜福利,免费看| 天堂中文最新版在线下载| 在线观看免费午夜福利视频| 精品午夜福利视频在线观看一区 | 在线观看免费高清a一片| 国产精品久久久久久精品电影小说| 亚洲国产欧美日韩在线播放| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| 午夜激情久久久久久久| 一级黄色大片毛片| 一区二区日韩欧美中文字幕| 久久九九热精品免费| 日本av手机在线免费观看| 999久久久精品免费观看国产| 亚洲精品一二三| 老鸭窝网址在线观看| 美女扒开内裤让男人捅视频| 黄色成人免费大全| 亚洲久久久国产精品| 在线观看免费午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 精品视频人人做人人爽| 中文欧美无线码| 国产成人av激情在线播放| 日韩免费av在线播放| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| a级片在线免费高清观看视频| 视频在线观看一区二区三区| 老熟妇仑乱视频hdxx| 成年人免费黄色播放视频| 99热国产这里只有精品6| 日韩大片免费观看网站| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 啦啦啦中文免费视频观看日本| 高潮久久久久久久久久久不卡| 久久人人爽av亚洲精品天堂| 我要看黄色一级片免费的| 悠悠久久av| 91麻豆精品激情在线观看国产 | 又黄又粗又硬又大视频| 少妇粗大呻吟视频| h视频一区二区三区| av有码第一页| 免费看十八禁软件| 婷婷丁香在线五月| 91精品国产国语对白视频| 我要看黄色一级片免费的| 好男人电影高清在线观看| 精品乱码久久久久久99久播| 欧美日本中文国产一区发布| 国产97色在线日韩免费| 蜜桃国产av成人99| 51午夜福利影视在线观看| 欧美国产精品一级二级三级| 18禁观看日本| 日韩人妻精品一区2区三区| 中文字幕最新亚洲高清| 美女视频免费永久观看网站| 狠狠婷婷综合久久久久久88av| 欧美另类亚洲清纯唯美| 大型黄色视频在线免费观看| 免费看十八禁软件| 50天的宝宝边吃奶边哭怎么回事| 黑人巨大精品欧美一区二区蜜桃| 狠狠婷婷综合久久久久久88av| 亚洲avbb在线观看| 亚洲中文字幕日韩| 亚洲性夜色夜夜综合| 午夜福利在线观看吧| 50天的宝宝边吃奶边哭怎么回事| 国产一区有黄有色的免费视频| 亚洲av欧美aⅴ国产| 伦理电影免费视频| 免费日韩欧美在线观看| 国产又爽黄色视频| 一级a爱视频在线免费观看| 999久久久精品免费观看国产| 欧美亚洲日本最大视频资源| 大型黄色视频在线免费观看| 新久久久久国产一级毛片| 国产亚洲精品第一综合不卡| 午夜精品国产一区二区电影| 久热这里只有精品99| 国产精品自产拍在线观看55亚洲 | 久久久国产精品麻豆| 国产精品av久久久久免费| 国产精品秋霞免费鲁丝片| 无限看片的www在线观看| 另类亚洲欧美激情| 无人区码免费观看不卡 | 精品免费久久久久久久清纯 | 国产亚洲一区二区精品| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 亚洲av第一区精品v没综合| 制服人妻中文乱码| 99国产极品粉嫩在线观看| 亚洲欧美一区二区三区黑人| 制服人妻中文乱码| 国产又爽黄色视频| 99热国产这里只有精品6| 国产在视频线精品| 黄片小视频在线播放| 免费不卡黄色视频| 一级a爱视频在线免费观看| videosex国产| 一级毛片电影观看| 涩涩av久久男人的天堂| 又大又爽又粗| 国产精品久久久久成人av| 久久中文看片网| 99久久精品国产亚洲精品| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 国产男女内射视频| 天天躁夜夜躁狠狠躁躁| 国产成人影院久久av| 亚洲av成人一区二区三| 国产伦理片在线播放av一区| 亚洲精品乱久久久久久| 亚洲 国产 在线| 欧美精品人与动牲交sv欧美| 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 69精品国产乱码久久久| 国产精品1区2区在线观看. | 国产黄色免费在线视频| 超碰成人久久| 视频区欧美日本亚洲| 国产精品免费大片| 日本五十路高清| 欧美日韩成人在线一区二区| 中文字幕精品免费在线观看视频| 五月开心婷婷网| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 五月天丁香电影| 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 日韩免费av在线播放| 1024视频免费在线观看| 亚洲自偷自拍图片 自拍| 午夜福利,免费看| 大码成人一级视频| 亚洲 国产 在线| 久久天躁狠狠躁夜夜2o2o| 午夜福利视频精品| 国产主播在线观看一区二区| 中文字幕色久视频| 嫩草影视91久久| 18在线观看网站| 丝袜美足系列| 美女高潮到喷水免费观看| av网站在线播放免费| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 国产亚洲午夜精品一区二区久久| 99久久人妻综合| 这个男人来自地球电影免费观看| 欧美国产精品va在线观看不卡| 国产91精品成人一区二区三区 | 欧美成人午夜精品| 18禁黄网站禁片午夜丰满| 日本wwww免费看| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区视频了| 