• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation

    2016-11-17 08:41:17HidekiUosakiTaguchi
    Genomics,Proteomics & Bioinformatics 2016年4期
    關鍵詞:孫靜齊墩果酸

    Hideki Uosaki*,Y-h Taguchi

    1Division of Cardiology,The Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA

    2Department of Physics,Chuo University,Tokyo 112-8551,Japan

    ORIGINAL RESEARCH

    Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation

    Hideki Uosaki1,*,a,Y-h Taguchi2,b

    1Division of Cardiology,The Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA

    2Department of Physics,Chuo University,Tokyo 112-8551,Japan

    Received 21 March 2016;revised 7 April 2016;accepted 10 April 2016 Available online 16 July 2016

    Handled by Andreas Keller

    Cardiac maturation;

    Comparative gene expression analysis;

    Microarray meta analysis;Principal component analysis;

    Feature selection

    Understanding how human cardiomyocytes mature is crucialto realizing stem cell-based heart regeneration,modeling adult heart diseases,and facilitating drug discovery.However,it is not feasible to analyze human samples for maturation due to inaccessibility to samples while cardiomyocytes mature during fetal development and childhood,as well as difficulty in avoiding variations among individuals.Using modelanimals such as mice can be a usefulstrategy;nonetheless,itis not well-understood whether and to what degree gene expression profiles during maturation are shared between humans and mice.Therefore,we performed a comparative gene expression analysis of mice and human samples.First,we examined two distinct mice microarray platforms for shared gene expression profiles,aiming to increase reliability of the analysis.We identified a set of genes displaying progressive changes during maturation based on principal component analysis.Second,we demonstrated that the genes identified had a differential expression pattern between adult and earlier stages(e.g.,fetus)common in mice and humans.Our findings provide a foundation for further genetic studies of cardiomyocyte maturation.

    Introduction

    Pluripotent stem cells(PSCs)hold tremendous potential for regenerative medicine,disease modeling,and drug discovery in a broad spectrum of tissue and cell types,such as cardiomyocytes[1-4].Recent advances in the field have rendered efficient and robust differentiation of cardiomyocytes from most of PSC lines[5-7].Although the maturation of differentiated cardiomyocytes into the adult-like stage is essential to study adult-onset diseases in vitro,fully matured cardiomyocytes have never been obtained[8].Moreover,there are no clear-cut and definitive markers available to evaluate cardiomyocyte maturation[8].Therefore,a detailed understanding of the cardiac maturation process in vivo is a prerequisite for further development of methods to maturate PSC-derived cardiomyocytes in vitro.

    Uosaki et al.examined the detailed process of mice cardiac maturation using meta-microarray analysis[9].This and other studies demonstrated that the maturation of cardiomyocytes isa continuous process occurring during embryonic and postnatal development[9-12].Because of limited human samples obtained during the early life(potentially collected from aborted fetus,babies that died from accidents or other medical reasons,and/or biopsies from transplanted hearts)and technical difficulty in repetitive sample collection from the same individual,it is difficult to dissect the progression in humans from individual variations,e.g.,by measuring gene expression. Therefore,studies of cardiac maturation rely heavily on model animals,e.g.,mice.Here,the key question remain to be addressed is whether and to what extent cardiac maturation progresses are similar in mice and humans.

    Comparative gene expression analysis[13]is a useful strategy to evaluate consistency between species.It enables studying multiple human diseases in mice,which are hard to investigate directly in humans[14].It can even help us to understand gene regulatory mechanisms in mammals using gene expression data from non-mammalian animals[15]. Moreover,it also helps in identifying highly-correlative expression profiles between putative orthologs across species[16].

    In this study,we demonstrated the correlation of gene expression involved in cardiac maturation between mice and humans.We performed a meta-microarray analysis of data generated from mice samples ranging from the embryonic to the adult stages using two microarray platforms(Affymetrix Mouse Genome 430 2.0 Array,referred to as‘mouse 430 2.0”hereafter and Mouse Gene 1.0 ST Array,referred as‘mogene 1.0”hereafter)to collect a reliable set of genes correlating with the progression of cardiac maturation in mice.Subsequently,we evaluated whether highly-correlative expression profiles that were identified in the mice gene set exist in human samples.

    Results

    Performance comparison between frozen robust microarray analysis and microarray suite 5 method

    In our previous paper[9],we employed the frozen robust microarray analysis(fRMA)[17]to analyze the gene expression profiles of more than 200 microarray datasets ranging from early embryonic to adult hearts.fRMA serves as a reliable platform to perform meta-microarray analysis[17]. Nonetheless,fRMA can only be applied to popular microarray platforms,such as mouse 430 2.0 and mogene 1.0,due to its requirement of preprocessed dataset.In addition,there is uncertainty on whether fRMA correctly performs batch effect extraction,although this is one of the primary reasons why fRMA is introduced.On the other hand,microarray suite 5 method(MAS5)is a method used for single-microarray preprocessing[18].We hypothesized that MAS5 can replace fRMA for meta-microarray analysis.

    To evaluate the performance of MAS5 for data preprocessing,we collected 646 microarray datasets(Table S1)and preprocessed them with MAS5 as well as fRMA.To allow comparison,MAS5-processed data was log2 transformed and scaled(mean=0;standard deviation=1).Signal intensities of all 45,101 probesets on mouse 430 2.0 platform were well correlated between MAS5 and fRMA(R=0.90;Pearson correlation)(Figure 1A).Although probes with medium signal intensities(6-12 in fRMA)showed better correlation,more variability was observed for probes with lower or higher signal intensities.To evaluate whether this variability would compromise the overall analysis,we conducted principal component analysis(PCA)for signal intensities of preprocessed data by fRMA(Figure 1B)and MAS5(Figure 1C).The scatter plots of the first and second principal component(PC1 and PC2)values were almost identical.In addition,variable loadings for PC1 were well correlated between data preprocessed by fRMA and MAS5(R=0.89;Pearson correlation)(Figure 1D).These results suggest that MAS5 can replace fRMA for meta-microarray analysis.Therefore,data preprocessed by MAS5 were used for downstream analyses.As pointed out previously[9],PC1 represents the maturation process and PC2 seems to separate batch effects in either preprocessing method.

