• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Absent MicroRNAs in Different Tissues of Patients with Acquired Cardiomyopathy

    2016-11-17 08:41:19ChristineSiegismundMariaRohdeUweKuhlFelicitasEscherHeinzPeterSchultheissDirkLassner
    Genomics,Proteomics & Bioinformatics 2016年4期

    Christine S.SiegismundMaria RohdeUwe Ku¨hlFelicitas EscherHeinz Peter SchultheissDirk Lassner*f

    1Institute for Cardiac Diagnostics and Therapy(IKDT),12203 Berlin,Germany

    2Department of Cardiology,Campus Virchow,Charite′-University Hospital Berlin,13353 Berlin,Germany

    ORIGINAL RESEARCH

    Absent MicroRNAs in Different Tissues of Patients with Acquired Cardiomyopathy

    Christine S.Siegismund1,a,Maria Rohde1,b,Uwe Ku¨hl1,2,c,F(xiàn)elicitas Escher1,2,d,Heinz Peter Schultheiss1,e,Dirk Lassner1,*,f

    1Institute for Cardiac Diagnostics and Therapy(IKDT),12203 Berlin,Germany

    2Department of Cardiology,Campus Virchow,Charite′-University Hospital Berlin,13353 Berlin,Germany

    Received 28 November 2015;revised 29 March 2016;accepted 18 April 2016 Available online 28 July 2016

    Handled by Andreas Keller

    Cardiomyopathy;

    Heart muscle biopsy;

    Absent miRNAs;

    Peripheral blood mononuclear cell;

    Serum

    MicroRNAs(miRNAs)can be found in a wide range oftissues and body fluids,and their specific signatures can be used to determine diseases or predictclinicalcourses.The miRNAprofiles in biological samples(tissue,serum,peripheral blood mononuclear cells or other body fluids)differ significantly even in the same patient and therefore have their own specificity for the presented condition.Complex profiles of deregulated miRNAs are of high interest,whereas the importance of non-expressed miRNAs was ignored.Since miRNAs regulate gene expression rather negatively,absent miRNAs could indicate genes with unaltered expression that therefore are normally expressed in specific compartments or under specific disease situations.For the first time,non-detectable miRNAs in different tissues and body fluids from patients with different diseases(cardiomyopathies,Alzheimer’s disease,bladder cancer,and ocular cancer)were analyzed and compared in this study.miRNA expression data were generated by microarray or TaqMan PCR-based platforms.Lists of absent miRNAs of primarily cardiac patients(myocardium,blood cells,and serum)were clustered and analyzed for potentially involved pathways using two prediction platforms,i.e.,miRNA enrichment analysis and annotation tool(miEAA)and DIANA miRPath. Extensive search in biomedicalpublication databases for the relevance of non-expressed miRNAs in predicted pathways revealed no evidence for their involvement in heart-related pathways as indicated by software tools,confirming proposed approach.

    Introduction

    Cardiovascular diseases as life-threatening diseases are the most common cause of death in Western European countries[1].Myocarditis and non-ischemic dilated cardiomyopathy(DCM)are acute or chronic disorders of heart muscle which arises mainly from myocardial inflammation or infections by cardiotropic viruses[1-6].More than 12 million patients in Europe and 15 million patients in the United States(US)are suffering from heart failure including four million with DCM,according to an estimation of the European Society of Cardiology(ESC)[3].The traditional clinical diagnosis based on individual patient’s clinical symptoms,medical and family history,laboratory and imaging evaluations should be expanded by endomyocardial biopsy(EMB)diagnostics(virology,histology,and immunohistochemistry)to confirm myocardial disease for following treatment decisions[3,7,8].

    Improvements in human genetic studies and the continuously-expanding field of biomarker discovery revealed the potential of physiological biomarkers such as microRNAs(miRNAs)or gene expression profiles for diagnosis of complex diseases such as cardiomyopathies and for applications in personalized medicine[9-14].miRNA profiling can serve as a new exciting tool in modern diagnostics,which is comparable to gene expression analysis but with less amount of analytes.In addition,approximately 2500 human mature miRNAs have been discovered so far,which seems to be relatively small in number compared to the enormous number of genes discovered[15-21].

    miRNAs are 20-22 nucleotides in length and highly conserved non-coding RNAs.They have been demonstrated to play multiple roles in negative or positive regulation of gene expression including transcript degradation,translational suppression,or transcriptional and translational activation.miRNAs are present in a wide range of tissues[10,15,18-20,22-26]. In body fluids such as serum,plasma or spinal fluid,miRNAs are protected from endogenous RNase activity by inclusion in exosomes or protein complexes[19,22,24,25].Due to their high biostability,circulating miRNAs can be used as reliable blood-based markers to identify cardiovascular or other human disorders[11,13,14,16-19].

    Up to now,about 800 expressed miRNAs have been experimentally detected in EMBs[21].As shown for DCM,hypertrophic and inflammatory cardiomyopathy,the expression of miRNAs is characteristically altered in heart tissue[17].Differential miRNA patterns allow the identification of different heart disorders or disease situations[17,21].The role of these human miRNAs in pathogenesis[18]highlights their value as potential molecular biomarkers for complex diseases such as cardiomyopathies[16,27,28].The discriminating power of single miRNAs for diagnosis of complex diseases can be increased by its integration in a larger panelpresenting a specific miRNA signature.The application of myocardial miRNA profiling allows the differentiation of distinct phases of viral infections and the prediction of the clinical course of virally-induced disease at the time point of primary diagnostic biopsy[16,11,28,12].In the same individual,miRNA signatures in tissue,serum,peripheral blood mononuclear cells(PBMCs),or other body fluids show specific features for the current condition.Therefore these disease-specific biomarkers are of increasing interest for personalized medicine[12,29,30]. Non-expressed miRNAs in their entirety were ignored and corresponding data were rarely presented[25].Due to rather negative regulation of miRNAs in general,absent miRNAs would indicate genes which are not altered in terms of expression and therefore normally expressed in specific compartments.Occurrence of previously absent miRNAs could be an easy predictor for changes in functional activity in analyzed biological sample or in the disease situation under examination.

    Analyses of expression data by bioinformatic software(miEAA and DIANA[31])are currently based on two strategies:(1)presentation of published data of deregulated miRNAs and their association with affected pathways or diseases and(2)prediction of involved miRNAs extrapolated from data of differentially expressed genes in corresponding disease situation as presented in the Kyoto Encyclopedia of Genes and Genomes(KEGG)schemata.Comprehensive expression data of indicated pathways or associated disorders are limited by availability of larger patient cohorts and comparability of analytical methods.

