• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation

    2016-11-17 08:41:17HidekiUosakiTaguchi
    Genomics,Proteomics & Bioinformatics 2016年4期
    關鍵詞:孫靜齊墩果酸

    Hideki Uosaki*,Y-h Taguchi

    1Division of Cardiology,The Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA

    2Department of Physics,Chuo University,Tokyo 112-8551,Japan

    ORIGINAL RESEARCH

    Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation

    Hideki Uosaki1,*,a,Y-h Taguchi2,b

    1Division of Cardiology,The Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA

    2Department of Physics,Chuo University,Tokyo 112-8551,Japan

    Received 21 March 2016;revised 7 April 2016;accepted 10 April 2016 Available online 16 July 2016

    Handled by Andreas Keller

    Cardiac maturation;

    Comparative gene expression analysis;

    Microarray meta analysis;Principal component analysis;

    Feature selection

    Understanding how human cardiomyocytes mature is crucialto realizing stem cell-based heart regeneration,modeling adult heart diseases,and facilitating drug discovery.However,it is not feasible to analyze human samples for maturation due to inaccessibility to samples while cardiomyocytes mature during fetal development and childhood,as well as difficulty in avoiding variations among individuals.Using modelanimals such as mice can be a usefulstrategy;nonetheless,itis not well-understood whether and to what degree gene expression profiles during maturation are shared between humans and mice.Therefore,we performed a comparative gene expression analysis of mice and human samples.First,we examined two distinct mice microarray platforms for shared gene expression profiles,aiming to increase reliability of the analysis.We identified a set of genes displaying progressive changes during maturation based on principal component analysis.Second,we demonstrated that the genes identified had a differential expression pattern between adult and earlier stages(e.g.,fetus)common in mice and humans.Our findings provide a foundation for further genetic studies of cardiomyocyte maturation.

    Introduction

    Pluripotent stem cells(PSCs)hold tremendous potential for regenerative medicine,disease modeling,and drug discovery in a broad spectrum of tissue and cell types,such as cardiomyocytes[1-4].Recent advances in the field have rendered efficient and robust differentiation of cardiomyocytes from most of PSC lines[5-7].Although the maturation of differentiated cardiomyocytes into the adult-like stage is essential to study adult-onset diseases in vitro,fully matured cardiomyocytes have never been obtained[8].Moreover,there are no clear-cut and definitive markers available to evaluate cardiomyocyte maturation[8].Therefore,a detailed understanding of the cardiac maturation process in vivo is a prerequisite for further development of methods to maturate PSC-derived cardiomyocytes in vitro.

    Uosaki et al.examined the detailed process of mice cardiac maturation using meta-microarray analysis[9].This and other studies demonstrated that the maturation of cardiomyocytes isa continuous process occurring during embryonic and postnatal development[9-12].Because of limited human samples obtained during the early life(potentially collected from aborted fetus,babies that died from accidents or other medical reasons,and/or biopsies from transplanted hearts)and technical difficulty in repetitive sample collection from the same individual,it is difficult to dissect the progression in humans from individual variations,e.g.,by measuring gene expression. Therefore,studies of cardiac maturation rely heavily on model animals,e.g.,mice.Here,the key question remain to be addressed is whether and to what extent cardiac maturation progresses are similar in mice and humans.

    Comparative gene expression analysis[13]is a useful strategy to evaluate consistency between species.It enables studying multiple human diseases in mice,which are hard to investigate directly in humans[14].It can even help us to understand gene regulatory mechanisms in mammals using gene expression data from non-mammalian animals[15]. Moreover,it also helps in identifying highly-correlative expression profiles between putative orthologs across species[16].

    In this study,we demonstrated the correlation of gene expression involved in cardiac maturation between mice and humans.We performed a meta-microarray analysis of data generated from mice samples ranging from the embryonic to the adult stages using two microarray platforms(Affymetrix Mouse Genome 430 2.0 Array,referred to as‘mouse 430 2.0”hereafter and Mouse Gene 1.0 ST Array,referred as‘mogene 1.0”hereafter)to collect a reliable set of genes correlating with the progression of cardiac maturation in mice.Subsequently,we evaluated whether highly-correlative expression profiles that were identified in the mice gene set exist in human samples.

    Results

    Performance comparison between frozen robust microarray analysis and microarray suite 5 method

    In our previous paper[9],we employed the frozen robust microarray analysis(fRMA)[17]to analyze the gene expression profiles of more than 200 microarray datasets ranging from early embryonic to adult hearts.fRMA serves as a reliable platform to perform meta-microarray analysis[17]. Nonetheless,fRMA can only be applied to popular microarray platforms,such as mouse 430 2.0 and mogene 1.0,due to its requirement of preprocessed dataset.In addition,there is uncertainty on whether fRMA correctly performs batch effect extraction,although this is one of the primary reasons why fRMA is introduced.On the other hand,microarray suite 5 method(MAS5)is a method used for single-microarray preprocessing[18].We hypothesized that MAS5 can replace fRMA for meta-microarray analysis.

    To evaluate the performance of MAS5 for data preprocessing,we collected 646 microarray datasets(Table S1)and preprocessed them with MAS5 as well as fRMA.To allow comparison,MAS5-processed data was log2 transformed and scaled(mean=0;standard deviation=1).Signal intensities of all 45,101 probesets on mouse 430 2.0 platform were well correlated between MAS5 and fRMA(R=0.90;Pearson correlation)(Figure 1A).Although probes with medium signal intensities(6-12 in fRMA)showed better correlation,more variability was observed for probes with lower or higher signal intensities.To evaluate whether this variability would compromise the overall analysis,we conducted principal component analysis(PCA)for signal intensities of preprocessed data by fRMA(Figure 1B)and MAS5(Figure 1C).The scatter plots of the first and second principal component(PC1 and PC2)values were almost identical.In addition,variable loadings for PC1 were well correlated between data preprocessed by fRMA and MAS5(R=0.89;Pearson correlation)(Figure 1D).These results suggest that MAS5 can replace fRMA for meta-microarray analysis.Therefore,data preprocessed by MAS5 were used for downstream analyses.As pointed out previously[9],PC1 represents the maturation process and PC2 seems to separate batch effects in either preprocessing method.