    As PCA indicated a gradualmaturation process in the heart[9],we next assessed how gene expression changes during the maturation process.To detect gross changes,we averaged the signal intensities of each probe at each developmental stage for ranking.Figure 1E depicts the distribution of the intensity ranks.As expected,the majority of probesets at the early embryonic and adult stages ranked either first or fifth,whereas more than one third of the probes at the late embryonic stage ranked third,suggesting that the expression of each gene changes gradually and unidirectionally.This finding is important when considering the limited datasets of human heart samples,which are mostly early-gestation fetal and adult samples,for comparative genomics.

    Probe-gene conversion

    To perform comparative gene expression analysis,it is necessary to convert probesets to genes.In mouse 430 2.0,there were more than 45,000 probesets for 20,736 genes.We used mouse 4302.db to annotate probesets to genes.As a result,11,076 genes were annotated to single probesets,whereas the remaining genes were annotated to at least two probesets(Figure 2A).Seita et al.reported that identifying probes with the most dynamic ranges can be a good way to select probes[19].However,such a method might be vulnerable to noise. Therefore,we decided to choose probes based on the interquartile ranges(IQRs)rather than the full dynamic ranges.For instance,myomesin 2(Myom2),encoding an M-protein that is expressed in mature cardiomyocytes[20],was annotated to 4 different probesets(Figure 2B).One probeset(1438372_at)showed a very small dynamic range,whereas the other three probesets displayed similar but distinct patterns,with the widest IQR observed for the 1457435_x_at probeset.Different from Myom2,Slc2a1that encodes glucose transporter 1(Glut1)was annotated to 3 probesets(Figure 2C),which share similar IQRs.In contrast to mouse 430 2.0,more than 95%(19,925 out of 20,915 in total)of genes were annotated to a single probeset in mogene 1.0 when using mogene10st trans criptcluster.db to annotate probesets to genes(Figure 2D).Therefore,for the mogene 1.0 data,we simply averaged the signal intensities from multiple probesets to obtain the expression level of a particular gene.

    Figure1 Comparison of MAS5 and fRMA for mouse 430 2.0 array data preprocessing

    Identification of mice genes associated with cardiac maturation using PCA

    Next,we used PCA to identify genes associated with cardiac maturation in mice.As shown in Figure 1C with probe-level PCA,PCA clearly distinguished the samples from different stages(Figure 3A).Neonatal samples were grouped into two clusters.Notably,one neonatal cluster close to the late embryonic stage and the other cluster close to the adult stage included samples from postnatal day(P)3 and P7,respectively,supporting the notion that PC1 is an explanatory variable for cardiac maturation.Similarly,we also performed PCA for the mogene 1.0 data(Figure 3B).For some unknown reasons,data for some samples from a single institute were widely divergent from the other datasets.Therefore,these samples were excluded from entire analysis(data not shown,marked as‘GSI”in Table S2).Although the number of samples for each stage was small and plots were sparse,the overall patterns for PCA plots were similar between the mouse 430 2.0 array data and mogene 1.0 data.

    To identify genes associated with cardiac maturation,we first plotted PC1 loadings of each gene for mouse 430 2.0 and mogene 1.0 data(Figure 3C).The loadings were well correlated(R=0.78).Next,we added the individual loadings for each gene.As the summed loadings followed a normaldistribution(data not shown),we selected genes with loadings higher than mean+2 standard deviation(SD)and lower than mean-2SD as genes that are significantly associated with cardiac maturation(colored in blue and red,respectively,in Figure 3C).As more than 3600 genes were unique to either array(Figure 3D),we also determined significant genes for each ofthe two arrays(Figure 3E and F).In total,we identified 648 genes,including 293 and 355 genes associated with mature and immature status,respectively(full lists available in Table S3).

    Characterization of the maturation-associated genes

    A linear model was employed to examine whether the genes identified above followed the trajectory of maturation(Figure 1E).First,we averaged the signal intensities of genes across samples of certain stages,which changed gradually with progressing stages for both mouse 430 2.0(Figure 4A)and mogene 1.0(Figure 4B).We next conducted the linear regression analysis for each gene to obtain P values and calculated false discovery rates(FDRs)in order to adjust for multiplecomparisons.Approximately 98%and 89%of the identified genes in the mouse 430 2.0 and mogene 1.0 arrays,respectively,had an FDR<0.10,suggesting linear gene expression alterations for most of the genes identified.

    To further characterize biological properties of the identified genes,we performed KEGG pathway analysis with DAVID[21,22].Pathways with an FDR<0.01 were considered significant(nodes in color,F(xiàn)igure 4C and D,Table S4 and S5).For the genes associated with immature status,ribosome-and cell cycle-related(e.g.,DNA replication and oocyte meiosis)pathways were significantly enriched(mmu03010:ribosome;mmu04110:cell cycle,F(xiàn)igure 4C,Table S4).On the other hand,for the genes associated with mature status,oxidation and mitochondria-related pathways(mmu05012:Parkinson’s disease;mmu00190:oxidative phosphorylation;mmu05010:Alzheimer’s disease;mmu05016: Huntington’s disease;mmu00020:citrate cycle or TCA cycle)and cardiac pathways(mmu04260:cardiac muscle contraction;mmu05414:dilated cardiomyopathy,DCM,and mmu05410: hypertrophic cardiomyopathy(HCM))were significantly enriched(Figure 4D,Table S5).Taken together,these findings indicate that the genes identified are associated with cardiac maturation.