在线天堂中文资源库| 99热国产这里只有精品6| 搡老熟女国产l中国老女人| 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 法律面前人人平等表现在哪些方面| 国产精品免费视频内射| 天堂动漫精品| 免费观看a级毛片全部| 91精品国产国语对白视频| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 欧美中文综合在线视频| 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 国产精品一区二区在线观看99| av天堂久久9| 久久久国产欧美日韩av| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 大香蕉久久成人网| 在线观看免费视频日本深夜| 欧美精品人与动牲交sv欧美| 9热在线视频观看99| 午夜福利在线免费观看网站| 黄色怎么调成土黄色| av在线播放免费不卡| 99久久国产精品久久久| 悠悠久久av| 天堂中文最新版在线下载| 99精品在免费线老司机午夜| 99re6热这里在线精品视频| 777米奇影视久久| 久久久久久久国产电影| 欧美成狂野欧美在线观看| 一边摸一边抽搐一进一出视频| 大陆偷拍与自拍| 一级毛片女人18水好多| 亚洲第一青青草原| 制服人妻中文乱码| 国产一卡二卡三卡精品| 亚洲avbb在线观看| 国产野战对白在线观看| 亚洲成国产人片在线观看| 久久婷婷成人综合色麻豆| 免费看十八禁软件| av免费在线观看网站| 午夜福利,免费看| 亚洲欧洲精品一区二区精品久久久| 精品视频人人做人人爽| 2018国产大陆天天弄谢| 久久亚洲精品不卡| 国产亚洲午夜精品一区二区久久| 亚洲第一av免费看| 操美女的视频在线观看| 午夜免费成人在线视频| 在线观看免费午夜福利视频| 亚洲全国av大片| 国产成人影院久久av| 在线观看66精品国产| 51午夜福利影视在线观看| 成人永久免费在线观看视频 | www.精华液| 在线观看人妻少妇| 精品久久蜜臀av无| 丝袜喷水一区| 欧美精品一区二区免费开放| 成人精品一区二区免费| 欧美国产精品va在线观看不卡| 欧美日韩福利视频一区二区| www.熟女人妻精品国产| 亚洲自偷自拍图片 自拍| 成年动漫av网址| 这个男人来自地球电影免费观看| 黄色怎么调成土黄色| 国产精品影院久久| 性色av乱码一区二区三区2| 一级毛片电影观看| 人人妻,人人澡人人爽秒播| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 久久久国产欧美日韩av| 丝袜人妻中文字幕| 国产亚洲精品一区二区www | 国产精品香港三级国产av潘金莲| 欧美乱妇无乱码| av不卡在线播放| 欧美激情 高清一区二区三区| 亚洲国产av新网站| 黄色成人免费大全| 国产av精品麻豆| 丰满少妇做爰视频| 少妇裸体淫交视频免费看高清 | 熟女少妇亚洲综合色aaa.| 波多野结衣av一区二区av| 国产单亲对白刺激| 精品一区二区三卡| 大片电影免费在线观看免费| 国产主播在线观看一区二区| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 亚洲欧洲精品一区二区精品久久久| 80岁老熟妇乱子伦牲交| 久久影院123| 1024香蕉在线观看| 欧美久久黑人一区二区| 一本一本久久a久久精品综合妖精| 天堂8中文在线网| a级片在线免费高清观看视频| 国产一区二区 视频在线| 在线永久观看黄色视频| 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美精品.| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 一区二区av电影网| 欧美精品啪啪一区二区三区| 亚洲视频免费观看视频| 免费不卡黄色视频| 美女国产高潮福利片在线看| 国产精品.久久久| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 人成视频在线观看免费观看| 国产精品电影一区二区三区 | 深夜精品福利| 热99re8久久精品国产| 麻豆成人av在线观看| 久久人妻熟女aⅴ| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 免费人妻精品一区二区三区视频| 亚洲专区字幕在线| 大香蕉久久网| 欧美精品av麻豆av| 精品国产一区二区三区四区第35| 日本一区二区免费在线视频| 亚洲一区中文字幕在线| videosex国产| 丰满迷人的少妇在线观看| 国产不卡一卡二| 国产一区二区在线观看av| 建设人人有责人人尽责人人享有的| 欧美在线一区亚洲| netflix在线观看网站| www.