    In this article,we focused on the non-detectable miRNAs measured on different platforms in myocardial tissue,blood cells,and serum in a large cohort of cardiac patients suffering from different forms of inflammatory or virally-induced heart muscle diseases[1-5].The underlying disease was diagnosed by routine EMB[3,6,32,33].The bioinformatic analyses of generated data using two current freely-available prediction tools revealed no evidence for their involvement in heart-related pathways.Experimental findings for cardiac patients were confirmed by comparisons of absent miRNAs in large cohorts of patients with different diseases[22,24,25]measured on the same analytical platforms.

    Results

    We performed miRNA expression studies with three analytical platforms,the Geniom Biochips(Febit,Heidelberg,Germany)and two TaqMan PCR-based high-throughput systems including low density array(LDA)and OpenArray(Thermo Fisher Scientific,Waltham,MA,USA).Based on the analysis of deregulated miRNAs,we presented lists and pathways of non-detectable miRNAs in different tissues of primarily cardiac patients.All data were generated in the same laboratory to facilitate comparative data analysis.

    Comparison of absent miRNAs in EMBs,serum,and PBMCs of cardiac patients

    miRNA preparations were obtained for patients with inflammatory or virally-induced cardiomyopathies from EMBs(n=284),PBMCs(n=67),or serum(n=287)including corresponding controls(Table 1).miRNAs in EMBs and serum were measured using two different platforms,which cover different sets of miRNAs(Table 2).Therefore,an additive list for EMBs and serum of absent miRNAs of each system was generated and used for all following calculations.A list of absent miRNAs was generated to indicate common or unique tissues in which miRNAs are not detectable(Table S1).Furthermore,a Venn diagram analysis was performed to reveal overlapping absent miRNAs in EMBs,serum,and PBMCs and miRNAs exclusively absent in particular tissues.As shown in Figure 1,we detected 1107 miRNAsin total absent in 1-3 sample groups.179 miRNAs were found to be absent in all three sample sources from cardiac patients. The miRNA Enrichment Analysis and Annotation Tool(miEAA)analysis showed that these miRNAs are involved in 685 pathways,implying possibly unaltered genes in these pathways.7 out of 685(1.0%)pathways were indicated to be heart-related.In addition,there are 2(0.3%)pathways described for viral myocarditis and DCM.Six miRNAs seem to be associated with these 2 pathways,which include hsamiR-19b-1-5p,hsa-miR-1295a,hsa-let-7a-5p,hsa-miR-99b-3p,hsa-miR-16-1-3p,and hsa-miR-34b-3p.

    On the other hand,some miRNAs are absent only in one sample group.These include 3 miRNAs exclusively absent in EMBs,6 absent in PBMCs,and 650 absent in serum.For miRNAs absent in EMB or PBMC samples,miEAA revealed 8 pathways but none were heart-related pathways,whereas DIANA miRPath prediction indicated 3 heartrelated KEGG pathways for EMBs(57 others)and one for PBMCs(50 others),respectively.For the 650 miRNAs exclusively absent in serum samples,miEAA analysis revealed 14 pathways other than heart-relates ones.Since these patients suffer from cardiac diseases,the missing heart-related pathways are in concordance with the absence of these 650 miRNAs in serum.DIANA miRPath analysis for these miRNAs could not be performed due to limited miRNA input possibility.

    Table1 Number of analyzed samples sorted by diagnosis and sample type of cardiac patients

    Table2 Number of analyzed samples sorted by platform and sample type

    Comparison of absent miRNAs in cardiac patients to those in patients with other diseases

    To validate experimental findings for cardiac patients and minimize methodological bias,panels of absent RNAs were evaluated with data from large cohorts of patients with different diseases[22,24,25]measured on the same analyticalplatforms.

    We compared the aforementioned 1107 miRNAs absent in any one or more sample groups of EMBs,serum,and PBMCs taken from cardiac patients to those absent in spinal fluid(Alzheimer’s disease patients),urine(bladder cancer patients)or ocular fluid(ocular cancer patients)samples.There are totally 432,217,and 187 miRNAs absent in spinal fluid,ocular fluid,and urine samples,respectively.Venn diagram showed that 24 absent miRNAs were found to be common among all different tissue types tested.These 24 absent miRNAs were listed in Table 3[34-49].On the other hand,some miRNAs are only absent in one particular group.We found 13,9,and 31 miRNAs specifically absent in spinal fluid,urine and ocular fluid samples,respectively(Figure 2).

    Pathway comparison using different prediction tools

    Next,different pathway prediction tools were employed to analyze the pathways involving the 24 absent miRNAs sharedby all samples examined(Table 3).miEAA analysis revealed that these 24 absent miRNAs were involved in only one pathway and in regulation of 10 genes(Table 4)and one disease related to the analyzed miRNAs(Table 5),whereas more than 80 KEGG pathways were predicted with DIANA tool Tar-Base(Table 6)or microT(Table 7).As shown in Tables 4-7,the number of predicted pathways varied greatly depending on selected prediction algorithm.In addition,the predicted pathways based on the same 24 miRNAs showed associations with completely different diseases or organs using the two software tools.These data raise the question about plausibility and authenticity of the used pathway analysis tools.

    Figure1 Venn diagram of absent miRNAs in different sample types from cardiac patients

    Table3 miRNAs not expressed in any sample type examined in the current study

    Discussion

    The importance of differentially-expressed miRNAs for characterization of various disease situations has been shown impressively[19,22-25,28,30].miRNAs are mainly negative regulators of gene expression.Therefore absentmiRNAs could indicate genes which are not affected for the disease situation examined or in the corresponding sample material.The different pattern of non-expressed miRNAs in separate tissues or organs could be explained by their biological functions.

    The current study described,for the first time,the set of non-expressed miRNAs of the largest published cohort of patients(more than 200,including controls)with inflammatory or virally-induced cardiomyopathies that were diagnosed using EMBs[3,4,6,32].Absent miRNAs were revealed with different analytical platforms and compared to data from other diseased patients(Alzheimer’s disease,ocular cancer,bladder cancer)measured with identical assays in the same laboratory.The demonstration of differentially regulated miRNAs was not the aim of this study,corresponding data for the differentially-regulated miRNAs were shown previously[16,22,24,25,28].

