• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Absent MicroRNAs in Different Tissues of Patients with Acquired Cardiomyopathy

    2016-11-17 08:41:19ChristineSiegismundMariaRohdeUweKuhlFelicitasEscherHeinzPeterSchultheissDirkLassner
    Genomics,Proteomics & Bioinformatics 2016年4期

    Christine S.SiegismundMaria RohdeUwe Ku¨hlFelicitas EscherHeinz Peter SchultheissDirk Lassner*f

    1Institute for Cardiac Diagnostics and Therapy(IKDT),12203 Berlin,Germany

    2Department of Cardiology,Campus Virchow,Charite′-University Hospital Berlin,13353 Berlin,Germany

    ORIGINAL RESEARCH

    Absent MicroRNAs in Different Tissues of Patients with Acquired Cardiomyopathy

    Christine S.Siegismund1,a,Maria Rohde1,b,Uwe Ku¨hl1,2,c,F(xiàn)elicitas Escher1,2,d,Heinz Peter Schultheiss1,e,Dirk Lassner1,*,f

    1Institute for Cardiac Diagnostics and Therapy(IKDT),12203 Berlin,Germany

    2Department of Cardiology,Campus Virchow,Charite′-University Hospital Berlin,13353 Berlin,Germany

    Received 28 November 2015;revised 29 March 2016;accepted 18 April 2016 Available online 28 July 2016

    Handled by Andreas Keller

    Cardiomyopathy;

    Heart muscle biopsy;

    Absent miRNAs;

    Peripheral blood mononuclear cell;

    Serum

    MicroRNAs(miRNAs)can be found in a wide range oftissues and body fluids,and their specific signatures can be used to determine diseases or predictclinicalcourses.The miRNAprofiles in biological samples(tissue,serum,peripheral blood mononuclear cells or other body fluids)differ significantly even in the same patient and therefore have their own specificity for the presented condition.Complex profiles of deregulated miRNAs are of high interest,whereas the importance of non-expressed miRNAs was ignored.Since miRNAs regulate gene expression rather negatively,absent miRNAs could indicate genes with unaltered expression that therefore are normally expressed in specific compartments or under specific disease situations.For the first time,non-detectable miRNAs in different tissues and body fluids from patients with different diseases(cardiomyopathies,Alzheimer’s disease,bladder cancer,and ocular cancer)were analyzed and compared in this study.miRNA expression data were generated by microarray or TaqMan PCR-based platforms.Lists of absent miRNAs of primarily cardiac patients(myocardium,blood cells,and serum)were clustered and analyzed for potentially involved pathways using two prediction platforms,i.e.,miRNA enrichment analysis and annotation tool(miEAA)and DIANA miRPath. Extensive search in biomedicalpublication databases for the relevance of non-expressed miRNAs in predicted pathways revealed no evidence for their involvement in heart-related pathways as indicated by software tools,confirming proposed approach.

    Introduction

    Cardiovascular diseases as life-threatening diseases are the most common cause of death in Western European countries[1].Myocarditis and non-ischemic dilated cardiomyopathy(DCM)are acute or chronic disorders of heart muscle which arises mainly from myocardial inflammation or infections by cardiotropic viruses[1-6].More than 12 million patients in Europe and 15 million patients in the United States(US)are suffering from heart failure including four million with DCM,according to an estimation of the European Society of Cardiology(ESC)[3].The traditional clinical diagnosis based on individual patient’s clinical symptoms,medical and family history,laboratory and imaging evaluations should be expanded by endomyocardial biopsy(EMB)diagnostics(virology,histology,and immunohistochemistry)to confirm myocardial disease for following treatment decisions[3,7,8].

    Improvements in human genetic studies and the continuously-expanding field of biomarker discovery revealed the potential of physiological biomarkers such as microRNAs(miRNAs)or gene expression profiles for diagnosis of complex diseases such as cardiomyopathies and for applications in personalized medicine[9-14].miRNA profiling can serve as a new exciting tool in modern diagnostics,which is comparable to gene expression analysis but with less amount of analytes.In addition,approximately 2500 human mature miRNAs have been discovered so far,which seems to be relatively small in number compared to the enormous number of genes discovered[15-21].

    miRNAs are 20-22 nucleotides in length and highly conserved non-coding RNAs.They have been demonstrated to play multiple roles in negative or positive regulation of gene expression including transcript degradation,translational suppression,or transcriptional and translational activation.miRNAs are present in a wide range of tissues[10,15,18-20,22-26]. In body fluids such as serum,plasma or spinal fluid,miRNAs are protected from endogenous RNase activity by inclusion in exosomes or protein complexes[19,22,24,25].Due to their high biostability,circulating miRNAs can be used as reliable blood-based markers to identify cardiovascular or other human disorders[11,13,14,16-19].

    Up to now,about 800 expressed miRNAs have been experimentally detected in EMBs[21].As shown for DCM,hypertrophic and inflammatory cardiomyopathy,the expression of miRNAs is characteristically altered in heart tissue[17].Differential miRNA patterns allow the identification of different heart disorders or disease situations[17,21].The role of these human miRNAs in pathogenesis[18]highlights their value as potential molecular biomarkers for complex diseases such as cardiomyopathies[16,27,28].The discriminating power of single miRNAs for diagnosis of complex diseases can be increased by its integration in a larger panelpresenting a specific miRNA signature.The application of myocardial miRNA profiling allows the differentiation of distinct phases of viral infections and the prediction of the clinical course of virally-induced disease at the time point of primary diagnostic biopsy[16,11,28,12].In the same individual,miRNA signatures in tissue,serum,peripheral blood mononuclear cells(PBMCs),or other body fluids show specific features for the current condition.Therefore these disease-specific biomarkers are of increasing interest for personalized medicine[12,29,30]. Non-expressed miRNAs in their entirety were ignored and corresponding data were rarely presented[25].Due to rather negative regulation of miRNAs in general,absent miRNAs would indicate genes which are not altered in terms of expression and therefore normally expressed in specific compartments.Occurrence of previously absent miRNAs could be an easy predictor for changes in functional activity in analyzed biological sample or in the disease situation under examination.

    Analyses of expression data by bioinformatic software(miEAA and DIANA[31])are currently based on two strategies:(1)presentation of published data of deregulated miRNAs and their association with affected pathways or diseases and(2)prediction of involved miRNAs extrapolated from data of differentially expressed genes in corresponding disease situation as presented in the Kyoto Encyclopedia of Genes and Genomes(KEGG)schemata.Comprehensive expression data of indicated pathways or associated disorders are limited by availability of larger patient cohorts and comparability of analytical methods.

