• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Personalized Computer Simulation of Diastolic Function in Heart Failure

    2016-11-17 08:41:23AliAmrElhamKayvanpourFarbodSedaghatHamedaniTizianoPasseriniViorelMihalefAlanLaiDominikNeumannBogdanGeorgescuSebastianBussDerlizMereleshEdgarZitronAndreasPoschMaximilianWurstleTommasoMansiHugoKatus2BenjaminMeder2
    Genomics,Proteomics & Bioinformatics 2016年4期

    Ali AmrElham KayvanpourFarbod Sedaghat-HamedaniTiziano PasseriniViorel MihalefAlan LaiDominik NeumannBogdan GeorgescuSebastian BussDerliz MereleshEdgar ZitronAndreas E.PoschMaximilian Wu¨rstleTommaso MansiHugo A.Katus2Benjamin Meder2*k

    1Institute for Cardiomyopathies,Department of Medicine III,University of Heidelberg,69120 Heidelberg,Germany

    2German Centre for Cardiovascular Research(DZHK),Heidelberg/Mannheim,Germany

    3Siemens Healthcare,Medical Imaging Technologies,Princeton,NJ 08540,USA

    4Siemens Healthcare,Strategy and Innovation,91052 Erlangen,Germany

    ORIGINAL RESEARCH

    Personalized Computer Simulation of Diastolic Function in Heart Failure

    Ali Amr1,2,a,#,Elham Kayvanpour1,2,b,#,F(xiàn)arbod Sedaghat-Hamedani1,2,c,Tiziano Passerini3,d,Viorel Mihalef3,e,Alan Lai1,f,Dominik Neumann3,g,Bogdan Georgescu3,Sebastian Buss1,Derliz Mereles1,h,Edgar Zitron1,Andreas E.Posch4,i,Maximilian Wu¨rstle4,j,Tommaso Mansi3,Hugo A.Katus1,2,Benjamin Meder1,2,*,k

    1Institute for Cardiomyopathies,Department of Medicine III,University of Heidelberg,69120 Heidelberg,Germany

    2German Centre for Cardiovascular Research(DZHK),Heidelberg/Mannheim,Germany

    3Siemens Healthcare,Medical Imaging Technologies,Princeton,NJ 08540,USA

    4Siemens Healthcare,Strategy and Innovation,91052 Erlangen,Germany

    Received 29 February 2016;revised 21 April 2016;accepted 26 April 2016 Available online 29 July 2016

    Handled by Andreas Keller

    Dilated cardiomyopathy;

    Tau;

    Myocardial stiffness;

    Computer-based 3D model;Personalized medicine;

    Diastolic function

    The search for a parameter representing left ventricular relaxation from non-invasive and invasive diagnostic tools has been extensive,since heart failure(HF)with preserved ejection fraction(HF-pEF)is a global health problem.We explore here the feasibility using patient-specific cardiac computer modeling to capture diastolic parameters in patients suffering from different degrees of systolic HF.Fifty eight patients with idiopathic dilated cardiomyopathy have undergone thorough clinical evaluation,including cardiac magnetic resonance imaging(MRI),heart catheterization,echocardiography,and cardiac biomarker assessment.A previously-introduced framework forcreating multi-scale patient-specific cardiac models has been applied on all these patients.Novel parameters,such as global stiffness factor and maximum left ventricular active stress,representing cardiac active and passive tissue properties have been computed for all patients.Invasive pressure measurements from heartcatheterization were then used to evaluate ventricular relaxation using the time constant of isovolumic relaxation Tau(τ).Parameters from heart catheterization and the multi-scale model have been evaluated and compared to patient clinical presentation.The model parameter global stiffness factor,representing diastolic passive tissue properties,is correlated significantly across the patient population withτ.This study shows that multi-modalcardiac models can successfully capture diastolic(dys)function,a prerequisite for future clinical trials on HF-pEF.

    Introduction

    The application of computational modeling to different organ systems has been gathering increasing interest from the research community.The possibility of performing in silico experiments on computer models that mimic patient’s organs has revved up the momentum of the evolution of virtual patient-specific models.The surge of interest has been driven by the prospect of being able to control all the variables to open up new possibilities toward better health care in a risk-free and ethically acceptable setting for the patient.The exponential growth of computational imaging capacities has also broadened the possibilities toward such models.From simplistic models based on geometric shapes as early as the 1960s to multi-scale multi-physics models,the transformation in this field has been tremendous[1-6].

    Heart failure(HF)remains the leading cause of death in developed countries[7-9].The increasingly high incidence rates,hospitalization,and health expenditures compel a constant call for new strategies and progress in this field[10]. HF is a syndrome with diverse etiologies,characterized by the decline of cardiac systolic or diastolic function,resulting in insufficient blood supply to organs,organ dysfunction,and finally,failure[11-13].

    A chronological retrospective analysis of HF therapy in patients with dilated cardiomyopathy(DCM)in the last century sheds light on difficulties in treating this disease.Expert guidelines currently outline HF therapy based on patients’clinical presentation,cardiac systolic function,and specific biomarkers,but oversee,to some extent,the pathophysiology and etiology that lead to reduced cardiac function[13].These rigid therapy regimes focus on relieving cardiac symptoms and tackle less the individual progression and the cause leading to this disease.Over the past three decades,drug therapy has undergone rapid progression in lowering the mortality and morbidity rates in HF patients[14].The mortality rates of patients that present with progressed HF symptoms and receive optimal medical therapy remain high[14,15].Even the latest drug advancements present only a stepping stone toward the treatment of HF.The diversity of this disease,in its etiology and clinical presentation,suggests that the key to a better and cost-effective therapy is the individualized and personalized care.Personalized cardiac models have the potential in facilitating the achievement of this goal[16,17].

    The role of left ventricular(LV)systolic dysfunction has attracted broad attention from both clinical and experimental researchers[18-23].On the other hand,LV diastolic dysfunction has been relatively slow in gathering interest due to its complex role in the pathomechanism of HF[24,25].General consensus defines LV diastolic dysfunction as irregular cardiac functional relaxation,distensibility,and LV filling,which causes higher end diastolic left ventricular pressures[26].To completely understand the pathogenesis of diastolic dysfunction,a broad appreciation of cardiac physiology in the diastole and its diverse compensation mechanisms is needed.Dyspnea,as a symptom of HF,is often attributed to diastolic dysfunction after exclusion of other probable causes[27-30].Its diagnosis remains a challenge in clinical settings because of the difficulties present in linearly quantifying the progression of this disease and assessing its significance to the patient[31]. The current non-invasive gold standard for the assessment of diastolic dysfunction remains the echocardiographic evaluation,especially Doppler measurements of transmitral flow and tissue Doppler imaging(TDI)[26].