    Figure2 Probeset-to-gene symbolconversion

    Comparison with human datasets

    Finally,we assessed the expression patterns of the genes identified in mice in human datasets.We found two distinct datasets of human hearts including fetal and adult hearts(GSE62913 and GSE71148)[22,23].GSE62913 contains RNA-seq data obtained from fetalventricles and atria,as well as adult hearts.We performed PCA with all genes as well as with the maturation-associated genes,respectively.Among the 648 maturation-associated mice genes identified above,we found human counterparts of 520 genes in the GSE62913 dataset(234 and 286 for mature and immature status,respectively).PCA with all genes as well as with maturation associated genes similarly revealed distinctive patterns between fetal samples and adult hearts(Figure 5A and B).The other dataset GSE71148 is an Illumina HumanHT-12 V4.0 expression beadchip dataset for fetal and adult heart samples.We identified 586 maturation-associated genes conserved between humans and mice(262 and 324 for mature and immature status,respectively).Consistent with the PCA on GSE62913,PCA on GSE71148 with all genes or the maturationassociated genes both generated patterns distinctive between fetal and adult samples(Figure 5C and D).

    To assess whether gene expression patterns in mice and humans are correlated and whether the usage of maturation associated genes improves the correlation over the usage of all genes,we compared expression changes in mice and humans using all genes or the maturation-associated genes only(Figure 5E-H).As the human fetal heart samples were from fetus in the first and second trimesters(7-20 weeks),we used early embryonic mice hearts for comparison.We found that expression changes between adult and early embryo/fetus using all genes showed good correlation between mice and humans for mouse 430 2.0 dataset(R=0.49,F(xiàn)igure 5E)and mogene 1.0 dataset(R=0.51,F(xiàn)igure 5G).Nonetheless,the gene expression changes of maturation-related genes alone showed better correlation for both datasets(R=0.73 for mouse 430 2.0,F(xiàn)igure 5F and R=0.78 for mogene 1.0,F(xiàn)igure 5H).Overall,286 out of 324 immature status-associated genes and 237 out of 262 mature status-associated genes showed higher expression in fetal and adult hearts,respectively.Interestingly,most of the genes that showed inconsistency with the findings in mice did not show significant differences between fetal and adult heart samples in humans(only 8 genes showing more than 1.5-fold changes,Table S6).It is of note that MYH7 was among the immature-associated genes identified in the mice,and was highly expressed in human adult hearts as is widely known.

    Figure3 Selection of genes associated with cardiac maturation

    Taken together,gene expression pattern of cardiac maturation between early embryonic/fetal and adult stages is mostly consistent across species,and the maturation-related genes identified in mice can be mostly recapitulated in humans.

    Discussion

    In this study,we identified cardiac maturation-associated genes in mice based on PCA of data from two distinct mice microarrays.We demonstrated that the expression of the genes identified change progressively during maturation and that the expression patterns are well conserved between mice and humans.Although mice and human adult cardiomyocytes are different in terms of cell size,length of action potential,and beating rate,etc.,they share some common features e.g.,morphology,abundant mitochondria,and sarcomere structure[8].Our findings indicate that mice and humans follow a similar maturation process.MYH6 and MYH7,the genes encoding alpha and beta myosin heavy chains,are differentially expressed in mice and humans.Myh6 encodes a predominant form of myosin heavy chain in adult mice heart and Myh7 isexpressed in embryonic mice heart,whereas opposite expression pattern of these two genes is found in humans[24,25]. In accordance herewith,our comparative gene expression analysis successfully identified that MYH7 is a gene associated with immature stage in mice,but highly upregulated in human adult hearts.

    Cells derived from either mice model or mice/human PSCs are often used for maturation studies.However,PSC-derived cardiomyocytes barely mature[9].More importantly,there are no established readouts to define maturation status of cardiomyocytes.Structural and functional readouts,which include cellsize,morphology,t-tubule formation,calcium handling,action potential,and mitochondrial function,are often used[26-28].It is known how morphology and structure change during maturation in mice or rat but it is unknown for human.Physiological features were only studied for adult cardiomyocytes but not for embryonic and neonatal cardiomyocytes.Therefore,these readouts cannot be used to measure maturation status quantitatively at this point.The gene list we provided(Table S3)could serve as a resource for developing defined,objective,and reliable readouts,as expression of these genes change monotonically during maturation in both mice and humans.

    As we used PCA-based gene selection and made a comparison only between the adult and early embryonic/fetal stages,some of the highly differentially-expressed genes shown in Figure 5E and G were not selected based on PCA.Thus,we took an alternative approach for gene selection to evaluate whether the genes that are highly differentially expressed between adult and early embryo/fetus are sufficient to recapitulate the heart maturation pattern.Briefly,we summed the human and mice differential signal intensities of each gene.As the summed differential signal intensities followed a normal distribution,we selected genes for which expression levels fell out of the range of mean±2SD(Figure S1A and S1B).Although only one third of the alternatively selected genes overlapped with the genes selected using the PCA-based method(Figure S1C and S1D),the PCA patterns generated with the alternatively selected genes were similar to those generated with all genes(Figure S1E-H).As we demonstrated in Figure 1E as well as Figure 4A and B,the maturation process in the heart is unidirectional,and most genes related to maturation changed progressively.Therefore,the genes highly differentially expressed between the adult and early embryoic/fetal stages successfully represented the maturation process,which would be more appropriate for finding specifically-expressed genes.PCA granted unidirectional change and would be more appropriate for studying the process of maturation.

    Finally,in this study,we also tackled a bioinformatics issue—the limitations of fRMA.Although fRMA was designed to avoid batch effects by using frozen data sets generated from a large quantity of datasets,fRMAdid not outperform MAS5,which is a single array-based normalization method.Our results demonstrate that the performance of fRMA is correlated well with that of MAS5,suggesting that MAS5 can be used in place for fRMA.

    Figure4 Characterization of the genes associated with cardiac maturation

    Figure5 Comparison of mice datasets with human datasets

    Conclusions

    In this study,we performed a comparative gene expression analysis of mice and human cardiac maturation.As a result,we identified more than 500 genes that share distinct expression patterns during cardiac maturation between mice and humans.These genes could be further explored for their potential as genetic markers to investigate cardiomyocyte maturation in future.