    Figure2 Venn diagram of absent miRNAs in EMBs,PBMCs,and other body fluids

    Table4 Overrepresented pathways and genes generated for the 24 commonly-absent miRNAs using miEAA ORA with FDR adjustment

    Table5 Predicted diseases by enriched pathways generated for the 24 commonly-absent miRNAs using miEAA G(SEA)with FDR adjustment

    Bioinformatic evaluation of identified absent miRNAs was performed by application of two freely-available pathwayprediction tools(miEAA and DIANA miRPath)to confirm experimental findings.For cardiac patients,6 heart-related pathways were recovered using miEAA.For the 6 miRNAs commonly not expressed in EMBs,serum,and PBMCs of cardiac patients,the software predicted association with myocarditis and DCM.Intensive search of biomedical publication databases provided no hint for their involvement in heart muscle diseases.Instead,hsa-miR-16-1-3p is related to chronic lymphocytic leukemia[50]and age-related cataract[51],whereas hsa-miR-34b-3p is related to spermatogenesis[52]. Similarly,hsa-let-7a-5p seems to be related to infectious mononucleosis but not cardiac diseases[45].Moreover,there lacks proof in literature or through in silico prediction tools for the involvement of the remaining 3 miRNAs in any disease or pathway.

    DIANA analysis revealed one DCM-related pathway based on the 24 common miRNAs that are never detected in any of EMB,serum,PBMC,spinal fluid,ocular fluid or urine samples.Literature screening in PubMed retrieved no publications related to DCMor other cardiomyopathies for all 24 common absent miRNAs,therefore no experimental proof as well(Tables 3-7).

    Both examples of detailed search(6 miRNAs and 24 miRNAs)for the relevance of miRNAs in distinct pathways revealed no evidence for their involvement in heart-related pathways as stated in DIANA tool.Pathway prediction tools could generate a broad amount and variety of potential networks which might only exist in theory but not in reality. In addition,these prediction tools have their limits in terms of amount of miRNAs that can be uploaded for analysis(especially DIANA tool),literature evidence of theirs predicted pathways,and comparability between different prediction tools.The best way to overcome this deficiency in pathway prediction is the evaluation of larger sample cohorts or multiple data sources.The involvement of sets of nonexpressed miRNAs for more diseases,as presented in this study,will sharpen the predictive power of bioinformatic analyses.These data are easily available but often not requested for publication.In future,predicted pathways should be double checked against list of absent miRNAs. The theoretical output of prediction tools shows high divergence from experimental validation,at least for our study. Therefore,users of prediction tools should take caution and assess the output critically.

    The spectrum of non-expressed miRNAs in body fluids for defined diseases such as serum of patients suffering from cardiomyopathies is of keen interest.Today circulating miRNAs have the most important scientific and diagnostic impact[19,22,25,26,29,30].In this article,we described for the first time a panel of absent miRNAs in serum,PBMCs,EMBs,spinal fluid,urine,and ocular fluid of diseased patients including corresponding healthy controls.Implementing this spectrum in comparison to miRNA studies in different disorders,disease-specific miRNAs can be identified expeditiously.

    Further studies have to confirm especially which of these absent serum miRNAs in cardiomyopathies are not versatile. Circulating miRNAs will be the novel diagnostic biomarkers,also for heart muscle diseases[14,15,21,24,26].Some of these serum miRNAs are present in other disorders not corresponding to cardiomyopathies,which could be of scientific interest for understanding of specific pathomechanisms or finally as therapeutic targets for miRNA modulation to deal with discrete disease situations.

    There are some limitations in the current study.Three analytical platforms were used in generating data for overlapping sample sets to infer miRNAs absent alone or in different combinations.EMBs and PBMCs were measured with microarraybased technology for former sets of available miRNAs(miRBase v14),whereas Taqman PCR-based analysis were performed later and used to measure miRNAs in serum(OpenArrays,miRBase v16 and higher),EMBs(LDA and OpenArrays)[15],spinal fluid(OpenArray),urine(LDA),and ocular fluid(LDA).In addition,only two freelyavailable software tools were used for pathway prediction.

    The bioinformatic and translational perspective of presented approach is manifold.This first preliminary study on non-detectable miRNAs should sensitize scientific community to present not only data of deregulated candidates,but also data of completely absent miRNAs[25]as a valuable dataset for improvement of commonly used software tools.Nondetectable miRNAs should be excluded from further prediction of corresponding pathways.Otherwise the collection of these data for all tissues,cells,or body fluids would be an important reservoir for future research or also pharmaceutical studies,and thus should be propagated by bioinformatics.The unexpected finding of previously-described non-expressed miRNAs in an experiment or clinical study will facilitate the identification of newly involved pathways or functional dysregulations in an observed setup.

    Material and methods

    Samples

    EMB,PBMC,and serum samples were obtained from healthy controls and patients suffering from inflammatory or virally induced myocarditis as shown in Table 1[9,10,15,16,11,53,54].The study was performed within the Transregional Collaborative Research Centre(Inflammatory Cardiomyopathy-Molecular Pathogenesis and Therapy)[Sfb/Tr19].The study protocol was approved by the local ethics committees of the participating clinical centers,as well as by the committees of the respective federal states.An informed written consent was obtained from each participant.

    Spinal fluid samples were received from healthy controls and patients suffering from Alzheimer’s disease,with the ethical statement described previously[25].Urine samples were acquired from healthy controls and patients harboring bladder cancer,with the ethical statement described previously[22,24]. In addition,we analyzed pooled ocular fluid from random patients.

    miRNA isolation

    miRNAs were obtained from patients,using mirVanaTMmiRNA Isolation Kit(Thermo Fisher Scientific,Waltham,MA,USA)resp.mirVanaTMPARISTMRNAand Native Protein Purification Kit(Thermo Fisher Scientific,Waltham,MA,USA)for low content samples such as serum,urine,ocular fluid,and spinal fluid according to manufacturer’s instructions.All presented expression studies were performed in the same laboratory.

    Table6 Pathways generated for the 24 commonly-absent miRNAs using DIANA TarBase

    Table6 (continued)

    miRNA reverse transcription,pre-amplification and expression analysis using TaqMan real-time PCR

    Total RNA including miRNA fraction was reversely transcribed to cDNA using Megaplex stem-loop RT primer(Thermo Fisher Scientific,Waltham,MA,USA)for Human Pool A and B in combination with the TaqMan MicroRNA Reverse Transcription Kit(Thermo Fisher Scientific,Waltham,MA,USA).This allowed simultaneous cDNA synthesis of 377 unique miRNAs for Pool A and B each.Except for biopsy materials,a pre-amplification protocol was performed for all low content samples to increase the detection rate. The entire procedure for quantification using TaqMan? OpenArray?[25]and TaqMan?LDA[28]is described elsewhere.miRNAs which were not detectable or above cycle threshold 28(OpenArrays)resp.32(LDA)were considered to be absent in the sample.

    miRNA labeling and expression analysis using Febit Geniom? Biochip

    The expression analysis of all 906 miRNA and miRNA*sequences as annotated in Sanger miRBase version 14.0 was performed with the Geniom Real Time Analyzer(Febit,Heidelberg)and the Geniom biochip MPEA hsapiens V14. Sample labeling with biotin was carried out by using the ULS labeling Kit from Kreatech(Amsterdam,The Netherlands).All essential steps such as hybridization,washing,as wellas signalamplification and measurement,were done automatically by Geniom Real Time Analyzer.The resulting detection images were evaluated using the Geniom Wizard Software for background correction and normalization of generated data.miRNA expression analyses were carried out using the normalized and background-subtracted intensity values.

