• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Personalized Computer Simulation of Diastolic Function in Heart Failure

    2016-11-17 08:41:23AliAmrElhamKayvanpourFarbodSedaghatHamedaniTizianoPasseriniViorelMihalefAlanLaiDominikNeumannBogdanGeorgescuSebastianBussDerlizMereleshEdgarZitronAndreasPoschMaximilianWurstleTommasoMansiHugoKatus2BenjaminMeder2
    Genomics,Proteomics & Bioinformatics 2016年4期

    Ali AmrElham KayvanpourFarbod Sedaghat-HamedaniTiziano PasseriniViorel MihalefAlan LaiDominik NeumannBogdan GeorgescuSebastian BussDerliz MereleshEdgar ZitronAndreas E.PoschMaximilian Wu¨rstleTommaso MansiHugo A.Katus2Benjamin Meder2*k

    1Institute for Cardiomyopathies,Department of Medicine III,University of Heidelberg,69120 Heidelberg,Germany

    2German Centre for Cardiovascular Research(DZHK),Heidelberg/Mannheim,Germany

    3Siemens Healthcare,Medical Imaging Technologies,Princeton,NJ 08540,USA

    4Siemens Healthcare,Strategy and Innovation,91052 Erlangen,Germany

    ORIGINAL RESEARCH

    Personalized Computer Simulation of Diastolic Function in Heart Failure

    Ali Amr1,2,a,#,Elham Kayvanpour1,2,b,#,F(xiàn)arbod Sedaghat-Hamedani1,2,c,Tiziano Passerini3,d,Viorel Mihalef3,e,Alan Lai1,f,Dominik Neumann3,g,Bogdan Georgescu3,Sebastian Buss1,Derliz Mereles1,h,Edgar Zitron1,Andreas E.Posch4,i,Maximilian Wu¨rstle4,j,Tommaso Mansi3,Hugo A.Katus1,2,Benjamin Meder1,2,*,k

    1Institute for Cardiomyopathies,Department of Medicine III,University of Heidelberg,69120 Heidelberg,Germany

    2German Centre for Cardiovascular Research(DZHK),Heidelberg/Mannheim,Germany

    3Siemens Healthcare,Medical Imaging Technologies,Princeton,NJ 08540,USA

    4Siemens Healthcare,Strategy and Innovation,91052 Erlangen,Germany

    Received 29 February 2016;revised 21 April 2016;accepted 26 April 2016 Available online 29 July 2016

    Handled by Andreas Keller

    Dilated cardiomyopathy;

    Tau;

    Myocardial stiffness;

    Computer-based 3D model;Personalized medicine;

    Diastolic function

    The search for a parameter representing left ventricular relaxation from non-invasive and invasive diagnostic tools has been extensive,since heart failure(HF)with preserved ejection fraction(HF-pEF)is a global health problem.We explore here the feasibility using patient-specific cardiac computer modeling to capture diastolic parameters in patients suffering from different degrees of systolic HF.Fifty eight patients with idiopathic dilated cardiomyopathy have undergone thorough clinical evaluation,including cardiac magnetic resonance imaging(MRI),heart catheterization,echocardiography,and cardiac biomarker assessment.A previously-introduced framework forcreating multi-scale patient-specific cardiac models has been applied on all these patients.Novel parameters,such as global stiffness factor and maximum left ventricular active stress,representing cardiac active and passive tissue properties have been computed for all patients.Invasive pressure measurements from heartcatheterization were then used to evaluate ventricular relaxation using the time constant of isovolumic relaxation Tau(τ).Parameters from heart catheterization and the multi-scale model have been evaluated and compared to patient clinical presentation.The model parameter global stiffness factor,representing diastolic passive tissue properties,is correlated significantly across the patient population withτ.This study shows that multi-modalcardiac models can successfully capture diastolic(dys)function,a prerequisite for future clinical trials on HF-pEF.

    Introduction

    The application of computational modeling to different organ systems has been gathering increasing interest from the research community.The possibility of performing in silico experiments on computer models that mimic patient’s organs has revved up the momentum of the evolution of virtual patient-specific models.The surge of interest has been driven by the prospect of being able to control all the variables to open up new possibilities toward better health care in a risk-free and ethically acceptable setting for the patient.The exponential growth of computational imaging capacities has also broadened the possibilities toward such models.From simplistic models based on geometric shapes as early as the 1960s to multi-scale multi-physics models,the transformation in this field has been tremendous[1-6].

    Heart failure(HF)remains the leading cause of death in developed countries[7-9].The increasingly high incidence rates,hospitalization,and health expenditures compel a constant call for new strategies and progress in this field[10]. HF is a syndrome with diverse etiologies,characterized by the decline of cardiac systolic or diastolic function,resulting in insufficient blood supply to organs,organ dysfunction,and finally,failure[11-13].