    As PCA indicated a gradualmaturation process in the heart[9],we next assessed how gene expression changes during the maturation process.To detect gross changes,we averaged the signal intensities of each probe at each developmental stage for ranking.Figure 1E depicts the distribution of the intensity ranks.As expected,the majority of probesets at the early embryonic and adult stages ranked either first or fifth,whereas more than one third of the probes at the late embryonic stage ranked third,suggesting that the expression of each gene changes gradually and unidirectionally.This finding is important when considering the limited datasets of human heart samples,which are mostly early-gestation fetal and adult samples,for comparative genomics.

    Probe-gene conversion

    To perform comparative gene expression analysis,it is necessary to convert probesets to genes.In mouse 430 2.0,there were more than 45,000 probesets for 20,736 genes.We used mouse 4302.db to annotate probesets to genes.As a result,11,076 genes were annotated to single probesets,whereas the remaining genes were annotated to at least two probesets(Figure 2A).Seita et al.reported that identifying probes with the most dynamic ranges can be a good way to select probes[19].However,such a method might be vulnerable to noise. Therefore,we decided to choose probes based on the interquartile ranges(IQRs)rather than the full dynamic ranges.For instance,myomesin 2(Myom2),encoding an M-protein that is expressed in mature cardiomyocytes[20],was annotated to 4 different probesets(Figure 2B).One probeset(1438372_at)showed a very small dynamic range,whereas the other three probesets displayed similar but distinct patterns,with the widest IQR observed for the 1457435_x_at probeset.Different from Myom2,Slc2a1that encodes glucose transporter 1(Glut1)was annotated to 3 probesets(Figure 2C),which share similar IQRs.In contrast to mouse 430 2.0,more than 95%(19,925 out of 20,915 in total)of genes were annotated to a single probeset in mogene 1.0 when using mogene10st trans criptcluster.db to annotate probesets to genes(Figure 2D).Therefore,for the mogene 1.0 data,we simply averaged the signal intensities from multiple probesets to obtain the expression level of a particular gene.

    Figure1 Comparison of MAS5 and fRMA for mouse 430 2.0 array data preprocessing

    Identification of mice genes associated with cardiac maturation using PCA

    Next,we used PCA to identify genes associated with cardiac maturation in mice.As shown in Figure 1C with probe-level PCA,PCA clearly distinguished the samples from different stages(Figure 3A).Neonatal samples were grouped into two clusters.Notably,one neonatal cluster close to the late embryonic stage and the other cluster close to the adult stage included samples from postnatal day(P)3 and P7,respectively,supporting the notion that PC1 is an explanatory variable for cardiac maturation.Similarly,we also performed PCA for the mogene 1.0 data(Figure 3B).For some unknown reasons,data for some samples from a single institute were widely divergent from the other datasets.Therefore,these samples were excluded from entire analysis(data not shown,marked as‘GSI”in Table S2).Although the number of samples for each stage was small and plots were sparse,the overall patterns for PCA plots were similar between the mouse 430 2.0 array data and mogene 1.0 data.

    To identify genes associated with cardiac maturation,we first plotted PC1 loadings of each gene for mouse 430 2.0 and mogene 1.0 data(Figure 3C).The loadings were well correlated(R=0.78).Next,we added the individual loadings for each gene.As the summed loadings followed a normaldistribution(data not shown),we selected genes with loadings higher than mean+2 standard deviation(SD)and lower than mean-2SD as genes that are significantly associated with cardiac maturation(colored in blue and red,respectively,in Figure 3C).As more than 3600 genes were unique to either array(Figure 3D),we also determined significant genes for each ofthe two arrays(Figure 3E and F).In total,we identified 648 genes,including 293 and 355 genes associated with mature and immature status,respectively(full lists available in Table S3).

    Characterization of the maturation-associated genes

    A linear model was employed to examine whether the genes identified above followed the trajectory of maturation(Figure 1E).First,we averaged the signal intensities of genes across samples of certain stages,which changed gradually with progressing stages for both mouse 430 2.0(Figure 4A)and mogene 1.0(Figure 4B).We next conducted the linear regression analysis for each gene to obtain P values and calculated false discovery rates(FDRs)in order to adjust for multiplecomparisons.Approximately 98%and 89%of the identified genes in the mouse 430 2.0 and mogene 1.0 arrays,respectively,had an FDR<0.10,suggesting linear gene expression alterations for most of the genes identified.

    To further characterize biological properties of the identified genes,we performed KEGG pathway analysis with DAVID[21,22].Pathways with an FDR<0.01 were considered significant(nodes in color,F(xiàn)igure 4C and D,Table S4 and S5).For the genes associated with immature status,ribosome-and cell cycle-related(e.g.,DNA replication and oocyte meiosis)pathways were significantly enriched(mmu03010:ribosome;mmu04110:cell cycle,F(xiàn)igure 4C,Table S4).On the other hand,for the genes associated with mature status,oxidation and mitochondria-related pathways(mmu05012:Parkinson’s disease;mmu00190:oxidative phosphorylation;mmu05010:Alzheimer’s disease;mmu05016: Huntington’s disease;mmu00020:citrate cycle or TCA cycle)and cardiac pathways(mmu04260:cardiac muscle contraction;mmu05414:dilated cardiomyopathy,DCM,and mmu05410: hypertrophic cardiomyopathy(HCM))were significantly enriched(Figure 4D,Table S5).Taken together,these findings indicate that the genes identified are associated with cardiac maturation.

    Figure2 Probeset-to-gene symbolconversion

    Comparison with human datasets

    Finally,we assessed the expression patterns of the genes identified in mice in human datasets.We found two distinct datasets of human hearts including fetal and adult hearts(GSE62913 and GSE71148)[22,23].GSE62913 contains RNA-seq data obtained from fetalventricles and atria,as well as adult hearts.We performed PCA with all genes as well as with the maturation-associated genes,respectively.Among the 648 maturation-associated mice genes identified above,we found human counterparts of 520 genes in the GSE62913 dataset(234 and 286 for mature and immature status,respectively).PCA with all genes as well as with maturation associated genes similarly revealed distinctive patterns between fetal samples and adult hearts(Figure 5A and B).The other dataset GSE71148 is an Illumina HumanHT-12 V4.0 expression beadchip dataset for fetal and adult heart samples.We identified 586 maturation-associated genes conserved between humans and mice(262 and 324 for mature and immature status,respectively).Consistent with the PCA on GSE62913,PCA on GSE71148 with all genes or the maturationassociated genes both generated patterns distinctive between fetal and adult samples(Figure 5C and D).

