吳 輝, 劉昌見(jiàn), 肖 聰
?
四氫萘-正癸烷-二甲基亞砜液-液平衡數(shù)據(jù)的測(cè)定與關(guān)聯(lián)
吳 輝, 劉昌見(jiàn), 肖 聰
(中國(guó)石油大學(xué)(北京)CNPC催化重點(diǎn)實(shí)驗(yàn)室, 北京 102249)
煤直接液化中油中含有50%~70% 的芳烴,其中80% 左右為重芳烴,利用二甲基亞砜(DMSO)對(duì)液化油中芳烴萃取分離是對(duì)煤液化油進(jìn)行改質(zhì)的有效途徑。相應(yīng)體系液液平衡的測(cè)定是煤直接液化中油芳烴萃取過(guò)程研究開(kāi)發(fā)的理論基礎(chǔ)。研究測(cè)定了常壓下四氫萘-正癸烷-DMSO三元體系在303.15、313.15、323.15 K 時(shí)的液-液平衡數(shù)據(jù),得到了該體系三元相圖,并用Othmer-Tobias方程與NRTL方程進(jìn)行了關(guān)聯(lián)。體系中四氫萘對(duì)正癸烷選擇性系數(shù)為3.2~17.7,表明用DMSO萃取分離四氫萘和正癸烷具有很好的性能。通過(guò)體系液-液平衡數(shù)據(jù)關(guān)聯(lián)獲得了NRTL方程模型參數(shù),利用NRTL模型對(duì)該體系進(jìn)行計(jì)算,計(jì)算值與實(shí)驗(yàn)值的平均偏差較小,說(shuō)明NRTL模型適用于該體系的液-液平衡。
煤液化油;相平衡;溶劑萃??;NRTL模型;預(yù)測(cè)
芳烴是一種重要的基本有機(jī)化工原料,近年來(lái),芳烴產(chǎn)量供不應(yīng)求[1]。石油資源的逐漸匱乏導(dǎo)致石油價(jià)格的不斷上漲,使得石油生產(chǎn)芳烴已不能滿足需求,而煤加氫液化制取芳烴是最有效的途徑之一[2]。神華集團(tuán)自主研發(fā)的煤直接液化技術(shù)針對(duì)我國(guó)石油資源短缺、能源結(jié)構(gòu)不平衡以及能源安全問(wèn)題提供了有效的解決途徑[3,4]。煤液化產(chǎn)物中,中油餾分占整個(gè)液化產(chǎn)品的70%~80%,十六烷值較低,制取合格柴油的加氫精制和加氫裂化條件苛刻、氫氣消耗較高[5]。將煤液化中油中的芳烴進(jìn)行分離,不但能使液化油中芳烴含量達(dá)到清潔油品要求,提高十六烷值,還為芳烴生產(chǎn)開(kāi)辟了新的原料來(lái)源[6]。
煤直接液化中油餾分中芳烴含量一般占50%~70%,以烷基苯類(lèi)、烷基萘類(lèi)和烷基四氫萘類(lèi)為主,其余主要為烷烴,烯烴含量很少[7,8]。借鑒石油產(chǎn)品的芳烴分離工藝,重芳烴的抽提溶劑采用二甲基亞砜比較理想[9~11]。為考察DMSO對(duì)煤液化油中芳烴的萃取性能,以四氫萘、正癸烷作為煤直接液化油的模擬組分[7,12~14],DMSO為萃取溶劑。關(guān)于四氫萘-正癸烷-DMSO體系的相平衡數(shù)據(jù)尚未見(jiàn)報(bào)道,本文首次測(cè)定了四氫萘-正癸烷-DMSO體系在303.15、313.15、323.15 K下的相平衡數(shù)據(jù),并對(duì)其利用Othmer-Tobias和NRTL模型方程進(jìn)行了關(guān)聯(lián)。
2.1 實(shí)驗(yàn)儀器與試劑
實(shí)驗(yàn)儀器:安捷倫1790氣相色譜;磁力攪拌恒溫水浴鍋,江蘇省金壇市榮華儀器制造有限公司,控溫精度±0.1℃;AUW120D電子分析天平,上海浦春計(jì)量?jī)x器有限公司。
實(shí)驗(yàn)試劑:四氫萘質(zhì)量分?jǐn)?shù)>0.999,國(guó)藥集團(tuán)化學(xué)試劑有限公司;正癸烷和二甲基亞砜質(zhì)量分?jǐn)?shù)>0.999,天津市光復(fù)精細(xì)化工研究所。在1.01325×105Pa、293.15 K條件下測(cè)定的三種試劑密度分別為0.9816 g×cm-3(0.9810 g×cm-3)、0.7323 g×cm-3(0.7312 g×cm-3)、1.0962 g×cm-3(1.0958 g×cm-3)[15]。所用實(shí)驗(yàn)試劑經(jīng)氣相色譜檢測(cè)無(wú)雜質(zhì)峰。