    Methods

    mRNA expression

    All mRNA expression profiles analyzed in this study were downloaded from the Gene Expression Omnibus(GEO,http://www.ncbi.nlm.nih.gov/geo/).Mouse 430 2.0 gene expression profile was selected from profiles analyzed in our previous study[9].Detailed information about mouse 430 2.0 and mogene 1.0 arrays is listed in Tables S1 and S2,respectively.Profiles analyzed in Figures 1,3 and 4 were generated from five developmental stages with sample numbers(N)provided for mouse 430 2.0 and mogene 1.0,respectively.These include early embryonic(embryonic day(E)8-11,N=16 and 12),mid embryonic(E12-15,N=39 and 4),late embryonic(E16-18,N=26 and 2),neonate(postnatal day(P)1-10, N=16 and 2),and adult(>4-week old,N=115 and 134)stages.Only wild-type and non-treated samples were included in the current study.Human gene expression profiles were taken from GSE62913 and GSE71148.GSE62193 contains RNA-seq data for human PSC-derived cells,as well as fetal and adult hearts,whereas GSE71148 comes from an Illumina array transcriptome study for 20 samples from fetal and adult hearts,including Ref-pool(GSM1828516).

    Preprocessing

    Multiple preprocessing methods were employed in this study.‘MAS5-scale”indicates scaling was performed after MAS5 preprocessing,while‘MAS5-log2-scale”indicates that a log2 transformation was performed before scaling but after MAS5 preprocessing.

    fRMA

    fRMA was conducted using the Bioconductor/R fRMA package.Annotation packages mouse4302frmavecs and mogene.1.0.st.v1frmavecs were used for mouse 430 2.0 and mogene 1.0 arrays,respectively.

    MAS5

    MAS5 normalization was conducted for mouse 430 2.0 and mogene 1.0 data by using the MAS5 function in the Bioconductor/R affy and xps packages,respectively.

    Scaling and log2 transformation

    Scaling,which extract means and normalize standard deviation to one,was performed with the scale function in R.Additionally,log2 transformation was also performed using R.

    To convert probesets to genes,we identified probesets with the highest IQRs of signal intensity for mouse 430 2.0.To determine the IQR,we analyzed 429 arrays for brain,212 arrays for heart,142 arrays for kidney,and 137 arrays for liver.All arrays were preprocessed with fRMA and the IQR was determined for each probeset.The probe-gene match list was used to convert MAS5-preprocessed data.The conversion table is available as Table S7.As only less than 5%of genes were annotated to multiple probesets in mogene 1.0(Figure 2D),we simply averaged the signal intensities of multiple probesets for a particular gene.

    Human datasets

    Read countdata of GSE62193 were scaled to normalize the individual samples(mean=1 and standard deviation=0),while normalized and log2-transformed data for GSE71148 was directly obtained from GEOand used for subsequentanalysis.

    PCA

    PCA was conducted using the prcomp function in Rto demonstrate overall differences of samples.

    Identification of maturation-associated genes

    Maturation-associated genes were identified using two different approaches.For genes common to the mouse 430 2.0 and mogene 1.0 arrays,PC1 loadings of each array were summed.Genes with summed PC1 loadings more than a mean+2SD or less than a mean-2SD were selected as maturation-associated genes.On the other hand,for genes unique to either of arrays,genes with PC1 loadings more than a mean+2SD or less than a mean-2SD of the corresponding array were selected.

    Developmental stage wide coarse-grained gene expression analysis

    孫靜等[13]用半楓荷抗炎有效部位的全提取物(A組分)、齊墩果酸提取物純化品(B組分)和除去齊墩果酸的提取物(C組分)處理以HBV-DNA轉染的人肝細胞株HepG2,結果發(fā)現(xiàn)A、B組分對乙肝病毒的HBeAg與HBsAg抗原均具有很好的抑制作用,而C組分對抗原無抑制作用,因此判斷對病毒抗原具有抑制活性的成分為齊墩果酸。

    In this analysis,we employed MAS5 preprocessed profiles generated from the mouse 430 2.0 array.Average of expression of the i-thgene at each developmental stage,xis,was defined as xis≡where s is one of five aforementioned developmental stages and Nsis the number of samples that belong to the stage,xijis expression of the i-th gene in j-th samples.Averaged values were subsequently ranked across stages.

    Linear regression analysis of developmental-stage coarse-grained gene expression

    Regression analysis was done using the following equation: xis=ais+bi,where aiand biare the regression coefficients,and s takes values 1-5 corresponding to the developmental stages in the order of early,mid,late,neonatal,and adult,respectively.The linear regression analysis was carried out using lm function in R[29].P values were adjusted to meet FDR criterion using the fdrtool function in the fdrtool[30]package.Regressions with q values(adjusted P values)<0.1 were regarded to be significant.

    KEGG pathway enrichment analysis

    Enrichment analysis for KEGG pathways was performed by uploading gene symbols to DAVID.Numbers of genes overlapping between KEGG pathways were used as weights to generate KEGG path way net works shownin Figure 4C and D with the igraph[31]package in R[29].

    Mapping of mice genes to human genes

    Identical official gene symbols found in mice and human data were considered as a pair and used for comparison in Figure 5.

    Authors’contributions

    HU and YHT planed the research project;HU performed all analyses.Both HU and YHT were involved in manuscript writing,read and approved the final manuscript.

    Competing interests

    The authors have declared that there are no competing interests.

    Acknowledgments

    HU was supported by Maryland Stem Cell Research Fund,USA(Grant No.2015-MSCRFF-1765).YHT was supported by the grants from the Ministry of Education,Science(grant No.KAKENHI 26120528)and Chuo University joint research grant.

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.004.

    [1]Inoue H,Nagata N,Kurokawa H,Yamanaka S.IPS cells:a game changer for future medicine.EMBO J 2014;33:409-17.

    [2]Matsa E,Burridge PW,Wu JC.Human stem cells for modeling heart disease and for drug discovery.Sci Transl Med 2014;6:239ps6.

    [3]Onder TT,Daley GQ.New lessons learned from disease modeling with induced pluripotent stem cells.Curr Opin Genet Dev 2012;22:500-8.

    [4]Cho GS,F(xiàn)ernandez L,Kwon C.Regenerative medicine for the heart:perspectives on stem-cell therapy.Antioxid Redox Signal 2014;21:2018-31.