    The progress in the field of cardiac simulation has been on a rise in the last decade[32].One of the first challenges in cardiac modeling is capturing the anatomical geometry of the heart. Simulating cardiac physical parameters relies heavily on ventricular geometry.Many of the early-proposed cardiac anatomical estimations were either based on geometrical models or post-mortem heart dissections.The first simplifications of the complex LV geometry have been based on spherical models[33].Koushanpour and colleagues published one of the early simulations of LV dynamics based on spheroids in 1960s[34].In this study,they compared the LV time course of tension using Laplace’s surface tension law in cats and turtles.Their findings highlighted the importance of cardiac size and shape in determining LV function.A gradual shift toward anatomical models,based on ex vivo human and animal hearts,could be observed,capturing a more accurate representation of cardiac anatomy[35-37].

    Progress in other fields of science,especially in physics and mathematics,and advancements in computer technology opened up new possibilities toward improving existing computer simulations.The application of the finite element method in diverse sectors of engineering represented one of the major turning points in cardiac computational modeling and simulation.The conception and refinement of this method enabled the analysis of complex structural and mathematical problems[38,39].Janz et al.introduced one of the early cardiac mechanical models using the finite element method[40].The cardiac model,in which the anatomical geometry is estimated from the hearts of Sprague-Dawley albino male rats,seemed to predict the gross free wall deformation with the assumption of an elastically linear and heterogeneous tissue[40].Vinson et al. later described a human cardiac model using‘‘36 brick type finite elements”representing the left ventricle[40].As pointed out by the authors,one of the limiting factors at that time was‘the capacity of the computer and computing time available”[41].Today,current smart phones have more processing power than the computers used at that time.

    The radical advances in cardiac imaging modalities and the implementation of non-invasive imaging sequences into the diagnostic algorithms marked the shift toward image-based models and allowed faster transition toward patient-specific cardiac models[42].Most computational models to date selectively integrate elements(such as myocardial structure,structural pathologies,biomechanics,or electrophysiology)in various details and complexity,to suit the objective of the model[43].

    We have proposed previously a patient-specific cardiac model that captures the biomechanical,hemodynamic,and electrophysiological cardiac functions in patients with DCM[2].In this paper,we explore the feasibility of using such models to capture cardiac diastolic function in a similar patient population.

    Results and discussion

    Clinical characteristics of the patient population

    A summary of the clinical parameters investigated in this study is presented in Table 1.The patients in our cohort are 54 years old on average.The majority of the recruited patients showed signs of HF with assessment of the New York Heart Association(NYHA)functionalclass II and III.The mean left ventricular ejection fraction(LV-EF)was 37%,with 5%of the recruited patients having an ejection fraction above 55%. HF drug therapy was initiated for all patients.The descriptive analysis of the invasive pressure measurements is presented in Table 2.As can be seen,the mean left ventricular end diastolic pressure(LV-EDP;mean 22 mmHg),the pulmonary capillary wedge pressure(PCWP;mean 20 mmHg),and the systolic pulmonary artery pressure(SAP;mean 40 mmHg)were all elevated as expected from the largely-symptomatic patient cohort.The calculated time constant Tau(τ)across the study population ranged 28-89 ms as shown in Figure 1A.Taking together the elevated pressure measured from the right circulation,approximately 40%of the patients proved to have a lengthened τ(duration>48 ms[44]),a sign of abnormal left ventricular relaxation.

    Simulation of cardiac parameters

    The feasibility of using the presented cardiac model to capture cardiac systolic function in a clinical setting,in its strengths and limitations,has been previously reported[2].In the present study,we aimed to examine how systolic and diastolic biomechanical parameters derived from the model,after completion of the fitting and personalization process,correspond to invasive and non-invasive clinical parameters of diastolic function. An example of a generated cardiac model of a patient in this study,after concluding the workflow algorithm,is shown in Figure 2.The systolic parameters,including computed LV-EF(cLV-EF;mean 35%),simulated stroke volume(sSV;mean 86 ml),maximum strength of active contraction(s0;mean 120 kPa),and global stiffness factor(HO factor;mean 1.1),are computed from the cardiac models for each patient as shown in Table 3.The distribution of global stiffness(HO factor)and LV maximum active stress(s0)across the study population is shown in Figure 1B and C,respectively.

    Assessment of the diastolic function

    Table1 Clinical characteristics of the recruited patients

    From early animal experiments investigating the maximal rate of pressure fall(max negative dP/dt)[45]to currentechocardiographic TDI parameters in humans[46],the search for a parameter representing left ventricular relaxation from non-invasive and invasive diagnostic tools has been extensive[44].The diastolic function of the heart is largely dependent on the passive myocardial properties,such as myocardial stiffness,which represents the effective elasticity of cardiac extra and intracellular composition.Preload,myocardial contractility,and regional dyssynchrony modulate myocardial relaxation[25].The accurate characterization and assessment of diastolic dysfunction requires the simultaneous measurement of pressure and volume changes in the left ventricle during the diastole,which increases the complexity and difficulty of its precise clinical evaluation in living patients.Tau(τ),the time constant of isovolumic relaxation,is acknowledged as the time period needed for the ventricular pressure to fall to approximately 37%(or 1/e)of the pressure at the start of the isovolumic relaxation phase[47].We used τ in this study,as a measure for the cardiac diastolic function,because τ remains a widely-accepted,less load-dependent surrogate for left ventricular relaxation and pressure decline[47,48].

    Table2 Summary of invasive pressure measurements and calculations

    Figure1 Distribution of the examined variables

    To assess the ability of the personalized cardiac model in capturing left ventricular relaxation,we correlated the model parameter of left ventricular global stiffness withτ.As presented in Table 4 and Figure 3A,there is a significant correlation(P=4.1E-4)between the global stiffness factor andτ,whereas no significant correlation was found between left ventricular maximum active stress andτ.N-terminal pro-brain natriuretic peptide(NT-proBNP)is accepted as a prognostic biomarker in both systolic and diastolic HF[13,49,50].We extended the analysis by subdividing the study population into patients with normal and elevated NT-proBNP plasma concentration(cut-off value of 125 ng/l).Interestingly,the correlation between global stiffness factor and τ was not only preserved but enhanced in the subpopulation with elevated NT-proBNP(125 ng/l)as shown in Table 4 and Figure 3B. The correlation between these two parameters was also preserved(R=0.58,P<0.05),with a higher cut-off level of 325 ng/l for NT-proBNP.At the same time,the correlation between LV maximum active stress,which represents the active and systolic component of myocardial contraction in the model,and τ remained non-significant.This observation underlines the potential benefit of combining molecular biomarkers with computational models.

    Doppler echocardiography remains the current reference method for non-invasive assessment of diastolic LV function. Kasner et al.performed a clinical study evaluating the correlation between conventional or TDI echocardiographic diastolic indexes and pressure volume measurements from heart catheterization.E′(early diastolic peak of the annular TDI measurements),E/E′(ratio of transmitral flow and annular velocity),E′/A′(ratio of early and late annular velocity)showed very modest correlations with τ of-0.33,0.34,and -0.24,respectively[51].Although the presented correlation between global stiffness factor andτappears modest,it remains at least on the same level as those between τ and the echocardiographic parameters mentioned above.