    To assess whether gene expression patterns in mice and humans are correlated and whether the usage of maturation associated genes improves the correlation over the usage of all genes,we compared expression changes in mice and humans using all genes or the maturation-associated genes only(Figure 5E-H).As the human fetal heart samples were from fetus in the first and second trimesters(7-20 weeks),we used early embryonic mice hearts for comparison.We found that expression changes between adult and early embryo/fetus using all genes showed good correlation between mice and humans for mouse 430 2.0 dataset(R=0.49,F(xiàn)igure 5E)and mogene 1.0 dataset(R=0.51,F(xiàn)igure 5G).Nonetheless,the gene expression changes of maturation-related genes alone showed better correlation for both datasets(R=0.73 for mouse 430 2.0,F(xiàn)igure 5F and R=0.78 for mogene 1.0,F(xiàn)igure 5H).Overall,286 out of 324 immature status-associated genes and 237 out of 262 mature status-associated genes showed higher expression in fetal and adult hearts,respectively.Interestingly,most of the genes that showed inconsistency with the findings in mice did not show significant differences between fetal and adult heart samples in humans(only 8 genes showing more than 1.5-fold changes,Table S6).It is of note that MYH7 was among the immature-associated genes identified in the mice,and was highly expressed in human adult hearts as is widely known.

    Figure3 Selection of genes associated with cardiac maturation

    Taken together,gene expression pattern of cardiac maturation between early embryonic/fetal and adult stages is mostly consistent across species,and the maturation-related genes identified in mice can be mostly recapitulated in humans.

    Discussion

    In this study,we identified cardiac maturation-associated genes in mice based on PCA of data from two distinct mice microarrays.We demonstrated that the expression of the genes identified change progressively during maturation and that the expression patterns are well conserved between mice and humans.Although mice and human adult cardiomyocytes are different in terms of cell size,length of action potential,and beating rate,etc.,they share some common features e.g.,morphology,abundant mitochondria,and sarcomere structure[8].Our findings indicate that mice and humans follow a similar maturation process.MYH6 and MYH7,the genes encoding alpha and beta myosin heavy chains,are differentially expressed in mice and humans.Myh6 encodes a predominant form of myosin heavy chain in adult mice heart and Myh7 isexpressed in embryonic mice heart,whereas opposite expression pattern of these two genes is found in humans[24,25]. In accordance herewith,our comparative gene expression analysis successfully identified that MYH7 is a gene associated with immature stage in mice,but highly upregulated in human adult hearts.

    Cells derived from either mice model or mice/human PSCs are often used for maturation studies.However,PSC-derived cardiomyocytes barely mature[9].More importantly,there are no established readouts to define maturation status of cardiomyocytes.Structural and functional readouts,which include cellsize,morphology,t-tubule formation,calcium handling,action potential,and mitochondrial function,are often used[26-28].It is known how morphology and structure change during maturation in mice or rat but it is unknown for human.Physiological features were only studied for adult cardiomyocytes but not for embryonic and neonatal cardiomyocytes.Therefore,these readouts cannot be used to measure maturation status quantitatively at this point.The gene list we provided(Table S3)could serve as a resource for developing defined,objective,and reliable readouts,as expression of these genes change monotonically during maturation in both mice and humans.

    As we used PCA-based gene selection and made a comparison only between the adult and early embryonic/fetal stages,some of the highly differentially-expressed genes shown in Figure 5E and G were not selected based on PCA.Thus,we took an alternative approach for gene selection to evaluate whether the genes that are highly differentially expressed between adult and early embryo/fetus are sufficient to recapitulate the heart maturation pattern.Briefly,we summed the human and mice differential signal intensities of each gene.As the summed differential signal intensities followed a normal distribution,we selected genes for which expression levels fell out of the range of mean±2SD(Figure S1A and S1B).Although only one third of the alternatively selected genes overlapped with the genes selected using the PCA-based method(Figure S1C and S1D),the PCA patterns generated with the alternatively selected genes were similar to those generated with all genes(Figure S1E-H).As we demonstrated in Figure 1E as well as Figure 4A and B,the maturation process in the heart is unidirectional,and most genes related to maturation changed progressively.Therefore,the genes highly differentially expressed between the adult and early embryoic/fetal stages successfully represented the maturation process,which would be more appropriate for finding specifically-expressed genes.PCA granted unidirectional change and would be more appropriate for studying the process of maturation.

    Finally,in this study,we also tackled a bioinformatics issue—the limitations of fRMA.Although fRMA was designed to avoid batch effects by using frozen data sets generated from a large quantity of datasets,fRMAdid not outperform MAS5,which is a single array-based normalization method.Our results demonstrate that the performance of fRMA is correlated well with that of MAS5,suggesting that MAS5 can be used in place for fRMA.

    Figure4 Characterization of the genes associated with cardiac maturation

    Figure5 Comparison of mice datasets with human datasets

    Conclusions

    In this study,we performed a comparative gene expression analysis of mice and human cardiac maturation.As a result,we identified more than 500 genes that share distinct expression patterns during cardiac maturation between mice and humans.These genes could be further explored for their potential as genetic markers to investigate cardiomyocyte maturation in future.