2.2 實(shí)驗(yàn)方法
在100 mL玻璃瓶加入一定量DMSO和正癸烷,然后按配比加入不同體積的四氫萘,加入磁力子后密封,置于磁力攪拌恒溫水浴鍋中,常壓下攪拌2 h,靜置4 h,待分層界面清晰且上下兩相澄清透明,分別抽取上、下層平衡液,用氣相色譜儀分析各組分含量,延長(zhǎng)靜置時(shí)間后各組分含量無(wú)變化,認(rèn)為已達(dá)到相平衡[16]。為檢驗(yàn)本實(shí)驗(yàn)測(cè)定數(shù)據(jù)的可靠性,用甲苯-正己烯-DMSO液液平衡體系進(jìn)行校核[17],實(shí)驗(yàn)測(cè)定值與文獻(xiàn)值偏差小于1.0%。
表1 四氫萘-正癸烷-DMSO的LLE數(shù)據(jù)
氣相色譜操作條件:色譜柱為OV-101,50 m ×0.25 mm ×0.5 μm毛細(xì)柱;載氣N2;柱溫393.15 K;進(jìn)樣器溫度453.15 K;檢測(cè)器(FID)溫度473.15 K;進(jìn)樣量0.2 μL。采用峰面積校正歸一化法測(cè)定萃余相和萃取相組成[18]。每組進(jìn)樣至少3次,當(dāng)連續(xù)三次質(zhì)量百分含量的相對(duì)偏差小于2.0%,認(rèn)為數(shù)據(jù)可靠。
3.1 液液平衡數(shù)據(jù)的測(cè)定
針對(duì)四氫萘-正癸烷-DMSO三元體系,實(shí)驗(yàn)測(cè)定的溫度為303.15、313.15、323.15 K時(shí)LLE數(shù)據(jù)(常壓)列于表1。
3.2 相圖分析
根據(jù)表1中的相平衡數(shù)據(jù),繪制了對(duì)應(yīng)的三元LLE相圖,如圖1、圖2、圖3所示。
圖1 四氫萘?正癸烷?DMSO體系在303.15 K下的LLE相圖
圖2 四氫萘?正癸烷?DMSO體系在313.15 K下的LLE相圖
圖3 四氫萘?正癸烷?DMSO體系在323.15 K下的LLE相圖
從圖1~圖3可以看出,在303.15 K下該三元體系的兩相區(qū)面積最大,隨著溫度的增加,溶劑DMSO與正癸烷相互溶解度增大,兩相區(qū)面積減小,均相區(qū)面積增大,萃取性能降低。
3.3 Othmer-Tobias方程關(guān)聯(lián)
將測(cè)定的三元體系的LLE用Othmer-Tobias方程關(guān)聯(lián),其公式[19,20]如下:
表2 四氫萘-正癸烷-DMSO體系的Othmer-Tobias方程回歸結(jié)果
對(duì)表1數(shù)據(jù)用Othmer-Tobias方程擬合,其擬合曲線如圖4所示。
圖4 四氫萘-正癸烷-DMSO體系的Othmer-Tobias方程擬合曲線
從圖4可以看出,不同溫度條件下,四氫萘-正癸烷-DMSO三元體系的Othmer-Tobias方程擬合曲線均為直線,其相關(guān)性系數(shù)較高,說(shuō)明Othmer-Tobias方程與實(shí)驗(yàn)測(cè)定結(jié)果吻合較好,可用于連續(xù)萃取設(shè)計(jì)過(guò)程。最小二乘法回歸得到的Othmer-Tobias方程擬合系數(shù)a、b以及相關(guān)性系數(shù)r2列于表2。
3.4 NRTL方程關(guān)聯(lián)
NRTL方程是一個(gè)基于局部組成的半經(jīng)驗(yàn)方程,適用于部分混合系統(tǒng)。常用于石油化工中的LLE體系數(shù)據(jù)關(guān)聯(lián)。NRTL模型的表達(dá)式[21,22]如下。
式中
采用單純形法回歸上述NRTL模型參數(shù),其目標(biāo)函數(shù)如下。
由于單純形法回歸NRTL模型參數(shù)時(shí)出現(xiàn)多解現(xiàn)象,本次模擬過(guò)程中采用熱力學(xué)平衡準(zhǔn)則,取混合自由能為最小時(shí)對(duì)應(yīng)的參數(shù)作為“真值”,其基本公式如下:
利用Aspen plus對(duì)NRTL模型進(jìn)行關(guān)聯(lián)計(jì)算[26],其結(jié)果如表3所示。
表3 四氫萘(1)-正癸烷(2)-DMSO(3)三元體系的NRTL模型參數(shù)