    [5]Laflamme MA,Chen KY,Naumova AV,Muskheli V,F(xiàn)ugate JA,Dupras SK,et al.Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts.Nat Biotechnol 2007;25:1015-24.

    [6]Uosaki H,F(xiàn)ukushima H,Takeuchi A,Matsuoka S,Nakatsuji N,Yamanaka S,et al.Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.PLoS One 2011;6: e23657.

    [7]Burridge PW,Matsa E,Shukla P,Lin ZC,Churko JM,Ebert AD,et al.Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855-60.

    [8]Yang X,Pabon L,Murry CE.Engineering adolescence:maturation of human pluripotent stem cell-derived cardiomyocytes.Circ Res 2014;114:511-23.

    [9]Uosaki H,Cahan P,Lee DI,Wang S,Miyamoto M,F(xiàn)ernandez L,et al.Transcriptional landscape of cardiomyocyte maturation. Cell Rep 2015;13:1705-16.

    [10]Di Maio A,Karko K,Snopko RM,Mej?′a-Alvarez R,F(xiàn)ranzini-Armstrong C.T-tubule formation in cardiacmyocytes:two possible mechanisms?J Muscle Res Cell Motil 2007;28:231-41.

    [11]Ziman AP,Go′mez-Viquez NL,Bloch RJ,Lederer WJ.Excitation-contraction coupling changes during postnatal cardiac development.J Mol Cell Cardiol 2010;48:379-86.

    [12]Vreeker A,van Stuijvenberg L,Hund TJ,Mohler PJ,Nikkels PG,van Veen TA.Assembly of the cardiac intercalated disk during pre-and postnatal development of the human heart.PLoS One 2014;9:e94722.

    [13]Kozian DH,Kirschbaum BJ.Comparative gene-expression analysis.Trends Biotechnol 1999;17:73-8.

    [14]Tseveleki V,Rubio R,Vamvakas SS,White J,Taoufik E,Petit E,et al.Comparative gene expression analysis in mouse models for multiple sclerosis,Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes.Genomics 2010;96:82-91.

    [15]Kobayashi I,Ono H,Moritomo T,Kano K,Nakanishi T,Suda T.Comparative gene expression analysis of zebrafish and mammals identifies common regulators in hematopoietic stem cells. Blood 2010;115:e1-9.

    [16]Mangelsen E,Kilian J,Berendzen KW,Kolukisaoglu UH,Harter K,Jansson C,et al.Phylogenetic and comparative gene expression analysis of barley(Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions between monocots and dicots.BMC Genomics 2008;9:194.

    [17]McCall MN,Bolstad BM,Irizarry RA.Frozen robust multiarray analysis(fRMA).Biostatistics 2010;11:242-53.

    [18]Rajagopalan D.A comparison of statistical methods for analysis of high density oligonucleotide array data.Bioinformatics 2003;19:1469-76.

    [19]Seita J,Sahoo D,Rossi DJ,Bhattacharya D,Serwold T,Inlay MA,et al.Gene expression commons:an open platform for absolute gene expression profiling.PLoS One 2012;7:e40321.

    [20]Schoenauer R,Lange S,Hirschy A,Ehler E,Perriard JC,Agarkova I.Myomesin 3,a novel structural component of the M-band in striated muscle.J Mol Biol 2008;376:338-51.

    [21]Huang DW,Sherman BT,Lempicki RA.Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res 2009;37:1-13.

    [22]Huang DW,Sherman BT,Lempicki RA.Systematic and integrative analysis of large gene lists using DAVIDbioinformatics resources.Nat Protoc 2009;4:44-57.

    [23]van den Berg CW,Okawa S,Chuva de Sousa Lopes SM,van Iperen L,Passier R,Braam SR.Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 2015;142:3231-8.

    [24]Lompre′AM,Nadal-Ginard B,Mahdavi V.Expression of the cardiac ventricular alpha-and beta-myosin heavy chain genes is developmentally and hormonally regulated.J Biol Chem 1984;259:6437-46.

    [25]Everett AW.Isomyosin expression in human heart in early preand post-natal life.J Mol Cell Cardiol 1986;18:607-15.

    [26]Kuppusamy KT,Jones DC,Sperber H,Madan A,F(xiàn)ischer KA,Rodriguez ML,et al.Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes.Proc Natl Acad Sci U S A 2015;112:E2785-94.

    [27]Feaster TK,Cadar AG,Wang L,Williams CH,Chun YW,Hempel JE,et al.Matrigel mattress:a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes.Circ Res 2015;117:995-1000.

    [28]Lee DS,Chen JH,Lundy DJ,Liu CH,Hwang SM,Pabon L,et al. Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes.Cell Rep 2015;12:1960-7.

    [29]R Core Team.R:a language and environment for statistical computing.R Foundation for Statistical Computing:Vienna,Austria.2015.

    [30]Klaus B,Strimmer K.fdrtool:estimation of(local)false discovery rates and higher criticism.2015.R package version 1.2.15.

    [31]Csardi G,Nepusz T.The igraph software package for complex network research.InterJournal 2006;Complex Systems:1695.

    *Corresponding author.

    E-mail:huosaki1@jhmi.edu(Uosaki H).

    aORCID:0000-0002-8964-8609.

    bORCID:0000-0003-0867-8986.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.004