    Figure2 Map of the computed myocardium contraction strength in a patient-specific cardiac model

    Table3 Summary of the simulated parameters from the personalized model

    Table4 Statistical analysis of the correlations between the simulated systolic and diastolic parameters with Tau in patients

    Conclusions

    The clinical applicability of using in silico 3D computational cardiac models is promising,which strengthens the predilection toward its utilization in search of novel perspectives in risk stratification,therapy,and prognosis in other fields of cardiology[17].The incentive toward the search for a better strategy to diagnose and evaluate diastolic dysfunction stems from the heterogeneity of results in clinical studies investigating HF with preserved EF(HF-PEF),with respect to mortality,quality of life,and cardiovascular risk[52].The commonly-accepted consensus,which has prevailed over the years,remains that HF-PEF is associated with increased mortality and hospitalization[52-54].As a diagnosis of exclusion for patients presenting with dyspnea and other HF symptoms,HF-PEF presents a challenge to physicians especially in an ambulatory setting.The differences in patient characteristics and demographics between patients with HF-PEF and those carrying HF with reduced EF(HF-REF)have raised further questions about the disease pathomechanism,severity,and clinical significance.In this study,we show that this personalized cardiac model can capture patient-specific diastolic parameters,which could hold the key toward solving difficult challenges in patients with HF-PEF.

    More and more accurate and detailed models of cardiac function in both humans and animals have been abundantly reported,including biomechanical models that specifically investigate cardiac diastolic function[55-59].However,fewmodels integrate data from conventional standard clinical procedures to create a patient-specific electro-mechanical heart model.This study presents the feasibility of applying and integrating various experimentally-validated biophysical models to create a patient-specific multi-modal simulation of cardiac function in the diseased heart.

    Our goal is the constant progression of the implementation of virtual cardiac models in a clinical setting to provide the patients with the optimal individualized medical care.Further advancement of computational modeling at different levels is anticipated in the near future.One of the first steps forward is validating the predictive prognostic power of such virtual models in a clinical setting.Secondly,capturing patientspecific cardiac fiber architecture remains one of the challenges and a limiting factor of advanced in vivo virtual models nowadays.The importance of fiber orientation in simulating cardiac electrophysiology and biomechanics has been abundantly described in previous studies[60]and diffusion tension MRI(DT-MRI)serves as a common approach to capture cardiac fiber orientation[61].Due to technical difficulties present,like scan duration,myocardial respiratory displacement,and short transversal relaxation time,high resolution DT-MRI imaging was mainly utilized on explanted animal and human hearts. Algorithms for rule-based assignment of fiber orientation currently provide alternative to in vivo virtual models[62].However,recent advances in cardiac DT-MRI render this approach feasible in the near future[63],opening up the possibility toward generating fully patient-specific myocardial fiber orientation and architecture.On another level,integrating not only parameters of cardiac electrophysiology but also histopathological myocardial structure and tissue specific passive physical parameters,like tensile strength,compaction and density of fibers,and fibrosis grade,from myocardial biopsies could be promising toward the complete in silico simulation of the individual heart.

    Figure3 Correlation between the global stiffness factor andτ

    Materials and methods

    Patient population

    Patients with HF symptoms were enrolled in this study after having given their written informed consent.Only patients receiving heart catheterization due to clinical necessity were included.To reflect broad representation of potential HF phenotypes,cases with slightly to severely reduced systolic function were included.Clinical evaluation,diagnostics,and follow-up were performed in adherence to hospital guidelines.

    The enrolled patients underwent comprehensive clinical assessment constituting a detailed clinical history,physical examination,12 lead electrocardiogram,echocardiography,6 Minute Walk Test,spiroergometry,and comprehensive laboratory tests including NT-proBNP.For the clinical diagnostic process,patients underwent also procedures to ensure exclusion of secondary causes of DCM(left heart catheterization,cardiac MRI,extensive blood panel,and clinical history). Acute myocarditis,significant coronary artery disease(CAD),history of chemotherapy with cardio-toxic agents or chest radiation,valvular heart diseases,and probable secondary causes for DCM were exclusion criteria.A total number of n=58 patients were investigated in this study.

    Hemodynamic data acquisition

    Hemodynamic assessment was performed using left and right heart catheterization.All pressure curves were checked for calibration errors.The customary femoral access was used in all patients receiving simultaneous left and right circulation evaluation.Pressure measurements of the left ventricle and aorta were performed over repeated cardiac cycles prior to application of the contrast agent.Hemodynamic pressure analysiswas performed using the computer-assisted software Metek(Roetgen,Germany).The intraventricular rate of change in pressure((-)(+)dP/dt)was calculated during the procedure. Maximum values for(-)(+)dP/dt were identified and output for each cardiac cycle.The calculation of τ(time constant of isovolumic relaxation)was based on the approach described by Weiss and colleagues[64],which assumes an exponential decline in left ventricular pressure during the isovolumic time period.P(t)=P(t=0)x e-t/τandτ=-P/(dP/dt).

    MR data acquisition

    To further evaluate the clinical phenotype,all patients underwent cardiac MRI analyses(1.5T cMRI,32Ch RF platform,Philips Achieva).Standard multi-slice 2D steady-state free precession sequences(SSFP),late gadolinium enhancement(LGE)multi-slice inversion recovery sequence,and feature tracking imaging were included in the procedure protocols. Comprehensive 2D echocardiographic assessment of systolic and diastolic function according to current guidelines and hospital standards was also performed in all patients.

    Personalized cardiac model in patients with dilated cardiomyopathy

    The computational work flow and process of simulating the personalized multi-scale multi-physics model based on the acquired clinical data has been thoroughly described previously[2].We briefly recallhere the model assumptions related more specifically to the description of cardiac biomechanics. We adopt the Hill-Maxwell framework to represent the interplay between active contraction and passive response of the myocardium[65](Figure 4).

    The myocyte contraction is modeled following the approach presented by Sermesant and colleagues,for which the contraction is related to the action potential through a bi-exponential law[66].We parameterize this law by the maximum strength of active contraction(s0),the rate of contraction(the speed at which the tissue contracts during depolarization),and the rate of relaxation(the speed at which the tissue relaxes during repolarization).The passive response of the myocardium to mechanical stress is described by the non-linear,hyper-elastic and orthotropic tissue model proposed by Holzapfel and colleagues[67].We consider a global scaling factor(HO factor)for the reference model parameters provided by Holzapfel and colleagues,offering a lumped representation of the tissue stiffness[67].The electromechanical model provides computed cardiac dynamics,from which we extract simulated ejection fraction as the clinical parameter of interest.More details on the personalized cardiac model can be found in the references cited in this section.