利用上述回歸所得NRTL模型參數(shù)對(duì)四氫萘-正癸烷-DMSO三元體系進(jìn)行計(jì)算。體系達(dá)平衡態(tài)時(shí),需滿足如下條件。
模擬計(jì)算基本思路:依據(jù)實(shí)驗(yàn)萃取相數(shù)據(jù)和萃余相數(shù)據(jù)分別計(jì)算萃余相組成和萃取相組成,式(7)中含有3個(gè)未知數(shù)、3個(gè)方程。但是的函數(shù),式(7)是非線性方程組,利用牛頓-拉夫森法可以求出其數(shù)值解。NRTL模型計(jì)算值與液-液平衡實(shí)驗(yàn)值的平均偏差(ADV)[27]可用式(8)計(jì)算,結(jié)果列于表4。
表4 三元體系LLE數(shù)據(jù)計(jì)算值與實(shí)驗(yàn)值平均偏差
NRTL模型對(duì)實(shí)驗(yàn)數(shù)據(jù)的擬合結(jié)果表明,在303.15、313.15、323.15 K溫度下,該模型對(duì)四氫萘-正癸烷-DMSO三元平衡體系計(jì)算值平均偏差較小,說(shuō)明NRTL模型適合于該體系LLE數(shù)據(jù)的關(guān)聯(lián)與預(yù)測(cè)。
3.5 分配系數(shù)和選擇性系數(shù)
在萃取分離過(guò)程中,分配系數(shù)及選擇性系數(shù)是分離性能的關(guān)鍵性評(píng)價(jià)指標(biāo)。基本公式[28]如下所示。
根據(jù)上式以及表1中數(shù)據(jù)計(jì)算不同組成下四氫萘的分配系數(shù)、DMSO的分配系數(shù)以及四氫萘對(duì)正癸烷的選擇性系數(shù)。圖5、圖6、圖7分別為四氫萘-正癸烷-DMSO三元體系在不同溫度下的四氫萘分配曲線、DMSO分配曲線以及四氫萘對(duì)正癸烷的選擇性系數(shù)曲線。
圖5 四氫萘在兩相中的分配曲線
圖6 DMSO在兩相中的分配曲線
圖7 四氫萘-正癸烷-DMSO三元體系的選擇性系數(shù)
從圖5可以看出,隨著溫度的增加,四氫萘在兩相中的分配系數(shù)相應(yīng)提高,強(qiáng)化了芳烴萃取過(guò)程,可以以較小的劑油比獲得較高的芳烴回收率。由圖6可以看出,隨溫度的升高,DMSO在兩相中的分配系數(shù)也增加,當(dāng)溫度為323.15 K時(shí),萃余相中DMSO溶劑含量可能超過(guò)10%,傳統(tǒng)的水洗-精餾回收溶劑工藝導(dǎo)致水耗量和精餾能耗大大增加,這要求必須對(duì)萃余相中溶劑回收開(kāi)發(fā)新的技術(shù)。由圖7可知,隨著溫度的增加,四氫萘對(duì)正癸烷的選擇性系數(shù)變化趨勢(shì)不是太明顯;對(duì)四氫萘含量為50% 的體系,在溫度為303.15~323.15 K條件下,四氫萘的分配系數(shù)為0.30~0.41,但其選擇性系數(shù)為6.4~6.9,對(duì)分離獲得高純度產(chǎn)品十分有利;隨著四氫萘含量增大,四氫萘對(duì)正癸烷的選擇性系數(shù)降低,當(dāng)四氫萘濃度為68%時(shí),四氫萘的分配系數(shù)為0.38~0.47,但其選擇性系數(shù)仍在3.8左右,說(shuō)明DMSO可以用于萃取分離四氫萘與正癸烷體系。
測(cè)定了常壓下,303.15、313.15、323.15 K時(shí)四氫萘-正癸烷-DMSO體系LLE數(shù)據(jù),并用相關(guān)模型對(duì)其進(jìn)行了關(guān)聯(lián)。
(1) 隨著溫度的增加,兩相區(qū)逐漸減小,均相區(qū)逐漸增大;隨著溫度的增加,四氫萘分配系數(shù)、DMSO分配系數(shù)增加,四氫萘對(duì)正癸烷的選擇性系數(shù)有所降低,但仍保持在3.2~17.7,說(shuō)明DMSO可以用于分離四氫萘-正癸烷體系。
(2) 用Othmer-Tobias方程對(duì)四氫萘-正癸烷-DMSO體系的LLE數(shù)據(jù)進(jìn)行了關(guān)聯(lián),相關(guān)性系數(shù)達(dá)0.99以上,獲得的關(guān)聯(lián)式可用于連續(xù)萃取設(shè)計(jì)過(guò)程。