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    猜你喜歡
    孫靜齊墩果酸
    孫靜:堅守初心 勇?lián)鷷r代使命
    華人時刊(2022年13期)2022-10-27 08:55:24
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?
    齊墩果酸固體分散體的制備
    中成藥(2018年10期)2018-10-26 03:40:56
    齊墩果酸對自然衰老大鼠睪丸DNA損傷保護作用及機制研究
    齊墩果酸衍生物的合成及其對胰脂肪酶的抑制作用
    熊果酸對肺癌細胞株A549及SPCA1細胞周期的抑制作用
    水線草熊果酸和齊墩果酸含量測定
    等你回來
    日韩欧美在线乱码| 中文欧美无线码| 国产亚洲91精品色在线| 一区二区三区免费毛片| av线在线观看网站| 九草在线视频观看| 免费观看a级毛片全部| 狂野欧美激情性xxxx在线观看| 一二三四中文在线观看免费高清| 又爽又黄无遮挡网站| 可以在线观看毛片的网站| 高清午夜精品一区二区三区| 色综合亚洲欧美另类图片| 青青草视频在线视频观看| 国产成人aa在线观看| 99久久成人亚洲精品观看| 黄色配什么色好看| 日本色播在线视频| 深爱激情五月婷婷| 嘟嘟电影网在线观看| 成人午夜精彩视频在线观看| 日本黄大片高清| 国产私拍福利视频在线观看| 日韩av在线大香蕉| 亚洲图色成人| 在线观看66精品国产| 3wmmmm亚洲av在线观看| 久久99热这里只频精品6学生 | 男女那种视频在线观看| 精品熟女少妇av免费看| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 看片在线看免费视频| 国产精品一区二区性色av| 高清日韩中文字幕在线| 亚洲四区av| 欧美成人免费av一区二区三区| 尾随美女入室| 97人妻精品一区二区三区麻豆| 最近视频中文字幕2019在线8| 亚洲成人久久爱视频| 欧美一级a爱片免费观看看| 中文亚洲av片在线观看爽| 日韩制服骚丝袜av| 国产精华一区二区三区| 久久久a久久爽久久v久久| 老司机影院毛片| 最新中文字幕久久久久| 亚洲国产最新在线播放| 别揉我奶头 嗯啊视频| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 欧美一区二区亚洲| 又爽又黄无遮挡网站| 欧美激情国产日韩精品一区| 亚洲成人中文字幕在线播放| 两个人视频免费观看高清| 超碰97精品在线观看| 国产精品不卡视频一区二区| 日本色播在线视频| 午夜老司机福利剧场| 久久久久久久久久久丰满| 日韩,欧美,国产一区二区三区 | av线在线观看网站| 国产成人精品久久久久久| 97超视频在线观看视频| 国产真实乱freesex| 国产欧美日韩精品一区二区| 日日啪夜夜撸| 久久精品久久精品一区二区三区| 别揉我奶头 嗯啊视频| 免费av不卡在线播放| 亚洲av成人精品一二三区| 丝袜美腿在线中文| av线在线观看网站| 午夜福利网站1000一区二区三区| 一级毛片电影观看 | 久久精品91蜜桃| 日本wwww免费看| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 在线观看66精品国产| 美女黄网站色视频| 国产精品一区www在线观看| 欧美潮喷喷水| 免费看a级黄色片| 青春草亚洲视频在线观看| 秋霞在线观看毛片| 尾随美女入室| 久久久成人免费电影| 午夜福利在线观看吧| 国产综合懂色| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 亚洲美女搞黄在线观看| 中文亚洲av片在线观看爽| 五月玫瑰六月丁香| 一级黄片播放器| 国产亚洲精品av在线| av在线观看视频网站免费| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 亚洲av二区三区四区| 日本wwww免费看| 最近手机中文字幕大全| 午夜视频国产福利| 日本午夜av视频| 91久久精品国产一区二区成人| 内地一区二区视频在线| 精品国产一区二区三区久久久樱花 | 久久99热这里只有精品18| videossex国产| 久久人妻av系列| 大话2 男鬼变身卡| 久久久久久大精品| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 国产成人91sexporn| 午夜免费激情av| 成年av动漫网址| 在线a可以看的网站| 精品午夜福利在线看| 国产真实乱freesex| 国产亚洲精品av在线| 五月伊人婷婷丁香| 嫩草影院入口| 国产亚洲av片在线观看秒播厂 | 国产精品福利在线免费观看| 成人午夜高清在线视频| 国产在线一区二区三区精 | 天天躁日日操中文字幕| 国产精品电影一区二区三区| 日本与韩国留学比较| 嫩草影院新地址| 九九爱精品视频在线观看| 亚洲成人av在线免费| 亚州av有码| 成人性生交大片免费视频hd| 国产成人freesex在线| 精品国产三级普通话版| 春色校园在线视频观看| 欧美潮喷喷水| 免费播放大片免费观看视频在线观看 | 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 久久精品综合一区二区三区| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 免费观看人在逋| 免费黄网站久久成人精品| 国产老妇女一区| 男女边吃奶边做爰视频| 国产精品蜜桃在线观看| 身体一侧抽搐| 免费看美女性在线毛片视频| 国产综合懂色| 国产真实伦视频高清在线观看| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 中文字幕熟女人妻在线| 高清在线视频一区二区三区 | 六月丁香七月| 波多野结衣巨乳人妻| 精品久久久久久久久亚洲| 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| 久久亚洲精品不卡| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品合色在线| 精品久久久久久久久亚洲| 91在线精品国自产拍蜜月| av卡一久久| 国产成人一区二区在线| 午夜久久久久精精品| 国产免费又黄又爽又色| 真实男女啪啪啪动态图| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添av毛片| 国产精品国产高清国产av| 看免费成人av毛片| 成年女人看的毛片在线观看| 日本色播在线视频| 亚洲av福利一区| 色综合站精品国产| 国产成人91sexporn| 久久人人爽人人爽人人片va| 搡老妇女老女人老熟妇| 1024手机看黄色片| 