    Methods

    mRNA expression

    All mRNA expression profiles analyzed in this study were downloaded from the Gene Expression Omnibus(GEO,http://www.ncbi.nlm.nih.gov/geo/).Mouse 430 2.0 gene expression profile was selected from profiles analyzed in our previous study[9].Detailed information about mouse 430 2.0 and mogene 1.0 arrays is listed in Tables S1 and S2,respectively.Profiles analyzed in Figures 1,3 and 4 were generated from five developmental stages with sample numbers(N)provided for mouse 430 2.0 and mogene 1.0,respectively.These include early embryonic(embryonic day(E)8-11,N=16 and 12),mid embryonic(E12-15,N=39 and 4),late embryonic(E16-18,N=26 and 2),neonate(postnatal day(P)1-10, N=16 and 2),and adult(>4-week old,N=115 and 134)stages.Only wild-type and non-treated samples were included in the current study.Human gene expression profiles were taken from GSE62913 and GSE71148.GSE62193 contains RNA-seq data for human PSC-derived cells,as well as fetal and adult hearts,whereas GSE71148 comes from an Illumina array transcriptome study for 20 samples from fetal and adult hearts,including Ref-pool(GSM1828516).

    Preprocessing

    Multiple preprocessing methods were employed in this study.‘MAS5-scale”indicates scaling was performed after MAS5 preprocessing,while‘MAS5-log2-scale”indicates that a log2 transformation was performed before scaling but after MAS5 preprocessing.

    fRMA

    fRMA was conducted using the Bioconductor/R fRMA package.Annotation packages mouse4302frmavecs and mogene.1.0.st.v1frmavecs were used for mouse 430 2.0 and mogene 1.0 arrays,respectively.

    MAS5

    MAS5 normalization was conducted for mouse 430 2.0 and mogene 1.0 data by using the MAS5 function in the Bioconductor/R affy and xps packages,respectively.

    Scaling and log2 transformation

    Scaling,which extract means and normalize standard deviation to one,was performed with the scale function in R.Additionally,log2 transformation was also performed using R.

    To convert probesets to genes,we identified probesets with the highest IQRs of signal intensity for mouse 430 2.0.To determine the IQR,we analyzed 429 arrays for brain,212 arrays for heart,142 arrays for kidney,and 137 arrays for liver.All arrays were preprocessed with fRMA and the IQR was determined for each probeset.The probe-gene match list was used to convert MAS5-preprocessed data.The conversion table is available as Table S7.As only less than 5%of genes were annotated to multiple probesets in mogene 1.0(Figure 2D),we simply averaged the signal intensities of multiple probesets for a particular gene.

    Human datasets

    Read countdata of GSE62193 were scaled to normalize the individual samples(mean=1 and standard deviation=0),while normalized and log2-transformed data for GSE71148 was directly obtained from GEOand used for subsequentanalysis.

    PCA

    PCA was conducted using the prcomp function in Rto demonstrate overall differences of samples.

    Identification of maturation-associated genes

    Maturation-associated genes were identified using two different approaches.For genes common to the mouse 430 2.0 and mogene 1.0 arrays,PC1 loadings of each array were summed.Genes with summed PC1 loadings more than a mean+2SD or less than a mean-2SD were selected as maturation-associated genes.On the other hand,for genes unique to either of arrays,genes with PC1 loadings more than a mean+2SD or less than a mean-2SD of the corresponding array were selected.

    Developmental stage wide coarse-grained gene expression analysis

    孫靜等[13]用半楓荷抗炎有效部位的全提取物(A組分)、齊墩果酸提取物純化品(B組分)和除去齊墩果酸的提取物(C組分)處理以HBV-DNA轉染的人肝細胞株HepG2,結果發(fā)現(xiàn)A、B組分對乙肝病毒的HBeAg與HBsAg抗原均具有很好的抑制作用,而C組分對抗原無抑制作用,因此判斷對病毒抗原具有抑制活性的成分為齊墩果酸。

    In this analysis,we employed MAS5 preprocessed profiles generated from the mouse 430 2.0 array.Average of expression of the i-thgene at each developmental stage,xis,was defined as xis≡where s is one of five aforementioned developmental stages and Nsis the number of samples that belong to the stage,xijis expression of the i-th gene in j-th samples.Averaged values were subsequently ranked across stages.

    Linear regression analysis of developmental-stage coarse-grained gene expression

    Regression analysis was done using the following equation: xis=ais+bi,where aiand biare the regression coefficients,and s takes values 1-5 corresponding to the developmental stages in the order of early,mid,late,neonatal,and adult,respectively.The linear regression analysis was carried out using lm function in R[29].P values were adjusted to meet FDR criterion using the fdrtool function in the fdrtool[30]package.Regressions with q values(adjusted P values)<0.1 were regarded to be significant.

    KEGG pathway enrichment analysis

    Enrichment analysis for KEGG pathways was performed by uploading gene symbols to DAVID.Numbers of genes overlapping between KEGG pathways were used as weights to generate KEGG path way net works shownin Figure 4C and D with the igraph[31]package in R[29].

    Mapping of mice genes to human genes

    Identical official gene symbols found in mice and human data were considered as a pair and used for comparison in Figure 5.

    Authors’contributions

    HU and YHT planed the research project;HU performed all analyses.Both HU and YHT were involved in manuscript writing,read and approved the final manuscript.

    Competing interests

    The authors have declared that there are no competing interests.

    Acknowledgments

    HU was supported by Maryland Stem Cell Research Fund,USA(Grant No.2015-MSCRFF-1765).YHT was supported by the grants from the Ministry of Education,Science(grant No.KAKENHI 26120528)and Chuo University joint research grant.

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.004.

    [1]Inoue H,Nagata N,Kurokawa H,Yamanaka S.IPS cells:a game changer for future medicine.EMBO J 2014;33:409-17.

    [2]Matsa E,Burridge PW,Wu JC.Human stem cells for modeling heart disease and for drug discovery.Sci Transl Med 2014;6:239ps6.

    [3]Onder TT,Daley GQ.New lessons learned from disease modeling with induced pluripotent stem cells.Curr Opin Genet Dev 2012;22:500-8.

    [4]Cho GS,F(xiàn)ernandez L,Kwon C.Regenerative medicine for the heart:perspectives on stem-cell therapy.Antioxid Redox Signal 2014;21:2018-31.

    [5]Laflamme MA,Chen KY,Naumova AV,Muskheli V,F(xiàn)ugate JA,Dupras SK,et al.Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts.Nat Biotechnol 2007;25:1015-24.

    [6]Uosaki H,F(xiàn)ukushima H,Takeuchi A,Matsuoka S,Nakatsuji N,Yamanaka S,et al.Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.PLoS One 2011;6: e23657.