    In this article,we focused on the non-detectable miRNAs measured on different platforms in myocardial tissue,blood cells,and serum in a large cohort of cardiac patients suffering from different forms of inflammatory or virally-induced heart muscle diseases[1-5].The underlying disease was diagnosed by routine EMB[3,6,32,33].The bioinformatic analyses of generated data using two current freely-available prediction tools revealed no evidence for their involvement in heart-related pathways.Experimental findings for cardiac patients were confirmed by comparisons of absent miRNAs in large cohorts of patients with different diseases[22,24,25]measured on the same analytical platforms.

    Results

    We performed miRNA expression studies with three analytical platforms,the Geniom Biochips(Febit,Heidelberg,Germany)and two TaqMan PCR-based high-throughput systems including low density array(LDA)and OpenArray(Thermo Fisher Scientific,Waltham,MA,USA).Based on the analysis of deregulated miRNAs,we presented lists and pathways of non-detectable miRNAs in different tissues of primarily cardiac patients.All data were generated in the same laboratory to facilitate comparative data analysis.

    Comparison of absent miRNAs in EMBs,serum,and PBMCs of cardiac patients

    miRNA preparations were obtained for patients with inflammatory or virally-induced cardiomyopathies from EMBs(n=284),PBMCs(n=67),or serum(n=287)including corresponding controls(Table 1).miRNAs in EMBs and serum were measured using two different platforms,which cover different sets of miRNAs(Table 2).Therefore,an additive list for EMBs and serum of absent miRNAs of each system was generated and used for all following calculations.A list of absent miRNAs was generated to indicate common or unique tissues in which miRNAs are not detectable(Table S1).Furthermore,a Venn diagram analysis was performed to reveal overlapping absent miRNAs in EMBs,serum,and PBMCs and miRNAs exclusively absent in particular tissues.As shown in Figure 1,we detected 1107 miRNAsin total absent in 1-3 sample groups.179 miRNAs were found to be absent in all three sample sources from cardiac patients. The miRNA Enrichment Analysis and Annotation Tool(miEAA)analysis showed that these miRNAs are involved in 685 pathways,implying possibly unaltered genes in these pathways.7 out of 685(1.0%)pathways were indicated to be heart-related.In addition,there are 2(0.3%)pathways described for viral myocarditis and DCM.Six miRNAs seem to be associated with these 2 pathways,which include hsamiR-19b-1-5p,hsa-miR-1295a,hsa-let-7a-5p,hsa-miR-99b-3p,hsa-miR-16-1-3p,and hsa-miR-34b-3p.

    On the other hand,some miRNAs are absent only in one sample group.These include 3 miRNAs exclusively absent in EMBs,6 absent in PBMCs,and 650 absent in serum.For miRNAs absent in EMB or PBMC samples,miEAA revealed 8 pathways but none were heart-related pathways,whereas DIANA miRPath prediction indicated 3 heartrelated KEGG pathways for EMBs(57 others)and one for PBMCs(50 others),respectively.For the 650 miRNAs exclusively absent in serum samples,miEAA analysis revealed 14 pathways other than heart-relates ones.Since these patients suffer from cardiac diseases,the missing heart-related pathways are in concordance with the absence of these 650 miRNAs in serum.DIANA miRPath analysis for these miRNAs could not be performed due to limited miRNA input possibility.

    Table1 Number of analyzed samples sorted by diagnosis and sample type of cardiac patients

    Table2 Number of analyzed samples sorted by platform and sample type

    Comparison of absent miRNAs in cardiac patients to those in patients with other diseases

    To validate experimental findings for cardiac patients and minimize methodological bias,panels of absent RNAs were evaluated with data from large cohorts of patients with different diseases[22,24,25]measured on the same analyticalplatforms.

    We compared the aforementioned 1107 miRNAs absent in any one or more sample groups of EMBs,serum,and PBMCs taken from cardiac patients to those absent in spinal fluid(Alzheimer’s disease patients),urine(bladder cancer patients)or ocular fluid(ocular cancer patients)samples.There are totally 432,217,and 187 miRNAs absent in spinal fluid,ocular fluid,and urine samples,respectively.Venn diagram showed that 24 absent miRNAs were found to be common among all different tissue types tested.These 24 absent miRNAs were listed in Table 3[34-49].On the other hand,some miRNAs are only absent in one particular group.We found 13,9,and 31 miRNAs specifically absent in spinal fluid,urine and ocular fluid samples,respectively(Figure 2).

    Pathway comparison using different prediction tools

    Next,different pathway prediction tools were employed to analyze the pathways involving the 24 absent miRNAs sharedby all samples examined(Table 3).miEAA analysis revealed that these 24 absent miRNAs were involved in only one pathway and in regulation of 10 genes(Table 4)and one disease related to the analyzed miRNAs(Table 5),whereas more than 80 KEGG pathways were predicted with DIANA tool Tar-Base(Table 6)or microT(Table 7).As shown in Tables 4-7,the number of predicted pathways varied greatly depending on selected prediction algorithm.In addition,the predicted pathways based on the same 24 miRNAs showed associations with completely different diseases or organs using the two software tools.These data raise the question about plausibility and authenticity of the used pathway analysis tools.

    Figure1 Venn diagram of absent miRNAs in different sample types from cardiac patients

    Table3 miRNAs not expressed in any sample type examined in the current study

    Discussion

    The importance of differentially-expressed miRNAs for characterization of various disease situations has been shown impressively[19,22-25,28,30].miRNAs are mainly negative regulators of gene expression.Therefore absentmiRNAs could indicate genes which are not affected for the disease situation examined or in the corresponding sample material.The different pattern of non-expressed miRNAs in separate tissues or organs could be explained by their biological functions.

    The current study described,for the first time,the set of non-expressed miRNAs of the largest published cohort of patients(more than 200,including controls)with inflammatory or virally-induced cardiomyopathies that were diagnosed using EMBs[3,4,6,32].Absent miRNAs were revealed with different analytical platforms and compared to data from other diseased patients(Alzheimer’s disease,ocular cancer,bladder cancer)measured with identical assays in the same laboratory.The demonstration of differentially regulated miRNAs was not the aim of this study,corresponding data for the differentially-regulated miRNAs were shown previously[16,22,24,25,28].