成年免费大片在线观看| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 国产精品三级大全| 又爽又黄a免费视频| av在线蜜桃| 一夜夜www| 丝袜喷水一区| 日韩中字成人| 午夜激情欧美在线| 九九在线视频观看精品| 免费看美女性在线毛片视频| 秋霞伦理黄片| 久久久久精品久久久久真实原创| 国产精品久久久久久精品电影小说 | 黄片无遮挡物在线观看| 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 久久久久性生活片| 欧美丝袜亚洲另类| 极品教师在线视频| 午夜免费男女啪啪视频观看| 国产一级毛片七仙女欲春2| 亚洲av成人精品一二三区| 最近中文字幕高清免费大全6| 水蜜桃什么品种好| 免费人成在线观看视频色| 亚洲经典国产精华液单| eeuss影院久久| 我要看日韩黄色一级片| 亚洲精品国产av成人精品| 欧美另类亚洲清纯唯美| 三级经典国产精品| 日韩欧美精品v在线| 最近中文字幕高清免费大全6| 国产成人a区在线观看| 少妇人妻一区二区三区视频| 人妻少妇偷人精品九色| 插逼视频在线观看| 两个人视频免费观看高清| 精品国内亚洲2022精品成人| 菩萨蛮人人尽说江南好唐韦庄 | 最近中文字幕2019免费版| 99九九线精品视频在线观看视频| av专区在线播放| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| 精品国产露脸久久av麻豆 | 男插女下体视频免费在线播放| 亚洲成av人片在线播放无| 亚洲怡红院男人天堂| 青春草国产在线视频| 精品国产一区二区三区久久久樱花 | 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| av在线亚洲专区| 美女黄网站色视频| 亚洲精品一区蜜桃| 日本午夜av视频| 乱系列少妇在线播放| 人妻制服诱惑在线中文字幕| or卡值多少钱| 国产免费又黄又爽又色| 亚洲一级一片aⅴ在线观看| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看| 国产高清有码在线观看视频| 国产午夜精品一二区理论片| 亚洲内射少妇av| 久久精品国产鲁丝片午夜精品| 午夜福利在线在线| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 听说在线观看完整版免费高清| 丝袜喷水一区| 日日撸夜夜添| 免费黄网站久久成人精品| 国产极品天堂在线| 亚洲av免费高清在线观看| 精品少妇黑人巨大在线播放 | 日本熟妇午夜| 国产黄a三级三级三级人| 亚洲不卡免费看| 国产亚洲5aaaaa淫片| 久久国内精品自在自线图片| 亚洲色图av天堂| 我要看日韩黄色一级片| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 尤物成人国产欧美一区二区三区| 欧美日韩在线观看h| 熟女人妻精品中文字幕| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 中国美白少妇内射xxxbb| 国产黄a三级三级三级人| 国产亚洲av片在线观看秒播厂 | 久久精品影院6| 亚洲图色成人| 亚洲av成人精品一二三区| 久久精品国产99精品国产亚洲性色| 亚洲精品aⅴ在线观看| 一边摸一边抽搐一进一小说| 看十八女毛片水多多多| 91久久精品国产一区二区成人| 尾随美女入室| 国产视频首页在线观看| 秋霞伦理黄片| 亚洲国产欧美人成| 免费一级毛片在线播放高清视频| 麻豆国产97在线/欧美| 天堂影院成人在线观看| 国产成人免费观看mmmm| 直男gayav资源| 精品久久久久久久久亚洲| 99热这里只有是精品在线观看| 精品一区二区三区人妻视频| 国语对白做爰xxxⅹ性视频网站| 欧美激情久久久久久爽电影| 激情 狠狠 欧美| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 精品久久久噜噜| 日韩制服骚丝袜av| 在线播放国产精品三级| 久久久久久久久大av| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观| 最近2019中文字幕mv第一页| 午夜福利高清视频| 国产精品久久久久久精品电影小说 | 一二三四中文在线观看免费高清| 欧美人与善性xxx| 中国国产av一级| 中文字幕av在线有码专区| 精品久久久久久久久av| 国产伦精品一区二区三区四那| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有是精品50| 在线免费观看的www视频| 内地一区二区视频在线| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 久久这里只有精品中国| 99久久成人亚洲精品观看| 亚洲欧美成人综合另类久久久 | 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 国产精品,欧美在线| 欧美成人午夜免费资源| 亚洲美女视频黄频| 国产久久久一区二区三区| 哪个播放器可以免费观看大片| 久久精品国产亚洲网站| 日产精品乱码卡一卡2卡三| 能在线免费观看的黄片| 亚洲精品亚洲一区二区| 非洲黑人性xxxx精品又粗又长| 22中文网久久字幕| 亚洲成人久久爱视频| 中文天堂在线官网| 午夜激情福利司机影院| 人人妻人人澡欧美一区二区| 免费看日本二区| 亚洲欧美精品专区久久| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 婷婷色av中文字幕| 国产精品福利在线免费观看| 欧美成人精品欧美一级黄| 国产午夜精品久久久久久一区二区三区| 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 午夜激情欧美在线| 黄片无遮挡物在线观看| 午夜福利成人在线免费观看| 精品久久久久久电影网 | 国产成年人精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 免费av毛片视频| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 日本三级黄在线观看| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 日韩制服骚丝袜av| 国产高清三级在线| 国产一区二区在线av高清观看| 国产色婷婷99| 成人特级av手机在线观看| 国产又色又爽无遮挡免| 成人漫画全彩无遮挡| 色5月婷婷丁香| 中国国产av一级| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 国产黄片美女视频| 亚洲国产最新在线播放| 