    [7]Burridge PW,Matsa E,Shukla P,Lin ZC,Churko JM,Ebert AD,et al.Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855-60.

    [8]Yang X,Pabon L,Murry CE.Engineering adolescence:maturation of human pluripotent stem cell-derived cardiomyocytes.Circ Res 2014;114:511-23.

    [9]Uosaki H,Cahan P,Lee DI,Wang S,Miyamoto M,F(xiàn)ernandez L,et al.Transcriptional landscape of cardiomyocyte maturation. Cell Rep 2015;13:1705-16.

    [10]Di Maio A,Karko K,Snopko RM,Mej?′a-Alvarez R,F(xiàn)ranzini-Armstrong C.T-tubule formation in cardiacmyocytes:two possible mechanisms?J Muscle Res Cell Motil 2007;28:231-41.

    [11]Ziman AP,Go′mez-Viquez NL,Bloch RJ,Lederer WJ.Excitation-contraction coupling changes during postnatal cardiac development.J Mol Cell Cardiol 2010;48:379-86.

    [12]Vreeker A,van Stuijvenberg L,Hund TJ,Mohler PJ,Nikkels PG,van Veen TA.Assembly of the cardiac intercalated disk during pre-and postnatal development of the human heart.PLoS One 2014;9:e94722.

    [13]Kozian DH,Kirschbaum BJ.Comparative gene-expression analysis.Trends Biotechnol 1999;17:73-8.

    [14]Tseveleki V,Rubio R,Vamvakas SS,White J,Taoufik E,Petit E,et al.Comparative gene expression analysis in mouse models for multiple sclerosis,Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes.Genomics 2010;96:82-91.

    [15]Kobayashi I,Ono H,Moritomo T,Kano K,Nakanishi T,Suda T.Comparative gene expression analysis of zebrafish and mammals identifies common regulators in hematopoietic stem cells. Blood 2010;115:e1-9.

    [16]Mangelsen E,Kilian J,Berendzen KW,Kolukisaoglu UH,Harter K,Jansson C,et al.Phylogenetic and comparative gene expression analysis of barley(Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions between monocots and dicots.BMC Genomics 2008;9:194.

    [17]McCall MN,Bolstad BM,Irizarry RA.Frozen robust multiarray analysis(fRMA).Biostatistics 2010;11:242-53.

    [18]Rajagopalan D.A comparison of statistical methods for analysis of high density oligonucleotide array data.Bioinformatics 2003;19:1469-76.

    [19]Seita J,Sahoo D,Rossi DJ,Bhattacharya D,Serwold T,Inlay MA,et al.Gene expression commons:an open platform for absolute gene expression profiling.PLoS One 2012;7:e40321.

    [20]Schoenauer R,Lange S,Hirschy A,Ehler E,Perriard JC,Agarkova I.Myomesin 3,a novel structural component of the M-band in striated muscle.J Mol Biol 2008;376:338-51.

    [21]Huang DW,Sherman BT,Lempicki RA.Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res 2009;37:1-13.

    [22]Huang DW,Sherman BT,Lempicki RA.Systematic and integrative analysis of large gene lists using DAVIDbioinformatics resources.Nat Protoc 2009;4:44-57.

    [23]van den Berg CW,Okawa S,Chuva de Sousa Lopes SM,van Iperen L,Passier R,Braam SR.Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 2015;142:3231-8.

    [24]Lompre′AM,Nadal-Ginard B,Mahdavi V.Expression of the cardiac ventricular alpha-and beta-myosin heavy chain genes is developmentally and hormonally regulated.J Biol Chem 1984;259:6437-46.

    [25]Everett AW.Isomyosin expression in human heart in early preand post-natal life.J Mol Cell Cardiol 1986;18:607-15.

    [26]Kuppusamy KT,Jones DC,Sperber H,Madan A,F(xiàn)ischer KA,Rodriguez ML,et al.Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes.Proc Natl Acad Sci U S A 2015;112:E2785-94.

    [27]Feaster TK,Cadar AG,Wang L,Williams CH,Chun YW,Hempel JE,et al.Matrigel mattress:a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes.Circ Res 2015;117:995-1000.

    [28]Lee DS,Chen JH,Lundy DJ,Liu CH,Hwang SM,Pabon L,et al. Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes.Cell Rep 2015;12:1960-7.

    [29]R Core Team.R:a language and environment for statistical computing.R Foundation for Statistical Computing:Vienna,Austria.2015.

    [30]Klaus B,Strimmer K.fdrtool:estimation of(local)false discovery rates and higher criticism.2015.R package version 1.2.15.

    [31]Csardi G,Nepusz T.The igraph software package for complex network research.InterJournal 2006;Complex Systems:1695.

    *Corresponding author.

    E-mail:huosaki1@jhmi.edu(Uosaki H).

    aORCID:0000-0002-8964-8609.

    bORCID:0000-0003-0867-8986.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.004