    Bioinformatic algorithms and miRNA target identification

    miRNAs not detectable in all samples of corresponding biological material were regarded as absent for this material and disease.All following bioinformatics analyses by pathway prediction tools were based on the list of these candidates. Venn diagrams of intersecting sets of miRNAs between different tissues and platforms are generated using Venny v2.0(http://bioinfogp.cnnb.csic.es/tools/venny/index.html).miEAA(http://www.ccb.uni saarland.de/mieaa_tool)and DIANA miRPath v.2.0[31]were used for miRNA target prediction and pathway analysis.Allgiven lists of miRNAs are translated and annotated according to miRBase v14 nomenclature.

    Authors’contributions

    CS conducted the bioinformatic algorithms and miRNAtarget identification,and drafted the manuscript.CS and MR carried out miRNA expression studies.DL conceived the study,and participated in study design and coordination.UK,F(xiàn)E,and HPS had primary responsibility for patient characterization and management.All authors discussed the results,read,and approved the final manuscript.

    Competing interests

    The authors declare no competing financial interests or relationships relevant to the content of this paper to disclose.

    Table7 Pathways generated for the 24 commonly-absent miRNAs using DIANA microT

    Table7 (continued)

    Acknowledgments

    This work was supported by grants from the German Research Foundation,the Transregional Collaborative Research Centre(Inflammatory Cardiomyopathy-Molecular Pathogenesis and Therapy)[SFB/TR19],and the Federal Ministry of Education and Research for the Small and Medium-sized Enterprises Innovative Program(Grant No.616 0315296)of Germany. We would like to thank Drs.Holger Jahn,Angelika To¨lle,and Enken Grundlach for permission to use the lists of absent miRNAs in their investigated specimens.We thank Mrs.Kitty Winter,Susanne Ochmann,and Claudia Seifert for their excellent technical assistance.

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.005.

    [1]Schultheiss HP,Ku¨hl U,Cooper LT.The management of myocarditis.Eur Heart J 2011;32:2616-25.

    [2]Ku¨hl U,Schultheiss HP.Viral myocarditis:diagnosis,aetiology and management.Drugs 2009;69:1287-302.

    [3]Caforio ALP,Pankuweit S,Arbustini E,Basso C,Gimeno-Blanes J,F(xiàn)elix SB,et al.Current state of knowledge on aetiology,diagnosis,management,and therapy of myocarditis:a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases.Eur Heart J 2013;34:2636-48,2648a-d.

    [4]Ku¨hl U,Pauschinger M,Seeberg B,Lassner D,Noutsias M,Poller W,et al.Viral persistence in the myocardium is associated with progressive cardiac dysfunction.Circulation 2005;112: 1965-70.

    [5]Kieninger B,Eriksson M,Kandolf R,Schnabel PA,Scho¨nland S,Kristen AV,et al.Amyloid in endomyocardial biopsies.Virchows Arch 2010;456:523-32.

    [6]Chimenti C,F(xiàn)rustaci A.Contribution and risks of left ventricular endomyocardial biopsy in patients with cardiomyopathies:a retrospective study over a 28-year period.Circulation 2013;128:1531-41.

    [7]Towbin JA,Lowe AM,Colan SD,Sleeper LA,Orav EJ,Clunie S,et al.Incidence,causes,and outcomes of dilated cardiomyopathy in children.JAMA 2006;296:1867-76.

    [8]Codd MB,Sugrue DD,Gersh BJ,Melton LJ.Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy.A population-based study in Olmsted County,Minnesota,1975-1984. Circulation 1989;80:564-72.

    [9]Lassner D,Ku¨hl U,Siegismund CS,Rohde M,Elezkurtaj S,Escher F,et al.Improved diagnosis of idiopathic giant cell myocarditis and cardiac sarcoidosis by myocardial gene expression profiling.Eur Heart J 2014;35:2186-95.

    [10]Kuhl U,Lassner D,Dorner A,Rohde M,Escher F,Seeberg B,et al.A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression.Basic Res Cardiol 2013;108:372.

    [11]Wittchen F,Suckau L,Witt H,Skurk C,Lassner D,F(xiàn)echner H,et al.Genomic expression profiling of human inflammatory cardiomyopathy(DCMi)suggests novel therapeutic targets.J Mol Med(Berl)2007;85:257-71.

    [12]Lassner D,Siegismund CS,Stehr J,Rohde M,Escher F,Tscho¨pe C,et al.Recent advances in molecular diagnostics and treatment of heart muscle diseases.J Anal Sci Method Instrum 2013;3:98-109.

    [13]Heidecker B,Kittleson MM,Kasper EK,Wittstein IS,Champion HC,Russell SD,et al.Transcriptomic biomarkers for the accurate diagnosis of myocarditis.Circulation 2011;123:1174-84.

    [14]Heidecker B,Kasper EK,Wittstein IS,Champion HC,Breton E,Russell SD,et al.Transcriptomic biomarkers for individual risk assessment in new-onset heart failure.Circulation 2008;118: 238-46.

    [15]Siegismund CS,Rohde M,Ku¨hl U,Lassner D.Multiparametric diagnostics of cardiomyopathies by microRNA signatures. Microchim Acta 2014;181:1647-53.

    [16]Ku¨hl U,Rohde M,Lassner D,Gross UM,Escher F,Schultheiss H-P.miRNA as activity markers in Parvo B19 associated heart disease.Herz 2012;37:637-43.

    [17]Ikeda S,Kong SW,Lu J,Bisping E,Zhang H,Allen PD,et al. Altered microRNA expression in human heart disease.Physiol Genomics 2007;31:367-73.

    [18]Thum T,CatalucciD,Bauersachs J.MicroRNAs:novelregulators in cardiac development and disease.Cardiovasc Res 2008;79:562-70.

    [19]Jaguszewski M,Osipova J,Ghadri JR,Napp LC,Widera C,F(xiàn)ranke J,et al.A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction.Eur Heart J 2014;35:999-1006.

    [20]Zampetaki A,Mayr M.MicroRNAs in vascular and metabolic disease.Circ Res 2012;110:508-22.