    Statistical analysis

    Figure4 Schematic representation of the classical Hill’s muscle model

    The statistical analysis was performed using the conventional‘R”software(Version 3.2.2).The parameters τ,global stiffness factor,and LV active force are continuous and show an approximate normal distribution.Therefore,a linear correlation analysis using Pearson’s correlation coefficient through the‘cor”and the‘cor.test”function was applied.The parametric P value,with a significance level of 0.05,was computed for all performed correlations.To account for a possible nonlinear relationship between τ and global stiffness factor,a logarithmic analysis of both parameters is also presented(Table S1).A possible monotonic correlation was analyzed using the Spearman rank correlation method.The results obtained were similar but non-superior to those based on the linear correlation analysis and were not presented in the current study to avoid repetition.Histograms were calculated using the‘hist”function with standard parameters.In order to visualize the output,scatter plots were generated for the significant correlations.Smoothing of scatter plots was carried out by the‘smoothScatter”function.

    Authors’contributions

    BM,AA,EK,F(xiàn)S,and TM designed the study;AA,F(xiàn)S,HK,EK,BM,DM,EZ,and SB carried out patient data acquisition;TM,TP,VM,DN,BG,AEP and MW performed the computational analysis,and AL,AA,BM,F(xiàn)S,and EK carried out statistical analysis.AA,EK,BM,TM,TP,DM,and HK were involved in manuscript drafting and revision.All authors read and approved the final manuscript.

    Competing interests

    This work was in part conducted within an industry supported project(Siemens Healthcare,Siemens Research Project).TP,VM,DN,BG,AEP,MW,and TM are employees of Siemens Healthcare.There are no further conflicts of interest.The features mentioned herein are based on research,and are not commercially available.Its future availability cannot be guaranteed due to regulatory reasons.

    Acknowledgments

    This work was partially supported by grants from the German Ministry of Education and Research(BMBF),DZHK(‘Deutsches Zentrum fu¨r Herz-Kreislauf-Forschung”-German Centre for Cardiovascular Research),the European Union(FP7 BestAgeing)and Siemens Healthcare(Siemens Healthcare/University Heidelberg Joint Research Project: Care4DCM).

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.006.

    [1]Ghista DN,Sandler H.An analytic elastic-viscoelastic model for the shape and the forces in the left ventricle.J Biomech 1969;2:35-47.

    [2]Kayvanpour E,Mansi T,Sedaghat-Hamedani F,Amr A,Neumann D,Georgescu B,et al.Towards personalized cardiology:Multi-scale modeling of the failing heart.PLoS One 2015;10: e0134869.

    [3]Tobon-Gomez C,Duchateau N,Sebastian R,Marchesseau S,Camara O,Donal E,et al.Understanding the mechanisms amenable to CRT response:from pre-operative multimodal image data to patient-specific computational models.Med Biol Eng Comput 2013;51:1235-50.

    [4]Niederer SA,Smith NP.An improved numerical method for strong coupling of excitation and contraction models in the heart. Prog Biophys Mol Biol 2008;96:90-111.

    [5]Sermesant M,Chabiniok R,Chinchapatnam P,MansiT,Billet F,Moireau P,et al.Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT:a preliminary clinical validation.Med Image Anal 2012;16:201-15.

    [6]Relan J,Chinchapatnam P,Sermesant M,Rhode K,Ginks M,Delingette H,et al.Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia.Interface Focus 2011;1:396-407.

    [7]Murray CJ,Lopez AD.Mortality by cause for eight regions ofthe world:global burden of disease study.Lancet 1997;349:1269-76.

    [8]Lopez A,Mathers C,Ezzati M,Jamison D,Murray C.Global and regional burden of disease and risk factors 2001:systematic analysis of population health data.Lancet 2006;367:1747-57.

    [9]Santulli G.Epidemiology of cardiovascular disease in the 21st century:updated numbers and updated facts.JCvD 2013;1:1-2.

    [10]Murray C,Lopez A.Alternative projections of mortality and disability by cause 1990-2020:global burden of disease study. Lancet 1997;349:1498-504.

    [11]Lloyd-Jones D,Adams RJ,Brown TM,Carnethon M,Dai S,De Simone G,et al.Heart disease and stroke statistics—2010 update: a report from the American Heart Association.Circulation 2010;121:e46-e215.

    [12]Kayvanpour E,Katus HA,Meder B.Determined to fail—the role of genetic mechanisms in heart failure.Curr Heart Fail Rep 2015;12:333-8.

    [13]McMurray JJ,Adamopoulos S,Anker SD,Auricchio A,Bohm M,Dickstein K,et al.ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012.Eur J Heart Fail 2013;15:361-2.

    [14]Sacks CA,Jarcho JA,Curfman GD.Paradigm shifts in heartfailure therapy—a timeline.N Engl J Med 2014;371:989-91.

    [15]Ketchum ES,Levy WC.Establishing prognosis in heart failure:a multimarker approach.Prog Cardiovasc Dis 2011;54:86-96.

    [16]Blaus A,Madabushi R,Pacanowski M,Rose M,Schuck RN,Stockbridge N,et al.Personalized cardiovascular medicine today: a Food and Drug Administration/Center for Drug Evaluation and Research perspective.Circulation 2015;132:1425-32.

    [17]Trayanova NA,O’Hara T,Bayer JD,Boyle PM,McDowell KS,Constantino J,et al.Computational cardiology:how computer simulations could be used to develop new therapies and advance existing ones.Europace 2012;14:v82-9.

    [18]Gomes JA,Mehta D,Ip J,Winters SL,Camunas J,Ergin A,et al. Predictors of long-term survival in patients with malignant ventricular arrhythmias.Am J Cardiol 1997;79:1054-60.

    [19]Likoff MJ,Chandler SL,Kay HR.Clinical determinants of mortality in chronic congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy.Am J Cardiol 1987;59:634-8.

    [20]Cohn JN,Johnson GR,Shabetai R,Loeb H,Tristani F,Rector T,et al.Ejection fraction,peak exercise oxygen consumption,cardiothoracic ratio,ventricular arrhythmias,and plasma norepinephrine as determinants of prognosis in heart failure.The VHeFT VA Cooperative Studies Group.Circulation 1993;87:I5-16.

    [21]Juillie`re Y,Barbier G,F(xiàn)eldmann L,Grentzinger A,Danchin N,Cherrier F.Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy.Eur Heart J 1997;18:276.

    [22]Hallstrom A,Pratt C,Greene H,Huther M,Gottlieb S,DeMaria A,et al.Relations between heart failure,ejection fraction,arrhythmia suppression and mortality:analysis of the Cardiac Arrhythmia Suppression Trial.J Am Coll Cardiol 1995;25:1250.

    [23]Bart BA,Shaw LK,McCants Jr CB,F(xiàn)ortin DF,Lee KL,Califf RM,et al.Clinical determinants of mortality in patients with angiographically diagnosed ischemic or nonischemic cardiomyopathy.J Am Coll Cardiol 1997;30:1002-8.

    [24]Gaasch WH,Zile MR.Left ventricular diastolic dysfunction and diastolic heart failure.Annu Rev Med 2004;55:373-94.