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    猜你喜歡
    孫靜齊墩果酸
    孫靜:堅守初心 勇?lián)鷷r代使命
    華人時刊(2022年13期)2022-10-27 08:55:24
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?
    齊墩果酸固體分散體的制備
    中成藥(2018年10期)2018-10-26 03:40:56
    齊墩果酸對自然衰老大鼠睪丸DNA損傷保護作用及機制研究
    齊墩果酸衍生物的合成及其對胰脂肪酶的抑制作用
    熊果酸對肺癌細胞株A549及SPCA1細胞周期的抑制作用
    水線草熊果酸和齊墩果酸含量測定
    等你回來
    成年人黄色毛片网站| 婷婷亚洲欧美| 每晚都被弄得嗷嗷叫到高潮| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美一区二区综合| 99久久综合精品五月天人人| 91老司机精品| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添小说| 欧美一级a爱片免费观看看 | 少妇粗大呻吟视频| 亚洲中文字幕一区二区三区有码在线看 | 嫁个100分男人电影在线观看| 人成视频在线观看免费观看| 亚洲五月婷婷丁香| 一进一出抽搐动态| 午夜老司机福利片| 国产精品亚洲av一区麻豆| 欧美日韩亚洲国产一区二区在线观看| 国产激情久久老熟女| 亚洲 欧美一区二区三区| 亚洲av成人一区二区三| 亚洲国产精品合色在线| 婷婷精品国产亚洲av在线| 十八禁网站免费在线| 日韩大码丰满熟妇| 亚洲男人的天堂狠狠| 国产又黄又爽又无遮挡在线| 成熟少妇高潮喷水视频| 欧美极品一区二区三区四区| 欧美极品一区二区三区四区| 久久久久精品国产欧美久久久| 国产99久久九九免费精品| 免费在线观看视频国产中文字幕亚洲| 精品一区二区三区视频在线观看免费| 久久天堂一区二区三区四区| 制服诱惑二区| 国产激情偷乱视频一区二区| 久久久久亚洲av毛片大全| 亚洲中文av在线| 久9热在线精品视频| 久久人妻av系列| 国产黄片美女视频| 宅男免费午夜| 国产黄a三级三级三级人| 亚洲国产欧美一区二区综合| 精品熟女少妇八av免费久了| 亚洲国产精品久久男人天堂| 麻豆成人av在线观看| avwww免费| 亚洲av熟女| 老司机福利观看| 可以在线观看毛片的网站| 又黄又粗又硬又大视频| 国产午夜精品论理片| 日韩欧美在线乱码| 欧美日韩精品网址| 人妻夜夜爽99麻豆av| 少妇人妻一区二区三区视频| 天堂动漫精品| 午夜激情福利司机影院| 欧美日本视频| 18禁黄网站禁片免费观看直播| 少妇裸体淫交视频免费看高清 | 女同久久另类99精品国产91| 久久99热这里只有精品18| 九九热线精品视视频播放| 一个人免费在线观看电影 | 男插女下体视频免费在线播放| 免费在线观看亚洲国产| 中文字幕最新亚洲高清| 国内精品久久久久精免费| 熟妇人妻久久中文字幕3abv| 欧美不卡视频在线免费观看 | 桃红色精品国产亚洲av| 免费在线观看成人毛片| 国产精品野战在线观看| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 高清在线国产一区| 亚洲精品中文字幕在线视频| 午夜福利免费观看在线| 亚洲第一欧美日韩一区二区三区| 变态另类成人亚洲欧美熟女| 中文字幕人妻丝袜一区二区| 99久久国产精品久久久| 欧美日韩瑟瑟在线播放| 亚洲,欧美精品.| 真人一进一出gif抽搐免费| 国产精品电影一区二区三区| 在线视频色国产色| 午夜福利在线观看吧| 校园春色视频在线观看| 国产精品久久久久久久电影 | 少妇被粗大的猛进出69影院| 1024手机看黄色片| 无限看片的www在线观看| 美女午夜性视频免费| 99久久无色码亚洲精品果冻| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 变态另类丝袜制服| 国产精品亚洲av一区麻豆| 欧美日韩瑟瑟在线播放| 中文字幕人妻丝袜一区二区| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 男女床上黄色一级片免费看| 亚洲一区高清亚洲精品| 久久香蕉精品热| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 熟女电影av网| 国产av不卡久久| 精品无人区乱码1区二区| 又黄又粗又硬又大视频| 国产精品,欧美在线| 最近在线观看免费完整版| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 两性夫妻黄色片| 日本一本二区三区精品| 白带黄色成豆腐渣| 国产爱豆传媒在线观看 | 亚洲欧美日韩东京热| 日本五十路高清| 午夜免费观看网址| 国产精品av久久久久免费| 制服诱惑二区| 日韩国内少妇激情av| 国产在线观看jvid| 黄片大片在线免费观看| 欧美乱码精品一区二区三区| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 人妻夜夜爽99麻豆av| 亚洲av电影在线进入| 国产v大片淫在线免费观看| 激情在线观看视频在线高清| 亚洲精品美女久久av网站| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点| 十八禁网站免费在线| 久久久久性生活片| 老司机深夜福利视频在线观看| 日韩精品免费视频一区二区三区| 午夜免费激情av| 免费一级毛片在线播放高清视频| 国产不卡一卡二| 99riav亚洲国产免费| 成人一区二区视频在线观看| 亚洲国产看品久久| 国产精华一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美成狂野欧美在线观看| 精品高清国产在线一区| 国产私拍福利视频在线观看| 成年免费大片在线观看| 日韩中文字幕欧美一区二区| 日韩欧美免费精品| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久,| 亚洲精品久久国产高清桃花| 搡老熟女国产l中国老女人| 国产精品香港三级国产av潘金莲| 亚洲人成电影免费在线| 国语自产精品视频在线第100页| 亚洲av美国av| 很黄的视频免费| 老熟妇乱子伦视频在线观看| 欧美一区二区国产精品久久精品 | 97碰自拍视频| 欧美zozozo另类| 观看免费一级毛片| 精品人妻1区二区| 最近最新免费中文字幕在线| 香蕉久久夜色| 国产高清视频在线观看网站| 色综合欧美亚洲国产小说| 小说图片视频综合网站| 亚洲性夜色夜夜综合| 午夜成年电影在线免费观看| 国产三级在线视频| tocl精华| 白带黄色成豆腐渣| 国产主播在线观看一区二区| 国产午夜精品久久久久久| 久久中文字幕一级| 可以在线观看的亚洲视频| 国产成+人综合+亚洲专区| 久久中文看片网| 欧美色欧美亚洲另类二区| 国产精品1区2区在线观看.