    Figure2 Venn diagram of absent miRNAs in EMBs,PBMCs,and other body fluids

    Table4 Overrepresented pathways and genes generated for the 24 commonly-absent miRNAs using miEAA ORA with FDR adjustment

    Table5 Predicted diseases by enriched pathways generated for the 24 commonly-absent miRNAs using miEAA G(SEA)with FDR adjustment

    Bioinformatic evaluation of identified absent miRNAs was performed by application of two freely-available pathwayprediction tools(miEAA and DIANA miRPath)to confirm experimental findings.For cardiac patients,6 heart-related pathways were recovered using miEAA.For the 6 miRNAs commonly not expressed in EMBs,serum,and PBMCs of cardiac patients,the software predicted association with myocarditis and DCM.Intensive search of biomedical publication databases provided no hint for their involvement in heart muscle diseases.Instead,hsa-miR-16-1-3p is related to chronic lymphocytic leukemia[50]and age-related cataract[51],whereas hsa-miR-34b-3p is related to spermatogenesis[52]. Similarly,hsa-let-7a-5p seems to be related to infectious mononucleosis but not cardiac diseases[45].Moreover,there lacks proof in literature or through in silico prediction tools for the involvement of the remaining 3 miRNAs in any disease or pathway.

    DIANA analysis revealed one DCM-related pathway based on the 24 common miRNAs that are never detected in any of EMB,serum,PBMC,spinal fluid,ocular fluid or urine samples.Literature screening in PubMed retrieved no publications related to DCMor other cardiomyopathies for all 24 common absent miRNAs,therefore no experimental proof as well(Tables 3-7).

    Both examples of detailed search(6 miRNAs and 24 miRNAs)for the relevance of miRNAs in distinct pathways revealed no evidence for their involvement in heart-related pathways as stated in DIANA tool.Pathway prediction tools could generate a broad amount and variety of potential networks which might only exist in theory but not in reality. In addition,these prediction tools have their limits in terms of amount of miRNAs that can be uploaded for analysis(especially DIANA tool),literature evidence of theirs predicted pathways,and comparability between different prediction tools.The best way to overcome this deficiency in pathway prediction is the evaluation of larger sample cohorts or multiple data sources.The involvement of sets of nonexpressed miRNAs for more diseases,as presented in this study,will sharpen the predictive power of bioinformatic analyses.These data are easily available but often not requested for publication.In future,predicted pathways should be double checked against list of absent miRNAs. The theoretical output of prediction tools shows high divergence from experimental validation,at least for our study. Therefore,users of prediction tools should take caution and assess the output critically.

    The spectrum of non-expressed miRNAs in body fluids for defined diseases such as serum of patients suffering from cardiomyopathies is of keen interest.Today circulating miRNAs have the most important scientific and diagnostic impact[19,22,25,26,29,30].In this article,we described for the first time a panel of absent miRNAs in serum,PBMCs,EMBs,spinal fluid,urine,and ocular fluid of diseased patients including corresponding healthy controls.Implementing this spectrum in comparison to miRNA studies in different disorders,disease-specific miRNAs can be identified expeditiously.

    Further studies have to confirm especially which of these absent serum miRNAs in cardiomyopathies are not versatile. Circulating miRNAs will be the novel diagnostic biomarkers,also for heart muscle diseases[14,15,21,24,26].Some of these serum miRNAs are present in other disorders not corresponding to cardiomyopathies,which could be of scientific interest for understanding of specific pathomechanisms or finally as therapeutic targets for miRNA modulation to deal with discrete disease situations.

    There are some limitations in the current study.Three analytical platforms were used in generating data for overlapping sample sets to infer miRNAs absent alone or in different combinations.EMBs and PBMCs were measured with microarraybased technology for former sets of available miRNAs(miRBase v14),whereas Taqman PCR-based analysis were performed later and used to measure miRNAs in serum(OpenArrays,miRBase v16 and higher),EMBs(LDA and OpenArrays)[15],spinal fluid(OpenArray),urine(LDA),and ocular fluid(LDA).In addition,only two freelyavailable software tools were used for pathway prediction.

    The bioinformatic and translational perspective of presented approach is manifold.This first preliminary study on non-detectable miRNAs should sensitize scientific community to present not only data of deregulated candidates,but also data of completely absent miRNAs[25]as a valuable dataset for improvement of commonly used software tools.Nondetectable miRNAs should be excluded from further prediction of corresponding pathways.Otherwise the collection of these data for all tissues,cells,or body fluids would be an important reservoir for future research or also pharmaceutical studies,and thus should be propagated by bioinformatics.The unexpected finding of previously-described non-expressed miRNAs in an experiment or clinical study will facilitate the identification of newly involved pathways or functional dysregulations in an observed setup.

    Material and methods

    Samples

    EMB,PBMC,and serum samples were obtained from healthy controls and patients suffering from inflammatory or virally induced myocarditis as shown in Table 1[9,10,15,16,11,53,54].The study was performed within the Transregional Collaborative Research Centre(Inflammatory Cardiomyopathy-Molecular Pathogenesis and Therapy)[Sfb/Tr19].The study protocol was approved by the local ethics committees of the participating clinical centers,as well as by the committees of the respective federal states.An informed written consent was obtained from each participant.

    Spinal fluid samples were received from healthy controls and patients suffering from Alzheimer’s disease,with the ethical statement described previously[25].Urine samples were acquired from healthy controls and patients harboring bladder cancer,with the ethical statement described previously[22,24]. In addition,we analyzed pooled ocular fluid from random patients.

    miRNA isolation

    miRNAs were obtained from patients,using mirVanaTMmiRNA Isolation Kit(Thermo Fisher Scientific,Waltham,MA,USA)resp.mirVanaTMPARISTMRNAand Native Protein Purification Kit(Thermo Fisher Scientific,Waltham,MA,USA)for low content samples such as serum,urine,ocular fluid,and spinal fluid according to manufacturer’s instructions.All presented expression studies were performed in the same laboratory.

    Table6 Pathways generated for the 24 commonly-absent miRNAs using DIANA TarBase

    Table6 (continued)

    miRNA reverse transcription,pre-amplification and expression analysis using TaqMan real-time PCR

    Total RNA including miRNA fraction was reversely transcribed to cDNA using Megaplex stem-loop RT primer(Thermo Fisher Scientific,Waltham,MA,USA)for Human Pool A and B in combination with the TaqMan MicroRNA Reverse Transcription Kit(Thermo Fisher Scientific,Waltham,MA,USA).This allowed simultaneous cDNA synthesis of 377 unique miRNAs for Pool A and B each.Except for biopsy materials,a pre-amplification protocol was performed for all low content samples to increase the detection rate. The entire procedure for quantification using TaqMan? OpenArray?[25]and TaqMan?LDA[28]is described elsewhere.miRNAs which were not detectable or above cycle threshold 28(OpenArrays)resp.32(LDA)were considered to be absent in the sample.

    miRNA labeling and expression analysis using Febit Geniom? Biochip

    The expression analysis of all 906 miRNA and miRNA*sequences as annotated in Sanger miRBase version 14.0 was performed with the Geniom Real Time Analyzer(Febit,Heidelberg)and the Geniom biochip MPEA hsapiens V14. Sample labeling with biotin was carried out by using the ULS labeling Kit from Kreatech(Amsterdam,The Netherlands).All essential steps such as hybridization,washing,as wellas signalamplification and measurement,were done automatically by Geniom Real Time Analyzer.The resulting detection images were evaluated using the Geniom Wizard Software for background correction and normalization of generated data.miRNA expression analyses were carried out using the normalized and background-subtracted intensity values.