国内精品美女久久久久久| 精品一区二区三区视频在线| 亚洲精品日韩在线中文字幕| 成人二区视频| 欧美bdsm另类| 亚洲天堂国产精品一区在线| 久久精品影院6| 国产激情偷乱视频一区二区| 18禁在线播放成人免费| 亚洲欧美日韩东京热| 最近中文字幕高清免费大全6| 黄色一级大片看看| 好男人视频免费观看在线| 国产精品一区二区在线观看99 | 热99re8久久精品国产| 汤姆久久久久久久影院中文字幕 | 亚洲天堂国产精品一区在线| 国产成人精品婷婷| 日韩在线高清观看一区二区三区| 嫩草影院新地址| 白带黄色成豆腐渣| 国产精华一区二区三区| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区| 久久精品国产自在天天线| 别揉我奶头 嗯啊视频| av免费在线看不卡| 免费观看精品视频网站| 乱人视频在线观看| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| 国产精品一区二区性色av| 国产精品美女特级片免费视频播放器| 久久99蜜桃精品久久| 男人狂女人下面高潮的视频| 99久久精品热视频| 亚洲三级黄色毛片| 男女国产视频网站| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 精品熟女少妇av免费看| 少妇人妻精品综合一区二区| 一区二区三区高清视频在线| 韩国高清视频一区二区三区| 精品国产三级普通话版| 久久久久久久亚洲中文字幕| 国产一区二区亚洲精品在线观看| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久av不卡| 国产精品一区二区性色av| 午夜激情欧美在线| 国产一区二区在线观看日韩| 国产在视频线在精品| 日本与韩国留学比较| 色视频www国产| 男女下面进入的视频免费午夜| 色尼玛亚洲综合影院| 中文欧美无线码| 亚洲人与动物交配视频| 国产亚洲5aaaaa淫片| 国产精品一二三区在线看| 两个人的视频大全免费| 中文乱码字字幕精品一区二区三区 | 国产极品天堂在线| 99热这里只有精品一区| 中文精品一卡2卡3卡4更新| 久久久欧美国产精品| 午夜亚洲福利在线播放| 99视频精品全部免费 在线| 成人av在线播放网站| 亚洲乱码一区二区免费版| 老司机福利观看| 色综合亚洲欧美另类图片| 中文字幕久久专区| 综合色丁香网| 波野结衣二区三区在线| 1024手机看黄色片| 日韩欧美精品v在线| 国产在线一区二区三区精 | 国产又黄又爽又无遮挡在线| 国产一区二区亚洲精品在线观看| 久久久久国产网址| 亚洲精品国产av成人精品| 男女啪啪激烈高潮av片| 如何舔出高潮| 国产精品人妻久久久影院| 欧美变态另类bdsm刘玥| 少妇猛男粗大的猛烈进出视频 | 网址你懂的国产日韩在线| 亚洲av免费高清在线观看| 2022亚洲国产成人精品| 欧美另类亚洲清纯唯美| 久久人人爽人人爽人人片va| 搞女人的毛片| 久久国内精品自在自线图片| 免费看a级黄色片| 亚洲图色成人| 97在线视频观看| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区 | 日韩精品有码人妻一区| 国产日韩欧美在线精品| 少妇裸体淫交视频免费看高清| 久久久久久久久久久免费av| 国产真实乱freesex| 日本色播在线视频| 国产日韩欧美在线精品| 午夜亚洲福利在线播放| 精品熟女少妇av免费看| 干丝袜人妻中文字幕| 99久久中文字幕三级久久日本| 日韩一区二区视频免费看| av在线播放精品| 你懂的网址亚洲精品在线观看 | 26uuu在线亚洲综合色| 午夜精品一区二区三区免费看| 亚洲最大成人av| 99久久九九国产精品国产免费| 1024手机看黄色片| 五月伊人婷婷丁香| 国产探花在线观看一区二区| av在线播放精品| 寂寞人妻少妇视频99o| 成人鲁丝片一二三区免费| 国产私拍福利视频在线观看| 久久亚洲国产成人精品v| 国模一区二区三区四区视频| 日日啪夜夜撸| 日韩欧美国产在线观看| 中国国产av一级| 成人亚洲欧美一区二区av| 午夜激情福利司机影院| 亚洲伊人久久精品综合 | АⅤ资源中文在线天堂| 国产免费男女视频| 美女cb高潮喷水在线观看| 2021天堂中文幕一二区在线观| 天堂影院成人在线观看| 18禁在线播放成人免费| 精品熟女少妇av免费看| 国产精品伦人一区二区| 中文精品一卡2卡3卡4更新| 国产成人freesex在线| 国产精品嫩草影院av在线观看| 日本与韩国留学比较| 老师上课跳d突然被开到最大视频| 国产视频首页在线观看| 美女脱内裤让男人舔精品视频| 热99re8久久精品国产| 99久久精品热视频| 国产亚洲精品av在线| 国产在视频线精品| 国产三级在线视频| 国产日韩欧美在线精品| 成人午夜高清在线视频| 天天躁夜夜躁狠狠久久av| 亚洲不卡免费看| 淫秽高清视频在线观看| av天堂中文字幕网| 建设人人有责人人尽责人人享有的 | 欧美xxxx黑人xx丫x性爽| 欧美又色又爽又黄视频| 老女人水多毛片| 视频中文字幕在线观看| 麻豆久久精品国产亚洲av| 老司机福利观看| 国产亚洲午夜精品一区二区久久 | 国产成人freesex在线| 中文乱码字字幕精品一区二区三区 | 亚洲精品乱久久久久久| 久久精品国产亚洲av涩爱| 国产老妇伦熟女老妇高清| 国产不卡一卡二| 麻豆一二三区av精品| 天天躁日日操中文字幕| 国产av在哪里看| 国产一区有黄有色的免费视频 | 日本一二三区视频观看| 中文欧美无线码| 日韩视频在线欧美| 91精品伊人久久大香线蕉| 欧美又色又爽又黄视频| 国产精品麻豆人妻色哟哟久久 | 中文字幕制服av| 亚洲国产欧美人成| 欧美区成人在线视频| 男人狂女人下面高潮的视频| 九色成人免费人妻av| 国产精品1区2区在线观看.| 麻豆精品久久久久久蜜桃| 国产欧美另类精品又又久久亚洲欧美| 看免费成人av毛片| 在线免费观看不下载黄p国产| 免费电影在线观看免费观看| 高清视频免费观看一区二区 | 小蜜桃在线观看免费完整版高清| 日韩高清综合在线| 国产午夜精品久久久久久一区二区三区| 午夜精品一区二区三区免费看| 99久久无色码亚洲精品果冻| 日本五十路高清| 国产色爽女视频免费观看| av视频在线观看入口| 亚洲精品自拍成人| 亚洲人成网站高清观看| 色播亚洲综合网| 男人舔奶头视频| 久久久久久久亚洲中文字幕| 色播亚洲综合网| 亚洲真实伦在线观看| 国产免费又黄又爽又色| 18禁在线无遮挡免费观看视频| 亚洲精品久久久久久婷婷小说 | 亚洲欧美成人综合另类久久久 | 插阴视频在线观看视频| 国产一区二区三区av在线| 99热精品在线国产| 成人无遮挡网站| 汤姆久久久久久久影院中文字幕 | 国产亚洲最大av| 在线天堂最新版资源| 一级av片app| 色综合站精品国产| 免费观看在线日韩| 欧美成人午夜免费资源| 一级毛片久久久久久久久女| 午夜福利高清视频|