| 国产午夜精品久久久久久| 色av中文字幕| 亚洲精品在线观看二区| 真人一进一出gif抽搐免费| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 亚洲一区高清亚洲精品| 国内少妇人妻偷人精品xxx网站 | 最新美女视频免费是黄的| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 免费看日本二区| 亚洲国产高清在线一区二区三| 90打野战视频偷拍视频| 高潮久久久久久久久久久不卡| 欧美日本亚洲视频在线播放| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 亚洲aⅴ乱码一区二区在线播放 | 最近视频中文字幕2019在线8| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av在线| 免费看十八禁软件| 国产亚洲精品综合一区在线观看 | 亚洲 欧美一区二区三区| 国产不卡一卡二| 亚洲成人久久爱视频| 国产精品一区二区精品视频观看| 国产黄色小视频在线观看| 日本一本二区三区精品| 亚洲精品久久成人aⅴ小说| 国产成人av教育| 国产精品98久久久久久宅男小说| 久久久久久久午夜电影| 国内久久婷婷六月综合欲色啪| 久久精品人妻少妇| 成人手机av| 成人高潮视频无遮挡免费网站| www.999成人在线观看| 特大巨黑吊av在线直播| 国产三级在线视频| 狂野欧美白嫩少妇大欣赏| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| 久久国产精品人妻蜜桃| 国产亚洲精品第一综合不卡| 99精品欧美一区二区三区四区| 日韩大码丰满熟妇| 日日爽夜夜爽网站| 国产高清视频在线播放一区| 十八禁人妻一区二区| 欧美高清成人免费视频www| 日韩免费av在线播放| 亚洲无线在线观看| 免费观看精品视频网站| 色综合亚洲欧美另类图片| 国产日本99.免费观看| 日本成人三级电影网站| 最近最新中文字幕大全免费视频| 成人精品一区二区免费| 88av欧美| 亚洲国产精品久久男人天堂| 国产成人系列免费观看| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 久久久久国内视频| 精品福利观看| 成在线人永久免费视频| 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看 | 2021天堂中文幕一二区在线观| 91国产中文字幕| 欧美日韩瑟瑟在线播放| 久久中文字幕一级| 精品久久久久久久人妻蜜臀av| 香蕉av资源在线| 国产亚洲欧美98| 久久久久久免费高清国产稀缺| 久久久久久久精品吃奶| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 最新美女视频免费是黄的| 亚洲国产看品久久| 欧美中文日本在线观看视频| 伊人久久大香线蕉亚洲五| 日韩高清综合在线| 精品福利观看| 免费搜索国产男女视频| 欧美激情久久久久久爽电影| 精品国产乱码久久久久久男人| 成人欧美大片| 老汉色av国产亚洲站长工具| 50天的宝宝边吃奶边哭怎么回事| 草草在线视频免费看| av片东京热男人的天堂| 精品人妻1区二区| 麻豆成人午夜福利视频| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 老司机在亚洲福利影院| 夜夜爽天天搞| 白带黄色成豆腐渣| 精品免费久久久久久久清纯| 特级一级黄色大片| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜一区二区| 两个人看的免费小视频| 久久久久久久久久黄片| 久久午夜综合久久蜜桃| 丰满的人妻完整版| 正在播放国产对白刺激| 香蕉av资源在线| 熟女少妇亚洲综合色aaa.| 久久国产乱子伦精品免费另类| 久久久精品国产亚洲av高清涩受| 国内少妇人妻偷人精品xxx网站 | 一级毛片高清免费大全| 亚洲中文av在线| 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区三区四区久久| 久久午夜综合久久蜜桃| 美女黄网站色视频| 日本一本二区三区精品| 国产欧美日韩一区二区三| 亚洲精品国产一区二区精华液| 色在线成人网| 免费看日本二区| 最好的美女福利视频网| 国产区一区二久久| 久久国产乱子伦精品免费另类| 免费在线观看亚洲国产| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 成人三级黄色视频| 老司机福利观看| 美女大奶头视频| 国产日本99.免费观看| 又粗又爽又猛毛片免费看| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| 欧美成人一区二区免费高清观看 | 国产精品久久久久久精品电影| 特大巨黑吊av在线直播| 一区福利在线观看| 久久伊人香网站| av在线播放免费不卡| 亚洲欧美精品综合久久99| 最好的美女福利视频网| www国产在线视频色| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 亚洲自拍偷在线| 国产成人一区二区三区免费视频网站| 欧美日韩瑟瑟在线播放| 美女黄网站色视频| 91国产中文字幕| 夜夜躁狠狠躁天天躁| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| 久久精品人妻少妇| 国产视频内射| 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 午夜影院日韩av| 国产区一区二久久| av国产免费在线观看| 精品欧美一区二区三区在线| avwww免费| 国产精品久久电影中文字幕| 国产精品久久久人人做人人爽| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 黄色丝袜av网址大全| 色综合亚洲欧美另类图片| 高清在线国产一区| 欧美黄色片欧美黄色片| 亚洲 欧美一区二区三区| 麻豆国产97在线/欧美 | 日本精品一区二区三区蜜桃| 人妻丰满熟妇av一区二区三区| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 女生性感内裤真人,穿戴方法视频| 午夜精品一区二区三区免费看| 99精品欧美一区二区三区四区| 欧美久久黑人一区二区| 19禁男女啪啪无遮挡网站| 国产激情偷乱视频一区二区| 成在线人永久免费视频| 亚洲欧美日韩东京热| 久久久久久久精品吃奶| 精品少妇一区二区三区视频日本电影| 