    Bioinformatic algorithms and miRNA target identification

    miRNAs not detectable in all samples of corresponding biological material were regarded as absent for this material and disease.All following bioinformatics analyses by pathway prediction tools were based on the list of these candidates. Venn diagrams of intersecting sets of miRNAs between different tissues and platforms are generated using Venny v2.0(http://bioinfogp.cnnb.csic.es/tools/venny/index.html).miEAA(http://www.ccb.uni saarland.de/mieaa_tool)and DIANA miRPath v.2.0[31]were used for miRNA target prediction and pathway analysis.Allgiven lists of miRNAs are translated and annotated according to miRBase v14 nomenclature.

    Authors’contributions

    CS conducted the bioinformatic algorithms and miRNAtarget identification,and drafted the manuscript.CS and MR carried out miRNA expression studies.DL conceived the study,and participated in study design and coordination.UK,F(xiàn)E,and HPS had primary responsibility for patient characterization and management.All authors discussed the results,read,and approved the final manuscript.

    Competing interests

    The authors declare no competing financial interests or relationships relevant to the content of this paper to disclose.

    Table7 Pathways generated for the 24 commonly-absent miRNAs using DIANA microT

    Table7 (continued)

    Acknowledgments

    This work was supported by grants from the German Research Foundation,the Transregional Collaborative Research Centre(Inflammatory Cardiomyopathy-Molecular Pathogenesis and Therapy)[SFB/TR19],and the Federal Ministry of Education and Research for the Small and Medium-sized Enterprises Innovative Program(Grant No.616 0315296)of Germany. We would like to thank Drs.Holger Jahn,Angelika To¨lle,and Enken Grundlach for permission to use the lists of absent miRNAs in their investigated specimens.We thank Mrs.Kitty Winter,Susanne Ochmann,and Claudia Seifert for their excellent technical assistance.

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.005.

    [1]Schultheiss HP,Ku¨hl U,Cooper LT.The management of myocarditis.Eur Heart J 2011;32:2616-25.

    [2]Ku¨hl U,Schultheiss HP.Viral myocarditis:diagnosis,aetiology and management.Drugs 2009;69:1287-302.

    [3]Caforio ALP,Pankuweit S,Arbustini E,Basso C,Gimeno-Blanes J,F(xiàn)elix SB,et al.Current state of knowledge on aetiology,diagnosis,management,and therapy of myocarditis:a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases.Eur Heart J 2013;34:2636-48,2648a-d.

    [4]Ku¨hl U,Pauschinger M,Seeberg B,Lassner D,Noutsias M,Poller W,et al.Viral persistence in the myocardium is associated with progressive cardiac dysfunction.Circulation 2005;112: 1965-70.

    [5]Kieninger B,Eriksson M,Kandolf R,Schnabel PA,Scho¨nland S,Kristen AV,et al.Amyloid in endomyocardial biopsies.Virchows Arch 2010;456:523-32.

    [6]Chimenti C,F(xiàn)rustaci A.Contribution and risks of left ventricular endomyocardial biopsy in patients with cardiomyopathies:a retrospective study over a 28-year period.Circulation 2013;128:1531-41.

    [7]Towbin JA,Lowe AM,Colan SD,Sleeper LA,Orav EJ,Clunie S,et al.Incidence,causes,and outcomes of dilated cardiomyopathy in children.JAMA 2006;296:1867-76.

    [8]Codd MB,Sugrue DD,Gersh BJ,Melton LJ.Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy.A population-based study in Olmsted County,Minnesota,1975-1984. Circulation 1989;80:564-72.

    [9]Lassner D,Ku¨hl U,Siegismund CS,Rohde M,Elezkurtaj S,Escher F,et al.Improved diagnosis of idiopathic giant cell myocarditis and cardiac sarcoidosis by myocardial gene expression profiling.Eur Heart J 2014;35:2186-95.

    [10]Kuhl U,Lassner D,Dorner A,Rohde M,Escher F,Seeberg B,et al.A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression.Basic Res Cardiol 2013;108:372.

    [11]Wittchen F,Suckau L,Witt H,Skurk C,Lassner D,F(xiàn)echner H,et al.Genomic expression profiling of human inflammatory cardiomyopathy(DCMi)suggests novel therapeutic targets.J Mol Med(Berl)2007;85:257-71.

    [12]Lassner D,Siegismund CS,Stehr J,Rohde M,Escher F,Tscho¨pe C,et al.Recent advances in molecular diagnostics and treatment of heart muscle diseases.J Anal Sci Method Instrum 2013;3:98-109.

    [13]Heidecker B,Kittleson MM,Kasper EK,Wittstein IS,Champion HC,Russell SD,et al.Transcriptomic biomarkers for the accurate diagnosis of myocarditis.Circulation 2011;123:1174-84.

    [14]Heidecker B,Kasper EK,Wittstein IS,Champion HC,Breton E,Russell SD,et al.Transcriptomic biomarkers for individual risk assessment in new-onset heart failure.Circulation 2008;118: 238-46.

    [15]Siegismund CS,Rohde M,Ku¨hl U,Lassner D.Multiparametric diagnostics of cardiomyopathies by microRNA signatures. Microchim Acta 2014;181:1647-53.

    [16]Ku¨hl U,Rohde M,Lassner D,Gross UM,Escher F,Schultheiss H-P.miRNA as activity markers in Parvo B19 associated heart disease.Herz 2012;37:637-43.

    [17]Ikeda S,Kong SW,Lu J,Bisping E,Zhang H,Allen PD,et al. Altered microRNA expression in human heart disease.Physiol Genomics 2007;31:367-73.

    [18]Thum T,CatalucciD,Bauersachs J.MicroRNAs:novelregulators in cardiac development and disease.Cardiovasc Res 2008;79:562-70.

    [19]Jaguszewski M,Osipova J,Ghadri JR,Napp LC,Widera C,F(xiàn)ranke J,et al.A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction.Eur Heart J 2014;35:999-1006.

    [20]Zampetaki A,Mayr M.MicroRNAs in vascular and metabolic disease.Circ Res 2012;110:508-22.