    [21]Leptidis S,El Azzouzi H,Lok SI,de Weger R,Olieslagers S,Olieslagers S,et al.A deep sequencing approach to uncover the miRNOME in the human heart.PLoS One 2013;8:e57800.

    [22]To¨lle A,Jung M,Rabenhorst S,Kilic E,Jung K,Weikert S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer.Oncol Rep 2013;30:1949-56.

    [23]Chung SH,Gillies M,Sugiyama Y,Zhu L,Lee SR,Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Mu¨ller cell ablation.PLoS One 2015;10:e0118949.

    [24]To¨lle A,Ratert N,Jung K.MiRNA panels as biomarkers for bladder cancer.Biomark Med 2014;8:733-46.

    [25]Denk J,Boelmans K,Siegismund C,Lassner D,Arlt S,Jahn H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease.PLoS One 2015;10:e0126423.

    [26]Chen X,Ba Y,Ma L,Cai X,Yin Y,Wang K,et al.Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases.CellRes 2008;18:997-1006.

    [27]Baek D,Ville′n J,Shin C,Camargo FD,Gygi SP,Bartel DP.The impact of microRNAs on protein output.Nature 2008;455:64-71.

    [28]KuehlU,Lassner D,Gast M,Stroux A,Rohde M,Siegismund C,et al.Differential cardiac microRNA expression predicts the clinicalcourse in human enterovirus cardiomyopathy.Circ Heart Fail 2015;8:605-18.

    [29]Burgos KL,Javaherian A,Bomprezzi R,Ghaffari L,Rhodes S,Courtright A,et al.Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing.RNA 2013;19:712-22.

    [30]Torres A,Torres K,Pesci A,Ceccaroni M,Paszkowski T,Cassandrini P,et al.Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients.Int J Cancer 2013;132:1633-45.

    [31]Vlachos IS,Kostoulas N,Vergoulis N,Georgakilas T,Reczko G,Maragkakis M.DIANA miRPath v.2.0:investigating the combinatorial effect of microRNAs in pathways.Nucleic Acids Res 2012;40:W498-504.

    [32]Holzmann M,Nicko A,Ku¨hl U,Noutsias M,Poller W,Hoffmann W,et al.Complication rate of right ventricular endomyocardial biopsy via the femoral approach:a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period.Circulation 2008;118:1722-8.

    [33]Cooper LT.Myocarditis.N Engl J Med 2009;360:1526-38.

    [34]Song R,Liu Q,Liu T,Li J.Connecting rules from paired miRNA and mRNA expression data sets of HCV patients to detect both inverse and positive regulatory relationships.BMC Genomics 2015;16:S11.

    [35]Chen L,Ma H,Hu H,Gao L,Wang X,Ma J,et al.Specialrole of Foxp3 for the specifically altered microRNAs in regulatory T cells of HCC patients.BMC Cancer 2014;14:489.

    [36]Medina-Villaamil V,Mart?′nez-Breijo S,Portela-Pereira P,Quindo′s-Varela M,Santamarina-Ca?′nzos I,Anto′n-Aparicio LM,et al. Circulating MicroRNAs in blood of patients with prostate cancer. Actas Urol Espan?olas 2014;38:633-9.

    [37]Sun B,Yang M,Li M,Wang F.The microRNA-217 functions as a tumor suppressor and is frequently downregulated in human osteosarcoma.Biomed Pharmacother 2015;71:58-63.

    [38]Su J,Wang Q,Liu Y,Zhong M.MiR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3.Mol Cell Biochem 2014;392:289-96.

    [39]Deng S,Zhu S,Wang B,Li X,Liu Y,Qin Q,et al.Chronic pancreatitis and pancreatic cancer demonstrate active epithelialmesenchymal transition profile,regulated by miR-217-SIRT1 pathway.Cancer Lett 2014;355:184-91.

    [40]Jong HL,Mustafa MR,Vanhoutte PM,AbuBakar S,Wong PF. MicroRNA 299-3p modulates replicative senescence in endothelial cells.Physiol Genomics 2013;45:256-67.

    [41]Jensen MD,Andersen RF,Christensen H,Nathan T,Kjeldsen J,Madsen JS.Circulating microRNAs as biomarkers of adult Crohn’s disease.Eur J Gastroenterol Hepatol 2015;27:1038-44.

    [42]Tan Y,Ge G,Pan T,Wen D,Gan J.Serum miRNA panel as potential biomarkers for chronic hepatitis B with persistently normal alanine aminotransferase.Clin Chim Acta 2015;451:232-9.

    [43]Ward J,Kanchagar C,Veksler-Lublinsky I,Lee RC,McGill MR,Jaeschke H,et al.Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci U S A 2014;111:12169-74.

    [44]Lee K,Kim J-H,Kwon O-B,An K,Ryu J,Cho K,et al.An activity-regulated microRNA,miR-188,controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2.J Neurosci 2012;32:5678-87.

    [45]Gao L,Ai J,Xie Z,Zhou C,Liu C,Zhang H,et al.Dynamic expression of viraland cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virol J 2015;12:208.

    [46]Zhao JJ,Yang J,Lin J,Yao N,Zhu Y,Zheng J,et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis.Childs Nerv Syst 2009;25:13-20.

    [47]Guo WG,Zhang Y,Ge D,Zhang YX,Lu CL,Wang Q,et al. Bioinformatics analyses combined microarray identify the desregulated microRNAs in lung cancer.Eur Rev Med Pharmacol Sci 2013;17:1509-16.

    [48]Xu YW,Wang B,Ding CH,Li T,Gu F,Zhou C.Differentially expressed micoRNAs in human oocytes.J Assist Reprod Genet 2011;28:559-66.

    [49]Hommers L,Raab A,Bohl A,Weber H,Scholz C-J,Erhardt A,et al.MicroRNA hsa-miR-4717-5p regulates RGS2 and may be a risk factor for anxiety-related traits.Am J Med Genet B Neuropsychiatr Genet 2015;168B:296-306.

    [50]Rossi M,F(xiàn)uligni F,Ciccone M,Agostinelli C,Righi S,Luciani M,et al.Hsa-miR-15a and hsa-miR-16-1 expression is not related to proliferation centers abundance and other prognostic factors in chronic lymphocytic leukemia.Biomed Res Int 2013;2013:715391.

    [51]Li Y,Liu S,Zhang F,Jiang P,Wu X,Liang Y.Expression of the microRNAs hsa-miR-15a and hsa-miR-16-1 in lens epithelial cells of patients with age-related cataract.Int J Clin Exp Med 2015;8:2405-10.