嫁个100分男人电影在线观看| 成人特级黄色片久久久久久久| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲一级av第二区| 欧美成狂野欧美在线观看| 黄色 视频免费看| 久久香蕉激情| 午夜福利在线在线| 女人被狂操c到高潮| 日韩成人在线观看一区二区三区| 欧美成人免费av一区二区三区| avwww免费| 高清在线国产一区| 深夜精品福利| 精品高清国产在线一区| 少妇裸体淫交视频免费看高清 | 嫩草影院精品99| 亚洲国产日韩欧美精品在线观看 | 女生性感内裤真人,穿戴方法视频| 麻豆一二三区av精品| 露出奶头的视频| 欧美日韩国产亚洲二区| 色播亚洲综合网| 婷婷精品国产亚洲av| 久久精品91无色码中文字幕| 全区人妻精品视频| 亚洲成人久久爱视频| 午夜福利在线在线| 成人三级做爰电影| 他把我摸到了高潮在线观看| 怎么达到女性高潮| 黄色视频,在线免费观看| 日韩国内少妇激情av| 啪啪无遮挡十八禁网站| 夜夜看夜夜爽夜夜摸| 青草久久国产| 亚洲av成人不卡在线观看播放网| 又爽又黄无遮挡网站| 巨乳人妻的诱惑在线观看| √禁漫天堂资源中文www| 免费av毛片视频| 亚洲欧美日韩高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 无限看片的www在线观看| 久久久精品大字幕| 99久久精品热视频| 久久久精品大字幕| 久久久精品欧美日韩精品| 99国产精品一区二区三区| 啪啪无遮挡十八禁网站| 亚洲中文字幕一区二区三区有码在线看 | 非洲黑人性xxxx精品又粗又长| 人人妻,人人澡人人爽秒播| 欧美3d第一页| 国产av一区二区精品久久| 日本一本二区三区精品| 亚洲av电影在线进入| 天天一区二区日本电影三级| 亚洲精品久久国产高清桃花| ponron亚洲| 亚洲成a人片在线一区二区| 国产精品香港三级国产av潘金莲| 国产在线精品亚洲第一网站| 久久久国产精品麻豆| 无限看片的www在线观看| 国产精品 国内视频| 亚洲专区国产一区二区| 夜夜爽天天搞| 手机成人av网站| av视频在线观看入口| 国产精品乱码一区二三区的特点| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 久久久久久久午夜电影| 国产免费男女视频| 99riav亚洲国产免费| 99久久综合精品五月天人人| 国产精品久久久久久精品电影| 日韩大尺度精品在线看网址| 舔av片在线| 亚洲午夜精品一区,二区,三区| 中国美女看黄片| 人妻夜夜爽99麻豆av| 亚洲成a人片在线一区二区| 午夜a级毛片| 淫妇啪啪啪对白视频| 亚洲无线在线观看| 成年版毛片免费区| 久久香蕉激情| 国产在线观看jvid| 日本一本二区三区精品| 欧美性猛交╳xxx乱大交人| 超碰成人久久| a在线观看视频网站| 91字幕亚洲| 特大巨黑吊av在线直播| 男女床上黄色一级片免费看| 亚洲一区二区三区不卡视频| 日韩大码丰满熟妇| 久久久久亚洲av毛片大全| 色综合欧美亚洲国产小说| 亚洲男人天堂网一区| 亚洲国产日韩欧美精品在线观看 | 免费看美女性在线毛片视频| 精品不卡国产一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲精品久久成人aⅴ小说| 精品国产乱子伦一区二区三区| 露出奶头的视频| 免费无遮挡裸体视频| 精品欧美国产一区二区三| 国产亚洲精品第一综合不卡| 中文字幕最新亚洲高清| 久久久精品欧美日韩精品| 国产黄片美女视频| 久99久视频精品免费| 国产精品永久免费网站| 视频区欧美日本亚洲| 手机成人av网站| 午夜精品久久久久久毛片777| 亚洲国产精品sss在线观看| 最新美女视频免费是黄的| 中文字幕熟女人妻在线| 亚洲专区国产一区二区| 非洲黑人性xxxx精品又粗又长| 国内揄拍国产精品人妻在线| 日日爽夜夜爽网站| 啪啪无遮挡十八禁网站| 999久久久国产精品视频| 欧美日韩亚洲国产一区二区在线观看| 天堂√8在线中文| 亚洲自偷自拍图片 自拍| 18禁裸乳无遮挡免费网站照片| 日韩欧美国产一区二区入口| 亚洲第一电影网av| 亚洲狠狠婷婷综合久久图片| 在线观看免费视频日本深夜| 免费在线观看亚洲国产| 午夜免费观看网址| 91九色精品人成在线观看| 国模一区二区三区四区视频 | 午夜福利免费观看在线| av福利片在线观看| 亚洲人成伊人成综合网2020| 精品国产美女av久久久久小说| 中文字幕av在线有码专区| a级毛片在线看网站| 男人舔女人的私密视频| 国产精品永久免费网站| 久久久精品欧美日韩精品| 精品不卡国产一区二区三区| 亚洲成a人片在线一区二区| 国产私拍福利视频在线观看| 国产午夜精品论理片| 男人的好看免费观看在线视频 | 级片在线观看| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线播放欧美日韩| 亚洲欧美激情综合另类| 国产精品免费一区二区三区在线| 欧美乱色亚洲激情| 真人一进一出gif抽搐免费| 国产三级中文精品| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩无卡精品| 精品久久蜜臀av无| 亚洲乱码一区二区免费版| 精品无人区乱码1区二区| 国产男靠女视频免费网站| 99久久精品国产亚洲精品| 欧美日本亚洲视频在线播放| 久久草成人影院| 婷婷六月久久综合丁香| 观看免费一级毛片| 哪里可以看免费的av片| 人人妻人人看人人澡| 我要搜黄色片| 手机成人av网站| 嫁个100分男人电影在线观看| 亚洲中文字幕一区二区三区有码在线看 | 90打野战视频偷拍视频| 欧美乱码精品一区二区三区| 黄片小视频在线播放| 成人三级做爰电影| 国产蜜桃级精品一区二区三区| 国产久久久一区二区三区| 亚洲自拍偷在线| xxxwww97欧美| 男人舔女人下体高潮全视频| 高清在线国产一区| 长腿黑丝高跟| 国产午夜精品论理片| 夜夜爽天天搞| 国产精品综合久久久久久久免费| 可以免费在线观看a视频的电影网站| 99久久精品热视频| 免费在线观看日本一区| 大型av网站在线播放| 97碰自拍视频| 九色国产91popny在线| 岛国在线免费视频观看| 男人舔奶头视频| 黑人欧美特级aaaaaa片| а√天堂www在线а√下载| 久久久久久人人人人人| 级片在线观看| 51午夜福利影视在线观看| 天天躁夜夜躁狠狠躁躁| 中文字幕最新亚洲高清| 亚洲精品中文字幕一二三四区| 大型黄色视频在线免费观看| 中文在线观看免费www的网站 | 在线观看www视频免费| 成熟少妇高潮喷水视频| 中文字幕熟女人妻在线| 欧美日韩黄片免| 校园春色视频在线观看| 亚洲性夜色夜夜综合| 麻豆久久精品国产亚洲av| 国产精品永久免费网站| 一个人免费在线观看电影 | 91成年电影在线观看| 亚洲中文字幕日韩| 亚洲avbb在线观看| 国产精品精品国产色婷婷|