(3) 用NRTL方程對(duì)四氫萘-正癸烷-DMSO體系的LLE數(shù)據(jù)進(jìn)行了關(guān)聯(lián),利用回歸獲得的二元交互作用參數(shù)對(duì)該體系LLE數(shù)據(jù)進(jìn)行計(jì)算,其計(jì)算值的平均偏差(ADV)較小,表明NRTL方程可以用于四氫萘-正癸烷-DMSO體系相平衡的預(yù)測(cè)。
?分子間相互作用參數(shù),J×mol-1— 分別為,組分在(萃取相)的組成 ? NRTL方程參數(shù)— 分別為,組分在(萃余相)的組成 ?實(shí)驗(yàn)組分?jǐn)?shù)— 分別為相(萃取相)中正癸烷、DMSO的質(zhì)量分?jǐn)?shù) ?數(shù)據(jù)點(diǎn)數(shù)— 分別為相(萃余相)中DMSO、四氫萘的質(zhì)量分?jǐn)?shù) ?氣體常數(shù),J×mol-1×K-1— 活度因子 ?組分的摩爾分?jǐn)?shù)上標(biāo) ?組分第次摩爾分?jǐn)?shù)計(jì)算值s— 表示第相(指兩相) ?組分第次摩爾分?jǐn)?shù)實(shí)驗(yàn)值下標(biāo) ?實(shí)驗(yàn)值與計(jì)算值的偏差i,j,k— 表示第,,組分
[1] QIAN Bo-zhang (錢(qián)伯章). The recent production capacity of PX in China (我國(guó)PX近期生產(chǎn)能力) [J]. Polyurethane Industry(聚酯工業(yè)), 2014, 27(6): 4-4.
[2] QIAO Jian-chao (喬建超), WANG Jian-ping (王建平), SHENG Qing-tao (盛清濤),. Advances in the preparation of aromatics from coal (由煤制取芳烴化合物的研究進(jìn)展) [J]. Chemical Industry and Engineering Progress (化工進(jìn)展), 2012, 31(8): 1717-1720.
[3] SHU Ge-ping (舒歌平).Development history and its significance of shenhua coal direct liquefaction (神華煤直接液化工藝開(kāi)發(fā)歷程及其意義) [J].Shen Hua Science and Technology(神華科技), 2009, 7(1): 78-82.
[4] Shui H F, Cai Z Y, Xu C B. Recent advances in direct coal liquefaction [J]. Energies, 2010, 3(2): 155-170.
[5] LI Jun (李軍), ZHANG De-xiang (張德祥), JIANG Zi-biao (蔣子標(biāo)),. The coal direct liquefaction oil processing technology research status (煤直接液化粗油提質(zhì)加工工藝研究現(xiàn)狀) [J]. Coal Chemical Industry(煤化工), 2013, 41(1): 30-33.
[6] LIN Hua-lin (藺華林), ZHANG De-xiang (張德祥), GAO Jin-sheng (高晉生). Preparing aromatic hydrocarbons of coal liquefaction are reviewed (煤加氫液化制取芳烴研究進(jìn)展) [J]. Coal Conversion(煤炭轉(zhuǎn)化), 2006, 29(2): 92-98.
[7] WANG Yong-gang (王永剛), WANG Cai-hong (王彩紅), YANG Zheng-wei (楊正偉),Typical Chinese coal direct liquefaction oil composition characteristics research (典型中國(guó)煤直接液化油組成特征研究) [J]. Journal of China University of Mining & Technology (中國(guó)礦業(yè)大學(xué)學(xué)報(bào)), 2009, 38(1): 96-100.