    [21]Leptidis S,El Azzouzi H,Lok SI,de Weger R,Olieslagers S,Olieslagers S,et al.A deep sequencing approach to uncover the miRNOME in the human heart.PLoS One 2013;8:e57800.

    [22]To¨lle A,Jung M,Rabenhorst S,Kilic E,Jung K,Weikert S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer.Oncol Rep 2013;30:1949-56.

    [23]Chung SH,Gillies M,Sugiyama Y,Zhu L,Lee SR,Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Mu¨ller cell ablation.PLoS One 2015;10:e0118949.

    [24]To¨lle A,Ratert N,Jung K.MiRNA panels as biomarkers for bladder cancer.Biomark Med 2014;8:733-46.

    [25]Denk J,Boelmans K,Siegismund C,Lassner D,Arlt S,Jahn H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease.PLoS One 2015;10:e0126423.

    [26]Chen X,Ba Y,Ma L,Cai X,Yin Y,Wang K,et al.Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases.CellRes 2008;18:997-1006.

    [27]Baek D,Ville′n J,Shin C,Camargo FD,Gygi SP,Bartel DP.The impact of microRNAs on protein output.Nature 2008;455:64-71.

    [28]KuehlU,Lassner D,Gast M,Stroux A,Rohde M,Siegismund C,et al.Differential cardiac microRNA expression predicts the clinicalcourse in human enterovirus cardiomyopathy.Circ Heart Fail 2015;8:605-18.

    [29]Burgos KL,Javaherian A,Bomprezzi R,Ghaffari L,Rhodes S,Courtright A,et al.Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing.RNA 2013;19:712-22.

    [30]Torres A,Torres K,Pesci A,Ceccaroni M,Paszkowski T,Cassandrini P,et al.Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients.Int J Cancer 2013;132:1633-45.

    [31]Vlachos IS,Kostoulas N,Vergoulis N,Georgakilas T,Reczko G,Maragkakis M.DIANA miRPath v.2.0:investigating the combinatorial effect of microRNAs in pathways.Nucleic Acids Res 2012;40:W498-504.

    [32]Holzmann M,Nicko A,Ku¨hl U,Noutsias M,Poller W,Hoffmann W,et al.Complication rate of right ventricular endomyocardial biopsy via the femoral approach:a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period.Circulation 2008;118:1722-8.

    [33]Cooper LT.Myocarditis.N Engl J Med 2009;360:1526-38.

    [34]Song R,Liu Q,Liu T,Li J.Connecting rules from paired miRNA and mRNA expression data sets of HCV patients to detect both inverse and positive regulatory relationships.BMC Genomics 2015;16:S11.

    [35]Chen L,Ma H,Hu H,Gao L,Wang X,Ma J,et al.Specialrole of Foxp3 for the specifically altered microRNAs in regulatory T cells of HCC patients.BMC Cancer 2014;14:489.

    [36]Medina-Villaamil V,Mart?′nez-Breijo S,Portela-Pereira P,Quindo′s-Varela M,Santamarina-Ca?′nzos I,Anto′n-Aparicio LM,et al. Circulating MicroRNAs in blood of patients with prostate cancer. Actas Urol Espan?olas 2014;38:633-9.

    [37]Sun B,Yang M,Li M,Wang F.The microRNA-217 functions as a tumor suppressor and is frequently downregulated in human osteosarcoma.Biomed Pharmacother 2015;71:58-63.

    [38]Su J,Wang Q,Liu Y,Zhong M.MiR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3.Mol Cell Biochem 2014;392:289-96.

    [39]Deng S,Zhu S,Wang B,Li X,Liu Y,Qin Q,et al.Chronic pancreatitis and pancreatic cancer demonstrate active epithelialmesenchymal transition profile,regulated by miR-217-SIRT1 pathway.Cancer Lett 2014;355:184-91.

    [40]Jong HL,Mustafa MR,Vanhoutte PM,AbuBakar S,Wong PF. MicroRNA 299-3p modulates replicative senescence in endothelial cells.Physiol Genomics 2013;45:256-67.

    [41]Jensen MD,Andersen RF,Christensen H,Nathan T,Kjeldsen J,Madsen JS.Circulating microRNAs as biomarkers of adult Crohn’s disease.Eur J Gastroenterol Hepatol 2015;27:1038-44.

    [42]Tan Y,Ge G,Pan T,Wen D,Gan J.Serum miRNA panel as potential biomarkers for chronic hepatitis B with persistently normal alanine aminotransferase.Clin Chim Acta 2015;451:232-9.

    [43]Ward J,Kanchagar C,Veksler-Lublinsky I,Lee RC,McGill MR,Jaeschke H,et al.Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci U S A 2014;111:12169-74.

    [44]Lee K,Kim J-H,Kwon O-B,An K,Ryu J,Cho K,et al.An activity-regulated microRNA,miR-188,controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2.J Neurosci 2012;32:5678-87.

    [45]Gao L,Ai J,Xie Z,Zhou C,Liu C,Zhang H,et al.Dynamic expression of viraland cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virol J 2015;12:208.

    [46]Zhao JJ,Yang J,Lin J,Yao N,Zhu Y,Zheng J,et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis.Childs Nerv Syst 2009;25:13-20.

    [47]Guo WG,Zhang Y,Ge D,Zhang YX,Lu CL,Wang Q,et al. Bioinformatics analyses combined microarray identify the desregulated microRNAs in lung cancer.Eur Rev Med Pharmacol Sci 2013;17:1509-16.

    [48]Xu YW,Wang B,Ding CH,Li T,Gu F,Zhou C.Differentially expressed micoRNAs in human oocytes.J Assist Reprod Genet 2011;28:559-66.

    [49]Hommers L,Raab A,Bohl A,Weber H,Scholz C-J,Erhardt A,et al.MicroRNA hsa-miR-4717-5p regulates RGS2 and may be a risk factor for anxiety-related traits.Am J Med Genet B Neuropsychiatr Genet 2015;168B:296-306.

    [50]Rossi M,F(xiàn)uligni F,Ciccone M,Agostinelli C,Righi S,Luciani M,et al.Hsa-miR-15a and hsa-miR-16-1 expression is not related to proliferation centers abundance and other prognostic factors in chronic lymphocytic leukemia.Biomed Res Int 2013;2013:715391.

    [51]Li Y,Liu S,Zhang F,Jiang P,Wu X,Liang Y.Expression of the microRNAs hsa-miR-15a and hsa-miR-16-1 in lens epithelial cells of patients with age-related cataract.Int J Clin Exp Med 2015;8:2405-10.

    [52]Salas-Huetos A,Blanco J,Vidal F,Godo A,Grossmann M,Pons MC,et al.Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile.Fertil Steril 2015;104:591-601.