    [25]Zile MR,Brutsaert DL.New concepts in diastolic dysfunction and diastolic heart failure:Part II:causal mechanisms and treatment.Circulation 2002;105:1503-8.

    [26]Yancy CW,Jessup M,Bozkurt B,Butler J,Casey Jr DE,Drazner MH,et al.2013 ACCF/AHA guideline for the management of heart failure:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.J Am Coll Cardiol 2013;62:e147-239.

    [27]Zile MR,Nappi J.Diastolic heart failure.Curr Treat Options Cardiovasc Med 2000;2:439-50.

    [28]Packer M.Abnormalities of diastolic function as a potential cause of exercise intolerance in chronic heart failure.Circulation 1990;81:III78-86.

    [29]Vasan RS,Levy D.Defining diastolic heart failure:a call for standardized diagnostic criteria.Circulation 2000;101:2118-21.

    [30]Yturralde RF,Gaasch WH.Diagnostic criteria for diastolic heart failure.Prog Cardiovasc Dis 2005;47:314-9.

    [31]Zile MR,Brutsaert DL.New concepts in diastolic dysfunction and diastolic heart failure:Part I:diagnosis,prognosis,and measurements of diastolic function.Circulation 2002;105:1387-93.

    [32]Noble D.Modeling the heart—from genes to cells to the whole organ.Science 2002;295:1678-82.

    [33]Burch GE,Ray CT,Cronvich JA.The George Fahr Lecture: certain mechanical peculiarities of the human cardiac pump in normal and diseased states.Circulation 1952;5:504-13.

    [34]Koushanpour E,Collings WD.Validation and dynamic applications of an ellipsoid model of the left ventricle.J Appl Physiol 1966;21:1655-61.

    [35]Vetter FJ,McCulloch AD.Three-dimensional analysis of regional cardiac function:a model of rabbit ventricular anatomy.Prog Biophys Mol Biol 1998;69:157-83.

    [36]Horan LG,Hand RC,Johnson JC,Sridharan MR,Rankin TB,F(xiàn)lowers NC.A theoretical examination of ventricular repolarization and the secondary T wave.Circ Res 1978;42:750-7.

    [37]Aoki M,Okamoto Y,Musha T,Harumi K.Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials:normal heart and bundle branch block.IEEE Trans Biomed Eng 1987;34:454-62.

    [38]Zienkiewicz O,Kelly D,Bettess P.The coupling of the finite element method and boundary solution procedures.Int J Numer Meth Eng 1977;11:355-75.

    [39]Bathe KJ.Finite element method.Wiley encyclopedia of computer science and engineering.Cambridge Massachusetts:Massachusetts Institute of Technology;2007.p.1-12.

    [40]Janz RF,Grimm AF.Finite-element model for the mechanical behavior of the left ventricle.Prediction of deformation in the potassium-arrested rat heart.Circ Res 1972;30:244-52.

    [41]Vinson CA,Gibson DG,Yettram AL.Analysis of left ventricular behaviour in diastole by means of finite element method.Br Heart J 1979;41:60-7.

    [42]Frangi AF,Niessen WJ,Viergever MA.Three-dimensional modeling for functional analysis of cardiac images:a review. IEEE Trans Med Imaging 2001;20:2-25.

    [43]Lopez-Perez A,Sebastian R,F(xiàn)errero JM.Three-dimensional cardiac computational modelling:methods,features and applications.Biomed Eng Online 2015;14:35.

    [44]Paulus WJ,Tschope C,Sanderson JE,Rusconi C,F(xiàn)lachskampf FA,Rademakers FE,et al.How to diagnose diastolic heart failure:a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology.Eur Heart J 2007;28:2539-50.

    [45]Cohn PF,Liedtke AJ,Serur J,Sonnenblick EH,Urschel CW. Maximal rate of pressure fall(peak negative dP-dt)during ventricular relaxation.Cardiovasc Res 1972;6:263-7.

    [46]Oh JK,Park SJ,Nagueh SF.Established and novel clinical applications of diastolic function assessment by echocardiography.Circ Cardiovasc Imaging 2011;4:444-55.

    [47]Leite-Moreira AF.Current perspectives in diastolic dysfunction and diastolic heart failure.Heart 2006;92:712-8.

    [48]Nagueh SF,Appleton CP,Gillebert TC,Marino PN,Oh JK,Smiseth OA,et al.Recommendations for the evaluation of left ventricular diastolic function by echocardiography.J Am Soc Echocardiogr 2009;22:107-33.

    [49]Tschope C,Kasner M,Westermann D,Gaub R,Poller WC,Schultheiss HP.The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction:correlation with echocardiographic and invasive measurements.Eur Heart J 2005;26:2277-84.

    [50]Hartmann F,Packer M,Coats AJ,F(xiàn)owler MB,Krum H,Mohacsi P,et al.NT-proBNP in severe chronic heart failure: rationale,design and preliminary results of the COPERNICUS NT-proBNP substudy.Eur J Heart Fail 2004;6:343-50.

    [51]Kasner M,Westermann D,Steendijk P,Gaub R,Wilkenshoff U,Weitmann K,et al.Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction:a comparative Doppler-conductance catheterization study.Circulation 2007;116: 637-47.

    [52]Berry C,Doughty R,Granger C,Kober L,Massie B,McAlister F,et al.The survivalof patients with heart failure with preserved or reduced left ventricular ejection fraction:an individual patient data meta-analysis.Eur Heart J 2012;33:1750-7.

    [53]Yusuf S,Pfeffer MA,Swedberg K,Granger CB,Held P,McMurray JJ,et al.Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction:the CHARM-Preserved Trial.Lancet 2003;362:777-81.

    [54]Massie BM,Carson PE,McMurray JJ,Komajda M,McKelvie R,Zile MR,et al.Irbesartan in patients with heart failure and preserved ejection fraction.N Engl J Med 2008;359:2456-67.

    [55]Bishop MJ,Plank G,Burton RA,Schneider JE,Gavaghan DJ,Grau V,et al.Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function.Am J Physiol Heart Circ Physiol 2010;298:H699-718.

    [56]Dokos S,Smaill BH,Young AA,LeGrice IJ.Shear properties of passive ventricular myocardium.Am J Physiol Heart Circ Physiol 2002;283:H2650-9.

    [57]Vetter FJ,McCulloch AD.Three-dimensional stress and strain in passive rabbit left ventricle:a model study.Ann Biomed Eng 2000;28:781-92.

    [58]Wang HM,Gao H,Luo XY,Berry C,Griffith BE,Ogden RW,et al.Structure-based finite strain modelling of the human left ventricle in diastole.Int J Numer Method Biomed Eng 2013;29:83-103.

    [59]Niederer S,Rhode K,Razavi R,Smith N.The importance of model parameters and boundary conditions in whole organ models of cardiac contraction.Lect Notes Comput Sco 2009:348-56.