[8] LI Yang-yang (李洋洋). The research of coal liquefaction residue utilization and aromatics extraction of liquefied oil (煤液化殘?jiān)眉耙夯头紵N萃取研究) [D]. Shanghai (上海): East China University of Science and Technology (華東理工大學(xué)), 2010.
[9] XU Jie (許杰), ZHU Yu-ming (朱玉明), HAO Li-gang (郝立剛). The aromatics separation technology progress (芳烴分離技術(shù)進(jìn)展) [J]. Petrochemical Technology & Application(石化技術(shù)與應(yīng)用), 2005, 23(3): 228-230.
[10] ZHU Shen-lin (朱慎林), LUO Guang-sheng (駱廣生), ZHAO Jin-song (趙勁松). Light diesel oil phase equilibrium of aromatics extraction process research (輕柴油芳烴抽提工藝過(guò)程相平衡的研究) [J]. Petroleum Refinery Engineering (煉油設(shè)計(jì)), 1994, 24(3): 32-35.
[11] Shen W F, Dong L C, Wei S A,. Systematic design of an extractive distillation for maximum-boiling azeotropes with heavy entrainers [J]. AIChE Journal, 2015, 61(11): 3898-3910.
[12] WANG Yong-gang (王永剛), ZHOU Jian-ming (周建明), WANG Cai-hong (王彩紅),. Direct liquefaction oil products distribution of xianfeng and shenhua coals (先鋒煤和神華煤直接液化油的組成) [J].Journal of China Coal Society(煤炭學(xué)報(bào)), 2006, 31(1): 81-84.
[13] ZHAO Ru-juan (趙汝娟), WANG Zheng-fan (汪正范), CAO Hong (曹紅). Coal liquefaction oil of high performance liquid chromatography-gas chromatography-mass spectrometry (煤液化中油的高效液相色譜-氣相色譜-質(zhì)譜分析) [J]. Chinese Journal of Chromatography (色譜), 1988, 6(6): 351-355.
[14] Padlo D M, Subramanian R B, Kugler E L. Hydrocarbon class analysis of coal-derived liquids using high performance liquid chromatography [J]. Fuel Process Technolosy, 1996, 49(96): 247-258.
[15] CHENG Neng-lin (程能林). Solvents handbook (溶劑手冊(cè)) [M]. Beijing (北京): Chemical Industry Press(化學(xué)工業(yè)出版社), 2002: 150,844.
[16] Mohsen-Nia M, Bagheri H, Modarress H,. Liquid+liquid equilibria for ternary mixtures of (solvent+aromatic hydrocarbon+alkane) [J]. Journal of Chemical Thermodynamics, 2005, 37(10): 1111-1118.
[17] CHEN Ying (陳瑩), LIU Chang-jian (劉昌見(jiàn)). Determination and correlation of liquid-liquid equilibrium data for toluene-n-hexene-dimethyl sulfoxide system (甲苯-正己烯-二甲基亞砜液-液平衡數(shù)據(jù)的測(cè)定與關(guān)聯(lián)) [J]. Journal of Chemical Industry and Engineering(化工學(xué)報(bào)), 2013, 64(3): 814-819.
[18] ZHU De-chun (朱德春), XU Fei-fei (徐飛飛), GAO Da-ming (高大明),. Isobaric vapor-liquid equilibrium for thiophene-pyridine-dimethyl sulfoxide system (噻吩-吡啶-二甲基亞砜體系等壓汽液平衡) [J]. Journal of Chemical Engineering of Chinese Universities(高校化學(xué)工程學(xué)報(bào)), 2013, 27(1): 11-17.
[19] SUN Xiao-yan (孫曉巖), XIANG Shu-guang (項(xiàng)曙光). Study on liquid-liquid equilibrium of 2-methylbutane/2,2- dimethylbutane-benzene-sulfolane ternary systems (2-甲基丁烷、2,2-二甲基丁烷-苯-環(huán)丁砜體系液液平衡數(shù)據(jù)的測(cè)定與關(guān)聯(lián)) [J]. Journal of Chemical Engineering of Chinese Universities(高?;瘜W(xué)工程學(xué)報(bào)), 2014, 28(2): 412-415.
[20] Ashour I, Abu-Eishah S I. Liquid-liquid equilibria of ternary and six-component systems including cyclohexane, benzene, toluene, ethylbenzene, cumene, and sulfolane at 303.15 K [J]. Journal of Chemical and Engineering Data, 2006, 51(5): 1717-1722.