    [52]Salas-Huetos A,Blanco J,Vidal F,Godo A,Grossmann M,Pons MC,et al.Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile.Fertil Steril 2015;104:591-601.

    [53]Lassner D,Rohde M,Gross UM,Escher F,Schultheiss HP,Linke R-P,et al.Classification of four chemically different amyloid types in routine endomyocardial biopsies by advanced immunohistochemistry.Amyloid 2011;18:76-8.

    [54]Noutsias M,Pauschinger M,Gross U,Lassner D,Schultheiss HP,Ku¨hl U.Giant-cell myocarditis in a patient presenting with dilated cardiomyopathy and ventricular tachycardias treated by immunosuppression:a case report.Int J Cardiol 2008;128:e58-9.

    *Corresponding author.

    E-mail:info@ikdt.de(Lassner D).

    aORCID:0000-0001-7909-1694.

    bORCID:0000-0002-2046-8757.

    cORCID:0000-0002-2476-0050.

    dORCID:0000-0003-0678-5681.

    eORCID:0000-0002-2185-3710.

    fORCID:0000-0003-0815-7013.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.005

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    成人18禁高潮啪啪吃奶动态图| 一本精品99久久精品77| 成人国语在线视频| 两性夫妻黄色片| 97人妻精品一区二区三区麻豆| 夜夜夜夜夜久久久久| 久久久久久九九精品二区国产 | 亚洲欧美日韩高清在线视频| 岛国视频午夜一区免费看| 国产高清videossex| 亚洲精品色激情综合| 日本黄色视频三级网站网址| 亚洲成人免费电影在线观看| 一进一出抽搐gif免费好疼| 欧美日韩瑟瑟在线播放| 免费观看精品视频网站| 亚洲第一欧美日韩一区二区三区| 最近最新中文字幕大全免费视频| 又紧又爽又黄一区二区| 久久久国产成人精品二区| 国产精品 国内视频| 亚洲专区中文字幕在线| 高潮久久久久久久久久久不卡| 亚洲一码二码三码区别大吗| 国产视频一区二区在线看| 又爽又黄无遮挡网站| 在线免费观看的www视频| 日日摸夜夜添夜夜添小说| а√天堂www在线а√下载| 国产精品1区2区在线观看.| 亚洲中文日韩欧美视频| 日本熟妇午夜| 免费观看精品视频网站| 亚洲欧美日韩高清在线视频| 精品无人区乱码1区二区| 日本 欧美在线| 黄色视频不卡| 啦啦啦观看免费观看视频高清| 老鸭窝网址在线观看| 亚洲国产看品久久| 91九色精品人成在线观看| 香蕉久久夜色| 久久国产精品影院| 三级国产精品欧美在线观看 | 国产免费男女视频| 国产麻豆成人av免费视频| 国产精品av视频在线免费观看| 亚洲av片天天在线观看| 黄频高清免费视频| 激情在线观看视频在线高清| 非洲黑人性xxxx精品又粗又长| 少妇被粗大的猛进出69影院| 精品乱码久久久久久99久播| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一小说| 国产成人av教育| aaaaa片日本免费| 黄色丝袜av网址大全| 天堂av国产一区二区熟女人妻 | 日韩精品免费视频一区二区三区| 国产av一区二区精品久久| 88av欧美| 欧美一区二区国产精品久久精品 | 成人av一区二区三区在线看| 国产人伦9x9x在线观看| 欧美乱妇无乱码| 黄色女人牲交| 欧美午夜高清在线| 欧美三级亚洲精品| 少妇的丰满在线观看| 国产成人一区二区三区免费视频网站| 别揉我奶头~嗯~啊~动态视频| a级毛片在线看网站| 男女视频在线观看网站免费 | 男女那种视频在线观看| 最新美女视频免费是黄的| 午夜精品一区二区三区免费看| 91老司机精品| 午夜日韩欧美国产| 欧美日韩瑟瑟在线播放| 国产精品98久久久久久宅男小说| 韩国av一区二区三区四区| 国产精品一区二区精品视频观看| 精品少妇一区二区三区视频日本电影| 欧美精品亚洲一区二区| 亚洲电影在线观看av| 老司机靠b影院| 亚洲国产看品久久| 亚洲性夜色夜夜综合| www.www免费av| 欧美久久黑人一区二区| 神马国产精品三级电影在线观看 | 又黄又爽又免费观看的视频| 国产精品一及| 久久九九热精品免费| 欧美大码av| 全区人妻精品视频| 久久久久久国产a免费观看| 操出白浆在线播放| 精品久久久久久久人妻蜜臀av| 日韩欧美国产一区二区入口| 51午夜福利影视在线观看| 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| 少妇人妻一区二区三区视频| 麻豆av在线久日| 91大片在线观看| 成人特级黄色片久久久久久久| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 亚洲色图av天堂| 日韩欧美一区二区三区在线观看| 成年人黄色毛片网站| 精品国内亚洲2022精品成人| 国产成人欧美在线观看| 熟女电影av网| 99热只有精品国产| 99久久精品国产亚洲精品| 无限看片的www在线观看| 丁香欧美五月| 一本一本综合久久| 国产午夜精品论理片| 丁香欧美五月| 最近最新免费中文字幕在线| 一级片免费观看大全| 俺也久久电影网| 久久这里只有精品19| 正在播放国产对白刺激| 99热这里只有是精品50| 亚洲av五月六月丁香网| 亚洲一区中文字幕在线| 国产精品一区二区精品视频观看| 又紧又爽又黄一区二区| 日韩欧美 国产精品| 欧美又色又爽又黄视频| 国产av一区二区精品久久| 午夜福利免费观看在线| 18禁裸乳无遮挡免费网站照片| 国产成人一区二区三区免费视频网站| 制服人妻中文乱码| 99热这里只有是精品50| 欧美 亚洲 国产 日韩一| 欧美+亚洲+日韩+国产| 99精品欧美一区二区三区四区| 一个人免费在线观看的高清视频| 蜜桃久久精品国产亚洲av| 久久国产精品影院| АⅤ资源中文在线天堂| 精品久久久久久成人av| 久久久久久九九精品二区国产 | 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 国产三级在线视频| 日本 欧美在线| 亚洲av成人精品一区久久| 嫩草影视91久久| 最近视频中文字幕2019在线8| 婷婷丁香在线五月| 黄色 视频免费看| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 