    [60]Clayton RH,Bernus O,Cherry EM,Dierckx H,F(xiàn)enton FH,Mirabella L,et al.Models of cardiac tissue electrophysiology: progress,challenges and open questions.Prog Biophys Mol Biol 2011;104:22-48.

    [61]Helm P,Beg MF,Miller MI,Winslow RL.Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging.Ann N Y Acad Sci 2005;1047:296-307.

    [62]Bayer JD,Blake RC,Plank G,Trayanova NA.A novel rulebased algorithm for assigning myocardial fiber orientation to computational heart models.Ann Biomed Eng 2012;40:2243-54.

    [63]Mekkaoui C,Reese TG,Jackowski MP,Bhat H,Sosnovik DE. Diffusion MRI in the heart.NMR Biomed 2015.http://dx.doi. org/10.1002/nbm.3426.

    [64]Weiss JL,F(xiàn)rederiksen JW,Weisfeldt ML.Hemodynamic determinants of the time-course of fall in canine left ventricular pressure.J Clin Invest 1976;58:751-60.

    [65]Fung YC.Biomechanics:mechanical properties of living tissues.New York:Springer-Verlag;1993.

    [66]Sermesant M,Delingette H,Ayache N.An electromechanical model of the heart for image analysis and simulation.IEEE Trans Med Imaging 2006;25:612-25.

    [67]Holzapfel GA,Ogden RW.Constitutive modelling of passive myocardium:a structurally based framework for material characterization.Philos Trans A Math Phys Eng Sci 2009;367:3445-75.

    *Corresponding author.

    E-mail:Benjamin.Meder@meduni-heidelbergde(Meder B).

    aORCID:0000-0002-2615-4089.

    bORCID:0000-0001-7285-2825.

    cORCID:0000-0002-3266-0527.

    dORCID:0000-0002-2130-0112.

    eORCID:0000-0002-1743-4505.

    fORCID:0000-0003-0916-9227.

    gORCID:0000-0003-2494-5124.

    hORCID:0000-0001-9601-7103.

    iORCID:0000-0003-3893-3562.

    jORCID:0000-0003-4494-9608.

    kORCID:0000-0003-0741-2633.