[21] Cassell G W, Hassan M M, Hines A L. Liquid-liquid equilibria for the hexane-benzene-dimethyl sulfoxide ternary system [J].Journal of Chemical and Engineering Data, 1989, 34(3): 328-331.
[22] GAI Heng-jun (蓋恒軍), GUO Hong-yue (國(guó)洪躍), SONG Hong-bing (宋紅兵). Measurement and correlation of liquid-liquid equilibrium data of mesityl oxide-water-phenol ternary systems (甲基戊烯酮-水-苯酚三元物系液液相平衡數(shù)據(jù)的測(cè)定與關(guān)聯(lián)) [J]. Journal of Chemical Engineering of Chinese Universities(高校化學(xué)工程學(xué)報(bào)), 2015, 29(6): 1320-1324.
[23] Montoya I C A, González J M, Villa A L. Liquid-liquid equilibrium for the water+diethyl carbonate+ethanol system at different temperatures [J].Journal of Chemical and Engineering Data, 2012, 57(6): 1708-1712.
[24] CHEN Zhong-xiu (陳鐘秀), GU Fei-yan (顧飛燕).Chemical engineering thermodynamics (化工熱力學(xué)) [M]. Beijing (北京): Chemical Industry Press(化學(xué)工業(yè)出版社), 1993.
[25] Kumar U K A, Mohan R. Liquid-liquid equilibria measurement of systems involving alkanes (heptane and dodecane), aromatics (benzene or toluene), and furfural [J].Journal of Chemical and Engineering Data, 2011, 56(3): 485-490.
[26] Chen J, Li Z C, Duan L P. Liquid-liquid equilibria of ternary and quaternary systems including cyclohexane, 1-heptene, benzene, toluene, and sulfolane at 298.15 K [J]. Journal of Chemical and Engineering Data, 2000, 45(4): 689-692.
[27] JIAO Zhen (焦真), MA Shao-ling (馬少玲), WANG Bing (王兵),. Correlation and prediction of liquid-liquid phase equilibrium of ionic liquid-alcohol-water systems with NRTL equation (用NRTL方程關(guān)聯(lián)和預(yù)測(cè)離子液體-醇-水體系的液液相平衡) [J]. Journal of Chemical Industry and Engineering(化工學(xué)報(bào)), 2006, 57(12): 2801-2805.
[28] Awwad A M, Sarkissian T M. Quantitative determination of dimethyl sulfoxide in benzene-toluene-xylenes mixture [btx] extracted from Iraqi powerformate by gas chromatography [J]. Journal of Chromatographic Science, 1977, 15(10): 487-488.
Determination and Correlation of Liquid-Liquid Equilibrium Data for a Tetranap--Decane-Dimethyl Sulfoxide System
WU Hui, LIU Chang-jian, XIAO Cong
(CNPC Key Laboratory of Catalysis, China University of Petroleum, Beijing 102249, China)
Coal direct liquefaction oil contains 50%~70% aromatics, in which heavy aromatics accounts for about 80%. Dimethyl sulfoxide (DMSO) is a desired solvent for heavy aromatics extraction, and the quality of liquefaction oil can be improved by extraction with DMSO. Tetranap was selected as a model aromatics compound based on the composition of liquefaction oil, and-decane was selected to represent the rest part of liquefaction oil. The liquid-liquid equilibrium (LLE) of the tetranap--decane-DMSO ternary system under atmospheric pressure was measured at 303.15, 313.15, 323.15 K, respectively, and the phase diagram of this ternary system was obtained. The results were correlated with the Othmer-Tobias and NRTL models to obtain binary interaction parameters, which show that both the Othmer-Tobias and the NRTL models can correlated the equilibrium composition satisfactorily, the selectivity coefficients of tetranap to-decane are 3.2 ~ 17.7. The results show that DMSO is a suitable extraction solvent to separate tetranap and-decane.
coal liquefaction oil; phase equilibrium; solvent extraction; NRTL model; prediction
1003-9015(2016)05-0985-07
O642.4
A
10.3969/j.issn.1003-9015.2016.05.001
2015-11-22;
2016-01-16。
吳輝(1987-),男,湖南婁底人,中國(guó)石油大學(xué)(北京)碩士生。通訊聯(lián)系人:劉昌見(jiàn),E-mail:chjliu@cup.edu.cn