    [53]Lassner D,Rohde M,Gross UM,Escher F,Schultheiss HP,Linke R-P,et al.Classification of four chemically different amyloid types in routine endomyocardial biopsies by advanced immunohistochemistry.Amyloid 2011;18:76-8.

    [54]Noutsias M,Pauschinger M,Gross U,Lassner D,Schultheiss HP,Ku¨hl U.Giant-cell myocarditis in a patient presenting with dilated cardiomyopathy and ventricular tachycardias treated by immunosuppression:a case report.Int J Cardiol 2008;128:e58-9.

    *Corresponding author.

    E-mail:info@ikdt.de(Lassner D).

    aORCID:0000-0001-7909-1694.

    bORCID:0000-0002-2046-8757.

    cORCID:0000-0002-2476-0050.

    dORCID:0000-0003-0678-5681.

    eORCID:0000-0002-2185-3710.

    fORCID:0000-0003-0815-7013.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.005

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    久久久久国产精品人妻aⅴ院| 久久中文字幕一级| 丝袜人妻中文字幕| 欧美成人免费av一区二区三区| 黑人欧美特级aaaaaa片| 午夜两性在线视频| 国产精品香港三级国产av潘金莲| 99精国产麻豆久久婷婷| 99精品久久久久人妻精品| 精品午夜福利视频在线观看一区| 国产成+人综合+亚洲专区| 午夜两性在线视频| 日韩欧美三级三区| 国产成人影院久久av| 老司机福利观看| 久久久久久久久中文| 久久香蕉精品热| 水蜜桃什么品种好| 91成人精品电影| 搡老岳熟女国产| av欧美777| 99国产综合亚洲精品| 欧美色视频一区免费| 欧美日韩亚洲国产一区二区在线观看| 色婷婷久久久亚洲欧美| 巨乳人妻的诱惑在线观看| 久久精品人人爽人人爽视色| 老司机午夜十八禁免费视频| 午夜福利影视在线免费观看| 在线视频色国产色| а√天堂www在线а√下载| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 日本五十路高清| 国产免费现黄频在线看| 女人被狂操c到高潮| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 长腿黑丝高跟| 热99re8久久精品国产| 精品国内亚洲2022精品成人| 成人国产一区最新在线观看| 日韩视频一区二区在线观看| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| av天堂在线播放| 国产精品爽爽va在线观看网站 | 黄色 视频免费看| 亚洲男人天堂网一区| 18禁裸乳无遮挡免费网站照片 | 丝袜人妻中文字幕| 午夜a级毛片| 99精国产麻豆久久婷婷| 亚洲欧美精品综合久久99| 黑人操中国人逼视频| 久久欧美精品欧美久久欧美| 少妇裸体淫交视频免费看高清 | 久久久久久人人人人人| 国产免费现黄频在线看| 大码成人一级视频| 欧美国产精品va在线观看不卡| 亚洲成人精品中文字幕电影 | 国产激情欧美一区二区| 伊人久久大香线蕉亚洲五| 久久精品人人爽人人爽视色| 99久久综合精品五月天人人| 亚洲欧美日韩另类电影网站| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 国产伦一二天堂av在线观看| 午夜a级毛片| 国产精品 国内视频| 色尼玛亚洲综合影院| 欧美日韩精品网址| av在线播放免费不卡| 大型av网站在线播放| 高清av免费在线| 亚洲国产精品合色在线| 午夜a级毛片| a级毛片在线看网站| svipshipincom国产片| 国产精品99久久99久久久不卡| 日韩欧美一区二区三区在线观看| 这个男人来自地球电影免费观看| av国产精品久久久久影院| 12—13女人毛片做爰片一| 国产一区二区激情短视频| 99久久国产精品久久久| 午夜日韩欧美国产| 国产精品香港三级国产av潘金莲| a级毛片在线看网站| 制服人妻中文乱码| 欧美日韩黄片免| 久久精品影院6| 操出白浆在线播放| 欧美日韩国产mv在线观看视频| 亚洲成人免费av在线播放| 久久人妻熟女aⅴ| 成熟少妇高潮喷水视频| 亚洲精品国产区一区二| 色综合站精品国产| 欧美色视频一区免费| 成人18禁高潮啪啪吃奶动态图| 欧美乱码精品一区二区三区| 不卡一级毛片| 国产一卡二卡三卡精品| 久久精品成人免费网站| 欧美久久黑人一区二区| 黄色 视频免费看| 女性生殖器流出的白浆| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 99国产精品一区二区三区| 国产单亲对白刺激| 男女高潮啪啪啪动态图| 国产亚洲av高清不卡| 1024香蕉在线观看| 久久久水蜜桃国产精品网| 亚洲aⅴ乱码一区二区在线播放 | 成人亚洲精品av一区二区 | 在线看a的网站| 极品人妻少妇av视频| 男男h啪啪无遮挡| 纯流量卡能插随身wifi吗| 免费高清视频大片| 亚洲国产欧美一区二区综合| 老司机福利观看| 老司机深夜福利视频在线观看| 亚洲国产欧美日韩在线播放| 欧美黑人精品巨大| 国产精品av久久久久免费| 国产精品成人在线| 多毛熟女@视频| 欧美国产精品va在线观看不卡| 国产真人三级小视频在线观看| 丝袜美腿诱惑在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧洲精品卡2卡3卡4卡5卡区| 看黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 天天影视国产精品| 色综合站精品国产| 两性夫妻黄色片| 久久伊人香网站| 国产精品国产高清国产av| 乱人伦中国视频| 日韩三级视频一区二区三区| 日韩大码丰满熟妇| 可以免费在线观看a视频的电影网站| 看黄色毛片网站| 欧美日韩亚洲高清精品| 另类亚洲欧美激情| 欧美在线一区亚洲| 婷婷丁香在线五月| 亚洲午夜精品一区,二区,三区| 亚洲第一av免费看| 少妇裸体淫交视频免费看高清 | 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av| 国产成人免费无遮挡视频| 午夜影院日韩av| 中亚洲国语对白在线视频| 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 