    #Equal contribution.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.006

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    久久久国产一区二区| 国产亚洲欧美精品永久| 免费高清在线观看日韩| 欧美在线黄色| 老司机靠b影院| 亚洲欧美精品综合一区二区三区| 天天躁日日躁夜夜躁夜夜| 久久热在线av| svipshipincom国产片| 极品人妻少妇av视频| 制服诱惑二区| 欧美日韩成人在线一区二区| 国产精品久久久久久人妻精品电影| 99在线人妻在线中文字幕 | 国产精品二区激情视频| 日韩 欧美 亚洲 中文字幕| 亚洲全国av大片| 成年人午夜在线观看视频| 啦啦啦在线免费观看视频4| 色综合欧美亚洲国产小说| 欧美丝袜亚洲另类 | av天堂久久9| 亚洲五月天丁香| 国产av精品麻豆| 精品乱码久久久久久99久播| 国产欧美日韩一区二区三| 亚洲国产精品sss在线观看 | 国产亚洲欧美精品永久| 老司机午夜十八禁免费视频| 操出白浆在线播放| 中文欧美无线码| 午夜福利在线观看吧| 亚洲精品中文字幕一二三四区| 精品久久久久久久毛片微露脸| 亚洲熟妇中文字幕五十中出 | 亚洲国产看品久久| 国产精品久久久久久精品古装| 成年人午夜在线观看视频| 又黄又粗又硬又大视频| 丝袜美足系列| 精品久久久久久久久久免费视频 | 久久精品国产亚洲av香蕉五月 | 十分钟在线观看高清视频www| 三级毛片av免费| 欧美精品一区二区免费开放| 最近最新中文字幕大全免费视频| 国产有黄有色有爽视频| 极品教师在线免费播放| 国内毛片毛片毛片毛片毛片| 久久久久久久午夜电影 | 国产精品 国内视频| 又大又爽又粗| 亚洲一码二码三码区别大吗| 久久中文字幕一级| 亚洲成av片中文字幕在线观看| 久久天堂一区二区三区四区| av欧美777| 在线视频色国产色| 水蜜桃什么品种好| 久久久久国产精品人妻aⅴ院 | 亚洲,欧美精品.| 欧美激情 高清一区二区三区| 久久精品国产亚洲av香蕉五月 | 欧美日韩成人在线一区二区| 人成视频在线观看免费观看| 亚洲av熟女| 91av网站免费观看| 黄色视频,在线免费观看| 亚洲av日韩精品久久久久久密| 久久久精品免费免费高清| 国产一区在线观看成人免费| 乱人伦中国视频| 每晚都被弄得嗷嗷叫到高潮| 999久久久精品免费观看国产| 国产欧美日韩一区二区三区在线| 又紧又爽又黄一区二区| 国产精品98久久久久久宅男小说| 9热在线视频观看99| 在线国产一区二区在线| 日日夜夜操网爽| 淫妇啪啪啪对白视频| 精品第一国产精品| 国产精品免费大片| 免费不卡黄色视频| 欧美成人免费av一区二区三区 | 91老司机精品| 亚洲在线自拍视频| 久久热在线av| 精品一区二区三区av网在线观看| 高清在线国产一区| 中出人妻视频一区二区| 人妻久久中文字幕网| 国产亚洲欧美精品永久| 成人18禁在线播放| 人人澡人人妻人| 久久久久精品国产欧美久久久| 成人18禁在线播放| 成人18禁高潮啪啪吃奶动态图| 最近最新中文字幕大全电影3 | 国产黄色免费在线视频| 18禁裸乳无遮挡免费网站照片 | 亚洲国产看品久久| 一a级毛片在线观看| 国产成人系列免费观看| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av香蕉五月 | 午夜成年电影在线免费观看| 男女高潮啪啪啪动态图| 精品第一国产精品| 久久性视频一级片| 99riav亚洲国产免费| 亚洲国产毛片av蜜桃av| 三上悠亚av全集在线观看| 成年人午夜在线观看视频| 久久影院123| 亚洲国产中文字幕在线视频| 亚洲一区高清亚洲精品| 欧美另类亚洲清纯唯美| 亚洲综合色网址| 欧美日韩亚洲国产一区二区在线观看 | 建设人人有责人人尽责人人享有的| 欧美日韩瑟瑟在线播放| 欧美精品啪啪一区二区三区| 国产在视频线精品| 日韩免费高清中文字幕av| 中文字幕高清在线视频| 天天躁日日躁夜夜躁夜夜| 午夜福利影视在线免费观看| a级毛片黄视频| 757午夜福利合集在线观看| av不卡在线播放| 曰老女人黄片| 少妇 在线观看| 亚洲熟女毛片儿| 丝袜在线中文字幕| 在线播放国产精品三级| 人妻一区二区av| 老司机靠b影院| 欧美精品啪啪一区二区三区| 99久久99久久久精品蜜桃| netflix在线观看网站| netflix在线观看网站| 亚洲午夜精品一区,二区,三区| 亚洲熟女毛片儿| 伊人久久大香线蕉亚洲五| 国产高清视频在线播放一区| 18禁观看日本| 久久久国产欧美日韩av| 丁香欧美五月| 他把我摸到了高潮在线观看| 亚洲成人国产一区在线观看| 黄色视频不卡| 亚洲片人在线观看| 亚洲成av片中文字幕在线观看| 成年人免费黄色播放视频| 国产亚洲精品久久久久5区| 最近最新免费中文字幕在线| 亚洲五月婷婷丁香| 99精品久久久久人妻精品| 久久精品国产99精品国产亚洲性色 | 国产伦人伦偷精品视频| 性色av乱码一区二区三区2| 高清黄色对白视频在线免费看| 免费看十八禁软件| 午夜精品在线福利| 国产成人免费观看mmmm| 黄色女人牲交| 婷婷成人精品国产| 亚洲国产毛片av蜜桃av| 一进一出好大好爽视频| 亚洲精品美女久久av网站| 亚洲熟妇熟女久久| 天天添夜夜摸| 男女免费视频国产| 久久香蕉激情| 可以免费在线观看a视频的电影网站| 成人三级做爰电影| 免费av中文字幕在线| 人妻丰满熟妇av一区二区三区 | 又紧又爽又黄一区二区| 纯流量卡能插随身wifi吗| 无遮挡黄片免费观看| 精品国产美女av久久久久小说| 大香蕉久久网| 高清黄色对白视频在线免费看| tocl精华| 精品午夜福利视频在线观看一区| 国产成人精品久久二区二区免费| 天天躁日日躁夜夜躁夜夜| a级毛片黄视频| 黄色 视频免费看| 国产日韩欧美亚洲二区| 十八禁网站免费在线| 一夜夜www| 欧美色视频一区免费| 国产精品免费大片| 午夜免费鲁丝| 亚洲成人手机| 少妇 在线观看| 99久久人妻综合| 久久狼人影院| 亚洲精品美女久久久久99蜜臀| 视频区欧美日本亚洲| 久久久久久久精品吃奶| 亚洲人成电影免费在线| 免费久久久久久久精品成人欧美视频| 国产成人av激情在线播放| 香蕉久久夜色| 建设人人有责人人尽责人人享有的| 国产成人系列免费观看| 亚洲成av片中文字幕在线观看| 一夜夜www| 久久久国产成人免费| 欧美一级毛片孕妇| 国产99久久九九免费精品| 亚洲午夜精品一区,二区,三区| 在线观看免费视频日本深夜| 91成人精品电影| 国产不卡av网站在线观看| 成在线人永久免费视频| 日韩人妻精品一区2区三区| 操美女的视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 九色亚洲精品在线播放| 精品人妻1区二区| 亚洲成人国产一区在线观看| 免费观看人在逋| 午夜精品久久久久久毛片777| 中出人妻视频一区二区| 真人做人爱边吃奶动态| 成年人午夜在线观看视频| 日韩欧美国产一区二区入口| 另类亚洲欧美激情| 久久国产精品大桥未久av| 国产精品久久久久久人妻精品电影| 波多野结衣一区麻豆| 亚洲一区高清亚洲精品| 美女福利国产在线| 精品国产超薄肉色丝袜足j| 啦啦啦免费观看视频1| 久久国产精品大桥未久av| 在线观看免费日韩欧美大片| 精品久久蜜臀av无| 亚洲av成人一区二区三| 999精品在线视频| 精品国产美女av久久久久小说| 国产亚洲精品久久久久5区| 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 久久草成人影院| 人人妻人人添人人爽欧美一区卜| 亚洲色图av天堂| 黑人巨大精品欧美一区二区蜜桃| 日本精品一区二区三区蜜桃| 亚洲精华国产精华精| 中文字幕色久视频| 亚洲成人手机| 国产精品久久久久久精品古装| 在线观看一区二区三区激情| 十八禁网站免费在线| 超色免费av| www.精华液| 欧美精品亚洲一区二区| tube8黄色片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲aⅴ乱码一区二区在线播放 | 欧美+亚洲+日韩+国产| a级片在线免费高清观看视频| 男女下面插进去视频免费观看| 日韩有码中文字幕| 黑人欧美特级aaaaaa片| 亚洲欧美精品综合一区二区三区| 一区福利在线观看| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 精品第一国产精品| 欧美日韩精品网址| 精品国产一区二区三区四区第35| 国产免费现黄频在线看| 在线观看日韩欧美| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 日韩欧美一区二区三区在线观看 | 国产亚洲欧美98| 99久久99久久久精品蜜桃| 午夜视频精品福利| 亚洲av美国av| 国产成人影院久久av| √禁漫天堂资源中文www| 欧美日韩av久久| 巨乳人妻的诱惑在线观看| 国内毛片毛片毛片毛片毛片| 日韩一卡2卡3卡4卡2021年| 欧美大码av| 在线十欧美十亚洲十日本专区| 日韩成人在线观看一区二区三区| 一二三四社区在线视频社区8| 丝袜人妻中文字幕| 一级片'在线观看视频| 香蕉久久夜色| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区综合在线观看| tocl精华| av国产精品久久久久影院| 热re99久久精品国产66热6| a级片在线免费高清观看视频| 这个男人来自地球电影免费观看| 国产精品欧美亚洲77777| 欧美日韩瑟瑟在线播放| av在线播放免费不卡| 男女免费视频国产| 国产成人啪精品午夜网站| 老熟妇乱子伦视频在线观看| 丁香欧美五月| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 成人永久免费在线观看视频| 