熟女人妻精品国产| 91成人精品电影| av超薄肉色丝袜交足视频| 一本久久精品| 国产老妇伦熟女老妇高清| 色尼玛亚洲综合影院| 超碰成人久久| 久久久水蜜桃国产精品网| 99热网站在线观看| 国产成人欧美| 汤姆久久久久久久影院中文字幕| 夜夜骑夜夜射夜夜干| av有码第一页| 黑人欧美特级aaaaaa片| kizo精华| 午夜老司机福利片| 超碰97精品在线观看| 精品高清国产在线一区| 精品亚洲成a人片在线观看| 亚洲精品一二三| 桃红色精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 18禁国产床啪视频网站| 欧美成狂野欧美在线观看| 高清欧美精品videossex| 美女高潮喷水抽搐中文字幕| 女人精品久久久久毛片| 久久久精品区二区三区| 久久久久国内视频| av超薄肉色丝袜交足视频| 满18在线观看网站| 在线观看舔阴道视频| a级片在线免费高清观看视频| 多毛熟女@视频| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 99香蕉大伊视频| 水蜜桃什么品种好| 久久99一区二区三区| 丰满少妇做爰视频| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 久久久水蜜桃国产精品网| 啦啦啦中文免费视频观看日本| 深夜精品福利| 黄色丝袜av网址大全| 一区福利在线观看| 桃花免费在线播放| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| 一级毛片精品| 91麻豆精品激情在线观看国产 | 天堂动漫精品| 欧美老熟妇乱子伦牲交| 男女免费视频国产| 黑人欧美特级aaaaaa片| 午夜91福利影院| 亚洲色图av天堂| 99re6热这里在线精品视频| tocl精华| 怎么达到女性高潮| 精品国产一区二区三区四区第35| 久久性视频一级片| 天堂俺去俺来也www色官网| 久久这里只有精品19| 日韩精品免费视频一区二区三区| 亚洲欧美日韩高清在线视频 | 脱女人内裤的视频| 中文字幕人妻丝袜制服| 亚洲自偷自拍图片 自拍| 这个男人来自地球电影免费观看| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 变态另类成人亚洲欧美熟女 | 午夜福利在线免费观看网站| 色婷婷久久久亚洲欧美| 成人黄色视频免费在线看| 热99国产精品久久久久久7| 男女之事视频高清在线观看| 中文亚洲av片在线观看爽 | 中文字幕色久视频| 日韩欧美三级三区| 国产人伦9x9x在线观看| 老司机影院毛片| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 国产成人欧美| 午夜激情久久久久久久| av天堂在线播放| 黄色丝袜av网址大全| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 亚洲九九香蕉| 精品国产超薄肉色丝袜足j| 日本vs欧美在线观看视频| 99久久人妻综合| 男女高潮啪啪啪动态图| 国产午夜精品久久久久久| 啦啦啦在线免费观看视频4| 亚洲一码二码三码区别大吗| 老司机靠b影院| 99精品久久久久人妻精品| 精品一区二区三卡| 丁香六月欧美| 十八禁网站免费在线| 亚洲专区字幕在线| 久久午夜亚洲精品久久| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久| 热re99久久国产66热| 久久久精品免费免费高清| 自拍欧美九色日韩亚洲蝌蚪91| 成年动漫av网址| 亚洲精品国产色婷婷电影| 男女午夜视频在线观看| 少妇的丰满在线观看| 国产日韩欧美在线精品| 亚洲 欧美一区二区三区| 69av精品久久久久久 | 国产三级黄色录像| 曰老女人黄片| 最近最新中文字幕大全免费视频| 欧美日韩亚洲高清精品| √禁漫天堂资源中文www| 亚洲精品粉嫩美女一区| 欧美日韩国产mv在线观看视频| 最新的欧美精品一区二区| 亚洲伊人色综图| 99热网站在线观看| 亚洲男人天堂网一区| 两性午夜刺激爽爽歪歪视频在线观看 | 人妻久久中文字幕网| h视频一区二区三区| 热re99久久国产66热| 视频在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 18禁裸乳无遮挡动漫免费视频| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 日本精品一区二区三区蜜桃| 国产老妇伦熟女老妇高清| 国产欧美日韩综合在线一区二区| 麻豆成人av在线观看| 国产区一区二久久| 国产精品熟女久久久久浪| 91av网站免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产成人啪精品午夜网站| 国产伦理片在线播放av一区| www.熟女人妻精品国产| www.999成人在线观看| 一区二区av电影网| www.熟女人妻精品国产| 老熟女久久久| 欧美黄色淫秽网站| 一个人免费看片子| 波多野结衣一区麻豆| 天天躁夜夜躁狠狠躁躁| 亚洲av国产av综合av卡| 老司机靠b影院| 精品国产一区二区久久| 久久婷婷成人综合色麻豆| 国产麻豆69| 波多野结衣av一区二区av| av片东京热男人的天堂| 国产精品麻豆人妻色哟哟久久| 波多野结衣一区麻豆| 新久久久久国产一级毛片| 色综合欧美亚洲国产小说| 老熟女久久久| 久久久国产一区二区| 午夜福利一区二区在线看| av网站在线播放免费| 国产一区二区三区综合在线观看| 无限看片的www在线观看| 亚洲人成77777在线视频| 在线十欧美十亚洲十日本专区| 免费在线观看黄色视频的| 在线观看人妻少妇| 啦啦啦在线免费观看视频4| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 日本wwww免费看| 国产av一区二区精品久久| 国产99久久九九免费精品| 日本欧美视频一区| 国产成人精品在线电影| 亚洲情色 制服丝袜| av视频免费观看在线观看| 日本vs欧美在线观看视频| 精品亚洲成国产av| 最新的欧美精品一区二区| 中文字幕制服av| 国产区一区二久久|