成人三级黄色视频| 一级作爱视频免费观看| 色婷婷久久久亚洲欧美| 深夜精品福利| 欧美成人免费av一区二区三区| 成人特级黄色片久久久久久久| 五月开心婷婷网| 成年女人毛片免费观看观看9| 亚洲精品成人av观看孕妇| 琪琪午夜伦伦电影理论片6080| 精品午夜福利视频在线观看一区| 精品电影一区二区在线| 国产成人影院久久av| 丝袜美足系列| 另类亚洲欧美激情| 国产单亲对白刺激| 黄色 视频免费看| 性色av乱码一区二区三区2| 国产人伦9x9x在线观看| 欧美av亚洲av综合av国产av| 国产色视频综合| 亚洲精品av麻豆狂野| 天天影视国产精品| 69精品国产乱码久久久| 亚洲一区中文字幕在线| 久久精品影院6| 亚洲第一欧美日韩一区二区三区| 激情视频va一区二区三区| 成在线人永久免费视频| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 好看av亚洲va欧美ⅴa在| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲伊人色综图| 久久精品91无色码中文字幕| 午夜福利影视在线免费观看| 亚洲熟妇熟女久久| 黄色丝袜av网址大全| 97碰自拍视频| 成人手机av| 中文字幕精品免费在线观看视频| 精品一品国产午夜福利视频| 操美女的视频在线观看| 不卡一级毛片| 视频在线观看一区二区三区| 老司机亚洲免费影院| 亚洲久久久国产精品| 在线av久久热| 精品一区二区三区视频在线观看免费 | 日韩欧美免费精品| 一级毛片精品| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 日本免费一区二区三区高清不卡 | 国产成人啪精品午夜网站| 999久久久国产精品视频| 一个人观看的视频www高清免费观看 | 欧美精品亚洲一区二区| 91精品三级在线观看| 亚洲欧美精品综合久久99| 少妇粗大呻吟视频| 色精品久久人妻99蜜桃| 高清欧美精品videossex| 男女床上黄色一级片免费看| 在线播放国产精品三级| 精品国产一区二区三区四区第35| 久久香蕉激情| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| 精品卡一卡二卡四卡免费| 免费av毛片视频| 桃色一区二区三区在线观看| 悠悠久久av| 国产精品久久久久久人妻精品电影| 成人精品一区二区免费| 91麻豆精品激情在线观看国产 | 欧美黑人精品巨大| 国产97色在线日韩免费| 自线自在国产av| 1024视频免费在线观看| 免费日韩欧美在线观看| 琪琪午夜伦伦电影理论片6080| www.熟女人妻精品国产| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 天堂俺去俺来也www色官网| 久久精品国产亚洲av高清一级| 久久 成人 亚洲| 一区二区日韩欧美中文字幕| 精品午夜福利视频在线观看一区| 亚洲成人免费av在线播放| 日本撒尿小便嘘嘘汇集6| 美女扒开内裤让男人捅视频| 午夜免费成人在线视频| 国产极品粉嫩免费观看在线| 国产成人欧美| 色精品久久人妻99蜜桃| 欧美乱色亚洲激情| 国产亚洲欧美在线一区二区| 国产日韩一区二区三区精品不卡| 午夜免费鲁丝| 嫁个100分男人电影在线观看| 91成年电影在线观看| 色婷婷av一区二区三区视频| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| av片东京热男人的天堂| 国产成人欧美| 国产一区二区三区在线臀色熟女 | 97碰自拍视频| 国产高清国产精品国产三级| 欧美成人性av电影在线观看| www.www免费av| 婷婷丁香在线五月| 日日爽夜夜爽网站| 国产精品综合久久久久久久免费 | 久久精品影院6| 久久性视频一级片| 热re99久久国产66热| 日韩欧美国产一区二区入口| 亚洲精品美女久久av网站| 免费在线观看黄色视频的| 亚洲国产欧美网| 亚洲自拍偷在线| 在线看a的网站| 一级片'在线观看视频| 国产精品99久久99久久久不卡| av视频免费观看在线观看| 超色免费av| 人妻丰满熟妇av一区二区三区| 丝袜在线中文字幕| 成人免费观看视频高清| 别揉我奶头~嗯~啊~动态视频| 黄色毛片三级朝国网站| 久久人人精品亚洲av| 露出奶头的视频| 亚洲欧美激情综合另类| 欧美日韩国产mv在线观看视频| 欧美日本亚洲视频在线播放| 人成视频在线观看免费观看| 精品国内亚洲2022精品成人| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| 午夜老司机福利片| 欧美人与性动交α欧美软件| 午夜福利一区二区在线看| a级毛片在线看网站| 人人妻人人添人人爽欧美一区卜| 每晚都被弄得嗷嗷叫到高潮| 性色av乱码一区二区三区2| 中出人妻视频一区二区| 亚洲人成网站在线播放欧美日韩| 午夜免费观看网址| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 久久婷婷成人综合色麻豆| 色综合站精品国产| 两人在一起打扑克的视频| 99国产精品一区二区三区| 国产欧美日韩一区二区三| 如日韩欧美国产精品一区二区三区| 一级毛片精品| 精品久久久久久,| 久久99一区二区三区| 两个人看的免费小视频| 久久久久久人人人人人| 午夜福利免费观看在线| 欧美成人免费av一区二区三区| 激情在线观看视频在线高清| 91麻豆精品激情在线观看国产 | 日韩精品青青久久久久久| 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| 欧美黑人精品巨大| x7x7x7水蜜桃| 动漫黄色视频在线观看| 长腿黑丝高跟| 午夜老司机福利片| 色婷婷久久久亚洲欧美| 亚洲片人在线观看| 嫁个100分男人电影在线观看| 成人18禁在线播放| 男男h啪啪无遮挡| www.自偷自拍.com| 精品国产一区二区三区四区第35| 亚洲精品中文字幕一二三四区| 色尼玛亚洲综合影院| 欧美日韩黄片免| 日韩欧美免费精品| 日本三级黄在线观看| 色哟哟哟哟哟哟| 一个人免费在线观看的高清视频| 精品欧美一区二区三区在线| 欧美日韩瑟瑟在线播放| 少妇被粗大的猛进出69影院| 国产av又大| 在线观看舔阴道视频| 午夜福利一区二区在线看| 国产欧美日韩一区二区精品| 成人精品一区二区免费| 久久国产精品男人的天堂亚洲| 日韩大码丰满熟妇| 色综合婷婷激情| 男人舔女人下体高潮全视频| 成人手机av| 中文字幕高清在线视频| 日韩欧美一区视频在线观看| 欧美精品一区二区免费开放| 亚洲av片天天在线观看| avwww免费| 男人操女人黄网站| 亚洲专区字幕在线| 国产精品国产av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 无限看片的www在线观看| 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 亚洲专区国产一区二区| 亚洲精品美女久久久久99蜜臀| 女人精品久久久久毛片| 国产精品一区二区精品视频观看| 