老司机在亚洲福利影院| 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 久久久久久久久中文| 黄色a级毛片大全视频| 香蕉国产在线看| 久久性视频一级片| 精品第一国产精品| 亚洲午夜理论影院| 国产伦在线观看视频一区| 国产视频一区二区在线看| 精品电影一区二区在线| 搡老岳熟女国产| 香蕉丝袜av| 黄色片一级片一级黄色片| 夜夜躁狠狠躁天天躁| 亚洲一区中文字幕在线| 男女下面进入的视频免费午夜| 黄频高清免费视频| 18禁黄网站禁片午夜丰满| 亚洲av中文字字幕乱码综合| 黑人巨大精品欧美一区二区mp4| 男女床上黄色一级片免费看| 亚洲国产欧美人成| 人成视频在线观看免费观看| 日韩有码中文字幕| 日韩欧美在线二视频| 久久中文字幕人妻熟女| www.www免费av| 久久久久久久久免费视频了| 日本成人三级电影网站| 亚洲美女视频黄频| 国产成人影院久久av| 中文字幕久久专区| 婷婷精品国产亚洲av在线| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 亚洲av成人一区二区三| 免费看a级黄色片| 他把我摸到了高潮在线观看| 亚洲无线在线观看| av福利片在线| 精品国内亚洲2022精品成人| 一区二区三区激情视频| 丰满的人妻完整版| 色播亚洲综合网| 国产激情久久老熟女| 夜夜看夜夜爽夜夜摸| 亚洲狠狠婷婷综合久久图片| 亚洲av成人精品一区久久| 在线视频色国产色| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| 九九热线精品视视频播放| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 免费在线观看黄色视频的| 国产精品一区二区三区四区免费观看 | 99久久综合精品五月天人人| 神马国产精品三级电影在线观看 | 又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精华国产精华精| 中文字幕av在线有码专区| 色综合亚洲欧美另类图片| 97超级碰碰碰精品色视频在线观看| 精品不卡国产一区二区三区| 淫妇啪啪啪对白视频| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放 | 久久久久国内视频| 91在线观看av| 美女黄网站色视频| 成年免费大片在线观看| 久久精品人妻少妇| 给我免费播放毛片高清在线观看| 成年版毛片免费区| 18禁美女被吸乳视频| 成人18禁高潮啪啪吃奶动态图| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 久久久久久大精品| e午夜精品久久久久久久| 亚洲精品av麻豆狂野| 嫩草影视91久久| 我要搜黄色片| 国产99久久九九免费精品| 一区福利在线观看| 久久九九热精品免费| 免费一级毛片在线播放高清视频| 男人舔奶头视频| 国内毛片毛片毛片毛片毛片| 欧美丝袜亚洲另类 | 亚洲国产精品久久男人天堂| 亚洲av五月六月丁香网| 巨乳人妻的诱惑在线观看| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 三级国产精品欧美在线观看 | av视频在线观看入口| 日本三级黄在线观看| 三级男女做爰猛烈吃奶摸视频| 国产免费av片在线观看野外av| 久久久久国内视频| 99精品在免费线老司机午夜| av中文乱码字幕在线| 丝袜美腿诱惑在线| 精品午夜福利视频在线观看一区| 国内久久婷婷六月综合欲色啪| 欧美日韩黄片免| 91麻豆精品激情在线观看国产| 露出奶头的视频| 精品久久蜜臀av无| 天堂av国产一区二区熟女人妻 | 亚洲性夜色夜夜综合| 午夜福利成人在线免费观看| 国产视频一区二区在线看| 最近视频中文字幕2019在线8| 日本一本二区三区精品| 黄色女人牲交| 久久草成人影院| 身体一侧抽搐| 久久久久九九精品影院| 婷婷精品国产亚洲av| 日本免费a在线| 看片在线看免费视频| 丰满人妻一区二区三区视频av | 大型av网站在线播放| 亚洲中文日韩欧美视频| 十八禁网站免费在线| 欧美另类亚洲清纯唯美| 久久国产乱子伦精品免费另类| 啪啪无遮挡十八禁网站| 欧美最黄视频在线播放免费| 国产精品久久久av美女十八| 欧美色视频一区免费| 又黄又爽又免费观看的视频| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频| 18禁国产床啪视频网站| 精品久久蜜臀av无| 少妇人妻一区二区三区视频| 成年免费大片在线观看| av中文乱码字幕在线| 精品欧美国产一区二区三| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 久久婷婷人人爽人人干人人爱| 欧美黄色淫秽网站| 国产av在哪里看| 欧美日韩一级在线毛片| 老熟妇仑乱视频hdxx| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av香蕉五月| 国产黄色小视频在线观看| 精品久久蜜臀av无| 亚洲中文字幕日韩| 亚洲国产欧美人成| 欧洲精品卡2卡3卡4卡5卡区| 三级国产精品欧美在线观看 | 一进一出好大好爽视频| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 亚洲自拍偷在线| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 一个人免费在线观看电影 | 久久久久久久久免费视频了| 此物有八面人人有两片| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频| 亚洲自偷自拍图片 自拍| 国产三级在线视频| 老鸭窝网址在线观看| 可以在线观看毛片的网站| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 最新美女视频免费是黄的| 日韩欧美国产一区二区入口| 一级片免费观看大全| 亚洲 欧美一区二区三区| 日韩欧美精品v在线| 毛片女人毛片| 国产精品亚洲美女久久久| 免费电影在线观看免费观看| 18禁黄网站禁片午夜丰满| 成年版毛片免费区| 久久精品综合一区二区三区| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 亚洲狠狠婷婷综合久久图片| 国产av一区在线观看免费| av天堂在线播放| a在线观看视频网站| 手机成人av网站| 88av欧美| 欧美成人免费av一区二区三区| 免费看a级黄色片| e午夜精品久久久久久久| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 日韩精品中文字幕看吧| 亚洲国产欧美一区二区综合| av福利片在线观看| 日韩高清综合在线| 欧美日韩黄片免| 亚洲色图 男人天堂 中文字幕| 国产99白浆流出| 给我免费播放毛片高清在线观看| 1024手机看黄色片| 久久久久久人人人人人| 日韩有码中文字幕| 亚洲真实伦在线观看| 亚洲欧美激情综合另类| 丁香欧美五月| 国产久久久一区二区三区| 少妇被粗大的猛进出69影院| 日本一本二区三区精品| 麻豆国产97在线/欧美 | 亚洲男人天堂网一区| 国产在线精品亚洲第一网站| 日韩三级视频一区二区三区| 亚洲av片天天在线观看| 久久中文字幕人妻熟女| 久久久久国产精品人妻aⅴ院| av视频在线观看入口| 不卡av一区二区三区| 岛国视频午夜一区免费看| 精品久久久久久久久久免费视频| 国产精品九九99| 麻豆一二三区av精品| 亚洲人成77777在线视频| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久人人做人人爽| 欧美另类亚洲清纯唯美| 午夜免费观看网址| 免费在线观看日本一区| videosex国产| 免费在线观看视频国产中文字幕亚洲| 男女之事视频高清在线观看| 国产精品国产高清国产av| 欧美在线一区亚洲| 亚洲 欧美 日韩 在线 免费| 亚洲人成电影免费在线| 村上凉子中文字幕在线| 熟女少妇亚洲综合色aaa.