新久久久久国产一级毛片| 视频区欧美日本亚洲| 精品一区二区三区四区五区乱码| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| 久99久视频精品免费| 在线国产一区二区在线| 亚洲少妇的诱惑av| 国产av精品麻豆| 国产麻豆69| 中文字幕av电影在线播放| 亚洲中文字幕日韩| 午夜福利一区二区在线看| 人成视频在线观看免费观看| 少妇的丰满在线观看| 老司机深夜福利视频在线观看| 国产在线观看jvid| 亚洲精品中文字幕一二三四区| 色综合欧美亚洲国产小说| 热99国产精品久久久久久7| 精品久久久久久,| 丝袜美腿诱惑在线| 中出人妻视频一区二区| 手机成人av网站| 国产不卡一卡二| 一级片免费观看大全| 大片电影免费在线观看免费| 亚洲一区中文字幕在线| 午夜影院日韩av| 亚洲av第一区精品v没综合| 亚洲avbb在线观看| 9热在线视频观看99| 久久天堂一区二区三区四区| 高清毛片免费观看视频网站 | 男人操女人黄网站| 午夜福利在线免费观看网站| 成人三级做爰电影| 又黄又爽又免费观看的视频| 美女午夜性视频免费| 99国产精品一区二区蜜桃av | 在线观看www视频免费| 99国产精品免费福利视频| 国产精品偷伦视频观看了| 成人18禁高潮啪啪吃奶动态图| 精品少妇一区二区三区视频日本电影| 午夜福利一区二区在线看| 午夜福利在线观看吧| 丰满迷人的少妇在线观看| 亚洲专区国产一区二区| 亚洲第一青青草原| 一级作爱视频免费观看| 一区二区三区国产精品乱码| 色在线成人网| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 高清视频免费观看一区二区| 后天国语完整版免费观看| 中文字幕av电影在线播放| 一级a爱片免费观看的视频| 日韩人妻精品一区2区三区| 精品久久久久久久久久免费视频 | 午夜成年电影在线免费观看| 在线观看www视频免费| 国产一区二区激情短视频| 可以免费在线观看a视频的电影网站| 欧美日韩av久久| a级片在线免费高清观看视频| 久9热在线精品视频| 99久久99久久久精品蜜桃| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 我的亚洲天堂| 亚洲伊人色综图| 久久久久久久精品吃奶| 制服人妻中文乱码| 999久久久国产精品视频| 精品国产乱码久久久久久男人| av一本久久久久| 老熟妇仑乱视频hdxx| 亚洲精品中文字幕一二三四区| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看影片大全网站| 免费高清在线观看日韩| 大片电影免费在线观看免费| 激情视频va一区二区三区| 久久国产精品大桥未久av| 国产精品久久电影中文字幕 | 成年动漫av网址| 国产欧美日韩一区二区精品| 高清欧美精品videossex| 国产精品国产av在线观看| 精品熟女少妇八av免费久了| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 三级毛片av免费| 757午夜福利合集在线观看| 亚洲熟妇中文字幕五十中出 | 在线观看免费午夜福利视频| 免费日韩欧美在线观看| 亚洲久久久国产精品| 国产成人欧美在线观看 | 国产男女超爽视频在线观看| 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区久久久樱花| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区中文字幕在线| 久久久久久久精品吃奶| 黄色怎么调成土黄色| 日本欧美视频一区| 亚洲av欧美aⅴ国产| 免费观看精品视频网站| 亚洲国产精品sss在线观看 | 国产精品二区激情视频| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| av有码第一页| 大片电影免费在线观看免费| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| 看片在线看免费视频| 一a级毛片在线观看| 国产欧美日韩一区二区精品| www日本在线高清视频| 国产欧美日韩精品亚洲av| 久久久久国产一级毛片高清牌| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 久久久国产成人免费| 免费日韩欧美在线观看| 99热只有精品国产| 777米奇影视久久| 亚洲精品中文字幕在线视频| 久久久久久久精品吃奶| 窝窝影院91人妻| 午夜福利一区二区在线看| 国产成人一区二区三区免费视频网站| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| 欧洲精品卡2卡3卡4卡5卡区| 自线自在国产av| 电影成人av| 色播在线永久视频| 久久精品国产清高在天天线| 成人国语在线视频| 午夜两性在线视频| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 亚洲va日本ⅴa欧美va伊人久久| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 飞空精品影院首页| 国产精品久久久久久人妻精品电影| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三| 女人被狂操c到高潮| 老司机靠b影院| 亚洲在线自拍视频| 亚洲国产精品sss在线观看 | 国产成+人综合+亚洲专区| 人人妻,人人澡人人爽秒播| 成年动漫av网址| 叶爱在线成人免费视频播放| 操出白浆在线播放| 国产成人啪精品午夜网站| 在线十欧美十亚洲十日本专区| 久久久精品免费免费高清| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人免费| 亚洲国产精品合色在线| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 91字幕亚洲| 视频在线观看一区二区三区| 一级毛片高清免费大全| 国产欧美日韩一区二区三| 十分钟在线观看高清视频www| 少妇 在线观看| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 一区福利在线观看| 女人精品久久久久毛片| 12—13女人毛片做爰片一| 亚洲精品自拍成人| 超碰成人久久| 一个人免费在线观看的高清视频| 久久热在线av| 一区福利在线观看| av片东京热男人的天堂| 亚洲精品国产区一区二| 久久久久久久精品吃奶| 在线观看舔阴道视频| 深夜精品福利| 久久久久精品国产欧美久久久| 亚洲伊人色综图| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 亚洲久久久国产精品| 伦理电影免费视频| 在线视频色国产色| 两性夫妻黄色片| 免费日韩欧美在线观看| 90打野战视频偷拍视频| 国产成人av激情在线播放| 国产高清激情床上av| 首页视频小说图片口味搜索| 欧美+亚洲+日韩+国产| 亚洲熟女精品中文字幕| 老熟妇乱子伦视频在线观看| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 午夜久久久在线观看| 国产真人三级小视频在线观看| 久久久国产成人免费| 激情视频va一区二区三区| 国产黄色免费在线视频| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 91九色精品人成在线观看| 久久久水蜜桃国产精品网| 丰满迷人的少妇在线观看| 丰满的人妻完整版| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 很黄的视频免费| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 高清毛片免费观看视频网站 | 久久久久视频综合| 亚洲国产精品sss在线观看 | 天天添夜夜摸| 精品卡一卡二卡四卡免费| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜添小说| 黄色视频不卡| av国产精品久久久久影院| 亚洲熟妇中文字幕五十中出 | 免费av中文字幕在线| 午夜福利乱码中文字幕| 777米奇影视久久| 国产一区在线观看成人免费| 在线av久久热| 精品久久久久久,| 首页视频小说图片口味搜索| 亚洲国产毛片av蜜桃av| 91麻豆av在线| 久久狼人影院| 熟女少妇亚洲综合色aaa.| 精品一区二区三卡| 欧美另类亚洲清纯唯美| 亚洲片人在线观看| 日韩欧美在线二视频 | 亚洲第一欧美日韩一区二区三区| tube8黄色片| 老司机午夜福利在线观看视频| 欧美av亚洲av综合av国产av| 国产成人免费观看mmmm| 精品亚洲成a人片在线观看| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 少妇的丰满在线观看| 美女午夜性视频免费| 午夜成年电影在线免费观看| 一区二区日韩欧美中文字幕| 国产精品永久免费网站| 国产av一区二区精品久久| 国产高清国产精品国产三级| 精品乱码久久久久久99久播| 怎么达到女性高潮| 国产三级黄色录像| 午夜91福利影院| 狠狠婷婷综合久久久久久88av| 欧美乱色亚洲激情| cao死你这个sao货| 女同久久另类99精品国产91| 国产成人影院久久av| 妹子高潮喷水视频| av福利片在线| 国产在线一区二区三区精| 亚洲成a人片在线一区二区| tube8黄色片| 精品欧美一区二区三区在线| 国产淫语在线视频| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 黑人猛操日本美女一级片| 欧美激情 高清一区二区三区| 午夜免费鲁丝| 午夜福利在线免费观看网站| 又黄又粗又硬又大视频|