成年人免费黄色播放视频| 首页视频小说图片口味搜索| 国产亚洲精品久久久久久毛片| 亚洲狠狠婷婷综合久久图片| 国产精品 欧美亚洲| 自线自在国产av| 久久久久久久精品吃奶| 国产激情欧美一区二区| 在线观看一区二区三区激情| 十八禁人妻一区二区| 午夜91福利影院| av视频免费观看在线观看| 在线观看免费午夜福利视频| a级毛片黄视频| 天堂√8在线中文| 亚洲欧美精品综合久久99| 99久久久亚洲精品蜜臀av| 黄频高清免费视频| 精品久久久久久久久久免费视频 | 少妇裸体淫交视频免费看高清 | 多毛熟女@视频| 久久午夜亚洲精品久久| 久久久久久久久免费视频了| 国产亚洲精品第一综合不卡| 亚洲一区二区三区欧美精品| 精品卡一卡二卡四卡免费| 国产免费av片在线观看野外av| 中文字幕人妻熟女乱码| 热99国产精品久久久久久7| 亚洲成人国产一区在线观看| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 久久久久久久午夜电影 | 啦啦啦免费观看视频1| 欧美日韩视频精品一区| 午夜福利影视在线免费观看| 亚洲第一青青草原| 桃色一区二区三区在线观看| 欧美成人午夜精品| 香蕉丝袜av| 亚洲在线自拍视频| 日韩 欧美 亚洲 中文字幕| 别揉我奶头~嗯~啊~动态视频| 老司机在亚洲福利影院| 亚洲一区高清亚洲精品| 黄色a级毛片大全视频| 999久久久国产精品视频| 欧美成人性av电影在线观看| 欧美最黄视频在线播放免费 | 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 亚洲成人免费电影在线观看| 国产一区二区三区在线臀色熟女 | 亚洲第一av免费看| 国产成人影院久久av| 国产1区2区3区精品| 欧美av亚洲av综合av国产av| 日韩大码丰满熟妇| 亚洲av片天天在线观看| av有码第一页| 脱女人内裤的视频| 日韩三级视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 两个人免费观看高清视频| 精品午夜福利视频在线观看一区| 国产在线观看jvid| 国产单亲对白刺激| 欧美日本亚洲视频在线播放| 视频区图区小说| 老汉色∧v一级毛片| 国产色视频综合| 男男h啪啪无遮挡| 久久久国产精品麻豆| 一级毛片女人18水好多| 天堂√8在线中文| 国产熟女午夜一区二区三区| 国产精品一区二区精品视频观看| 亚洲欧美一区二区三区黑人| av电影中文网址| 女性生殖器流出的白浆| 亚洲在线自拍视频| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 亚洲欧美日韩无卡精品| 最新在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 中文字幕精品免费在线观看视频| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频| 亚洲熟妇熟女久久| 亚洲欧洲精品一区二区精品久久久| 亚洲成人免费av在线播放| 久久香蕉激情| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码| 亚洲av成人不卡在线观看播放网| 欧美人与性动交α欧美精品济南到| 亚洲五月色婷婷综合| 性色av乱码一区二区三区2| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 91字幕亚洲| 亚洲人成电影观看| 麻豆成人av在线观看| 视频区欧美日本亚洲| 亚洲精品国产色婷婷电影| 亚洲专区中文字幕在线| 这个男人来自地球电影免费观看| 一本大道久久a久久精品| 99精品欧美一区二区三区四区| www国产在线视频色| 乱人伦中国视频| 久久精品亚洲av国产电影网| 欧美激情久久久久久爽电影 | 亚洲成av片中文字幕在线观看| av网站在线播放免费| 神马国产精品三级电影在线观看 | 亚洲人成电影免费在线| 在线观看66精品国产| 国产伦人伦偷精品视频| 男男h啪啪无遮挡| 88av欧美| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 夜夜爽天天搞| 高清欧美精品videossex| 色综合站精品国产| 怎么达到女性高潮| 一进一出好大好爽视频| 精品日产1卡2卡| 国产在线观看jvid| 精品久久久久久电影网| 成人av一区二区三区在线看| 一区二区三区精品91| 成年版毛片免费区| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 日韩欧美三级三区| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 一级作爱视频免费观看| 天堂俺去俺来也www色官网| 麻豆av在线久日| 高清欧美精品videossex| 午夜福利在线免费观看网站| 日韩大尺度精品在线看网址 | 男女下面进入的视频免费午夜 | 欧美激情久久久久久爽电影 | 日韩视频一区二区在线观看| 久久 成人 亚洲| 长腿黑丝高跟| xxx96com| 亚洲,欧美精品.| 国产精品永久免费网站| 精品一区二区三卡| 久久国产乱子伦精品免费另类| 在线观看免费午夜福利视频| 久久久久久免费高清国产稀缺| 日韩高清综合在线| 国产精品98久久久久久宅男小说| 日本a在线网址| 免费日韩欧美在线观看| 少妇裸体淫交视频免费看高清 | 欧美另类亚洲清纯唯美| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 国产野战对白在线观看| 亚洲免费av在线视频| 国产男靠女视频免费网站| 色婷婷av一区二区三区视频| 成人国产一区最新在线观看| 一区在线观看完整版| 国产高清视频在线播放一区| 欧美色视频一区免费| 久久久久久免费高清国产稀缺| 成人手机av| 天堂俺去俺来也www色官网| 视频在线观看一区二区三区| 亚洲专区国产一区二区| 国产精品久久视频播放| 老熟妇乱子伦视频在线观看| 国产亚洲精品久久久久5区| 国产伦一二天堂av在线观看| 露出奶头的视频| 在线国产一区二区在线| 国产精品日韩av在线免费观看 | 精品一区二区三区av网在线观看| 国产一卡二卡三卡精品| 伦理电影免费视频| 午夜免费观看网址| 国产人伦9x9x在线观看| 精品国产美女av久久久久小说| 黑人欧美特级aaaaaa片| 久久精品影院6| 91精品国产国语对白视频| 视频区欧美日本亚洲| 看黄色毛片网站| 亚洲av日韩精品久久久久久密| 国产精品野战在线观看 | 最新美女视频免费是黄的| a级片在线免费高清观看视频| 中文字幕最新亚洲高清| 免费av毛片视频| 国产高清国产精品国产三级| 91麻豆精品激情在线观看国产 | 在线观看一区二区三区激情| 精品欧美一区二区三区在线| 久久国产精品男人的天堂亚洲| 女人被狂操c到高潮| 欧美av亚洲av综合av国产av| 国产成人欧美在线观看| 丁香欧美五月| 精品久久蜜臀av无| 男女做爰动态图高潮gif福利片 | 啪啪无遮挡十八禁网站| 国产乱人伦免费视频| 久久精品91无色码中文字幕| 在线观看免费视频日本深夜| 91国产中文字幕|