| 久久婷婷人人爽人人干人人爱| 久久久久精品国产欧美久久久| 两个人免费观看高清视频| 观看免费一级毛片| 国产精品九九99| 日韩欧美在线乱码| 午夜福利免费观看在线| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 欧美绝顶高潮抽搐喷水| 一个人观看的视频www高清免费观看 | 黑人操中国人逼视频| 在线观看美女被高潮喷水网站 | 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久免费高清国产稀缺| 丰满人妻一区二区三区视频av | 国产精品一及| 中文字幕久久专区| 欧美性猛交╳xxx乱大交人| 欧美 亚洲 国产 日韩一| 狠狠狠狠99中文字幕| 亚洲午夜精品一区,二区,三区| 日本 欧美在线| 熟女电影av网| 免费在线观看黄色视频的| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 亚洲片人在线观看| 精品一区二区三区av网在线观看| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 久久久久久国产a免费观看| 91九色精品人成在线观看| 久久这里只有精品中国| 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区久久| 91在线观看av| 国产成人精品久久二区二区91| 欧美精品亚洲一区二区| 最近在线观看免费完整版| 99国产极品粉嫩在线观看| 亚洲欧美精品综合久久99| 国产高清激情床上av| 男女那种视频在线观看| 嫩草影院精品99| 757午夜福利合集在线观看| 久久久久国内视频| 亚洲人成网站在线播放欧美日韩| 国产精品美女特级片免费视频播放器 | 亚洲欧美日韩无卡精品| 国产成人啪精品午夜网站| 美女高潮喷水抽搐中文字幕| 成人精品一区二区免费| 两个人视频免费观看高清| 曰老女人黄片| 性色av乱码一区二区三区2| 男男h啪啪无遮挡| 国产亚洲欧美在线一区二区| 一本大道久久a久久精品| 老鸭窝网址在线观看| 国产一区二区三区视频了| 非洲黑人性xxxx精品又粗又长| 五月伊人婷婷丁香| 国产又黄又爽又无遮挡在线| 国产午夜精品久久久久久| 韩国av一区二区三区四区| 免费搜索国产男女视频| 老司机靠b影院| 夜夜夜夜夜久久久久| 两个人免费观看高清视频| 啦啦啦观看免费观看视频高清| 极品教师在线免费播放| 久热爱精品视频在线9| 最近在线观看免费完整版| 男女午夜视频在线观看| 高清在线国产一区| 久久久国产精品麻豆| 久久久久国产精品人妻aⅴ院| 男人的好看免费观看在线视频 | 亚洲男人的天堂狠狠| 亚洲18禁久久av| 中文资源天堂在线| 丝袜人妻中文字幕| 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 天堂动漫精品| 又黄又粗又硬又大视频| 一边摸一边抽搐一进一小说| 欧美又色又爽又黄视频| 日本在线视频免费播放| 国产精品日韩av在线免费观看| 欧美性长视频在线观看| 两性夫妻黄色片| 亚洲精品一区av在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线观看网站| 成人永久免费在线观看视频| www.www免费av| 日韩精品青青久久久久久| 熟女少妇亚洲综合色aaa.| 亚洲熟妇中文字幕五十中出| 国产99久久九九免费精品| 黄频高清免费视频| 国产99白浆流出| 性欧美人与动物交配| 国产精品,欧美在线| 一区二区三区国产精品乱码| 夜夜爽天天搞| 日本免费一区二区三区高清不卡| 色综合欧美亚洲国产小说| 亚洲国产欧洲综合997久久,| 国产成+人综合+亚洲专区| 桃红色精品国产亚洲av| 男女午夜视频在线观看| 最新美女视频免费是黄的| 99国产综合亚洲精品| 国产亚洲av高清不卡| 国内精品久久久久久久电影| 亚洲激情在线av| 中文字幕高清在线视频| 久久精品91无色码中文字幕| 亚洲av成人不卡在线观看播放网| 国产片内射在线| 91成年电影在线观看| 婷婷精品国产亚洲av| 三级毛片av免费| 久久99热这里只有精品18| 精品高清国产在线一区| 国产精品 国内视频| 91字幕亚洲| √禁漫天堂资源中文www| 午夜福利免费观看在线| 又紧又爽又黄一区二区| xxxwww97欧美| 欧美黄色片欧美黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰成人久久| 毛片女人毛片| 搡老岳熟女国产| 国产99久久九九免费精品| 国产成人精品无人区| 身体一侧抽搐| 亚洲男人的天堂狠狠| 久久久久久久午夜电影| 亚洲专区国产一区二区| 很黄的视频免费| 国产精品一及| 又黄又粗又硬又大视频| 麻豆成人午夜福利视频| 午夜a级毛片| 丁香六月欧美| 麻豆av在线久日| 最好的美女福利视频网| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 成人av一区二区三区在线看| 蜜桃久久精品国产亚洲av| 久久久国产精品麻豆| 精品少妇一区二区三区视频日本电影| 欧美丝袜亚洲另类 | 亚洲欧美日韩东京热| 18禁裸乳无遮挡免费网站照片| 最好的美女福利视频网| 怎么达到女性高潮| 久久亚洲真实| 两个人的视频大全免费| 婷婷丁香在线五月| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影| 午夜激情福利司机影院| ponron亚洲| 精品欧美一区二区三区在线| 午夜a级毛片| 国内精品久久久久久久电影| avwww免费| 国产精品电影一区二区三区| 日韩欧美免费精品| 小说图片视频综合网站| 国产区一区二久久| 国产高清视频在线观看网站| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| 国产欧美日韩精品亚洲av| 国产精品一区二区精品视频观看| 夜夜夜夜夜久久久久| 亚洲av成人av| 久热爱精品视频在线9| 国产成人欧美在线观看| 亚洲精品国产精品久久久不卡| av免费在线观看网站| 国产视频内射| 日韩三级视频一区二区三区| 又紧又爽又黄一区二区| 久久久久国产一级毛片高清牌| 欧美一区二区国产精品久久精品 | 99久久无色码亚洲精品果冻| 最好的美女福利视频网| 成人一区二区视频在线观看| 这个男人来自地球电影免费观看| 美女免费视频网站| 日韩欧美在线乱码| 中国美女看黄片|