    A chronological retrospective analysis of HF therapy in patients with dilated cardiomyopathy(DCM)in the last century sheds light on difficulties in treating this disease.Expert guidelines currently outline HF therapy based on patients’clinical presentation,cardiac systolic function,and specific biomarkers,but oversee,to some extent,the pathophysiology and etiology that lead to reduced cardiac function[13].These rigid therapy regimes focus on relieving cardiac symptoms and tackle less the individual progression and the cause leading to this disease.Over the past three decades,drug therapy has undergone rapid progression in lowering the mortality and morbidity rates in HF patients[14].The mortality rates of patients that present with progressed HF symptoms and receive optimal medical therapy remain high[14,15].Even the latest drug advancements present only a stepping stone toward the treatment of HF.The diversity of this disease,in its etiology and clinical presentation,suggests that the key to a better and cost-effective therapy is the individualized and personalized care.Personalized cardiac models have the potential in facilitating the achievement of this goal[16,17].

    The role of left ventricular(LV)systolic dysfunction has attracted broad attention from both clinical and experimental researchers[18-23].On the other hand,LV diastolic dysfunction has been relatively slow in gathering interest due to its complex role in the pathomechanism of HF[24,25].General consensus defines LV diastolic dysfunction as irregular cardiac functional relaxation,distensibility,and LV filling,which causes higher end diastolic left ventricular pressures[26].To completely understand the pathogenesis of diastolic dysfunction,a broad appreciation of cardiac physiology in the diastole and its diverse compensation mechanisms is needed.Dyspnea,as a symptom of HF,is often attributed to diastolic dysfunction after exclusion of other probable causes[27-30].Its diagnosis remains a challenge in clinical settings because of the difficulties present in linearly quantifying the progression of this disease and assessing its significance to the patient[31]. The current non-invasive gold standard for the assessment of diastolic dysfunction remains the echocardiographic evaluation,especially Doppler measurements of transmitral flow and tissue Doppler imaging(TDI)[26].

    The progress in the field of cardiac simulation has been on a rise in the last decade[32].One of the first challenges in cardiac modeling is capturing the anatomical geometry of the heart. Simulating cardiac physical parameters relies heavily on ventricular geometry.Many of the early-proposed cardiac anatomical estimations were either based on geometrical models or post-mortem heart dissections.The first simplifications of the complex LV geometry have been based on spherical models[33].Koushanpour and colleagues published one of the early simulations of LV dynamics based on spheroids in 1960s[34].In this study,they compared the LV time course of tension using Laplace’s surface tension law in cats and turtles.Their findings highlighted the importance of cardiac size and shape in determining LV function.A gradual shift toward anatomical models,based on ex vivo human and animal hearts,could be observed,capturing a more accurate representation of cardiac anatomy[35-37].

    Progress in other fields of science,especially in physics and mathematics,and advancements in computer technology opened up new possibilities toward improving existing computer simulations.The application of the finite element method in diverse sectors of engineering represented one of the major turning points in cardiac computational modeling and simulation.The conception and refinement of this method enabled the analysis of complex structural and mathematical problems[38,39].Janz et al.introduced one of the early cardiac mechanical models using the finite element method[40].The cardiac model,in which the anatomical geometry is estimated from the hearts of Sprague-Dawley albino male rats,seemed to predict the gross free wall deformation with the assumption of an elastically linear and heterogeneous tissue[40].Vinson et al. later described a human cardiac model using‘‘36 brick type finite elements”representing the left ventricle[40].As pointed out by the authors,one of the limiting factors at that time was‘the capacity of the computer and computing time available”[41].Today,current smart phones have more processing power than the computers used at that time.

    The radical advances in cardiac imaging modalities and the implementation of non-invasive imaging sequences into the diagnostic algorithms marked the shift toward image-based models and allowed faster transition toward patient-specific cardiac models[42].Most computational models to date selectively integrate elements(such as myocardial structure,structural pathologies,biomechanics,or electrophysiology)in various details and complexity,to suit the objective of the model[43].

    We have proposed previously a patient-specific cardiac model that captures the biomechanical,hemodynamic,and electrophysiological cardiac functions in patients with DCM[2].In this paper,we explore the feasibility of using such models to capture cardiac diastolic function in a similar patient population.

    Results and discussion

    Clinical characteristics of the patient population

    A summary of the clinical parameters investigated in this study is presented in Table 1.The patients in our cohort are 54 years old on average.The majority of the recruited patients showed signs of HF with assessment of the New York Heart Association(NYHA)functionalclass II and III.The mean left ventricular ejection fraction(LV-EF)was 37%,with 5%of the recruited patients having an ejection fraction above 55%. HF drug therapy was initiated for all patients.The descriptive analysis of the invasive pressure measurements is presented in Table 2.As can be seen,the mean left ventricular end diastolic pressure(LV-EDP;mean 22 mmHg),the pulmonary capillary wedge pressure(PCWP;mean 20 mmHg),and the systolic pulmonary artery pressure(SAP;mean 40 mmHg)were all elevated as expected from the largely-symptomatic patient cohort.The calculated time constant Tau(τ)across the study population ranged 28-89 ms as shown in Figure 1A.Taking together the elevated pressure measured from the right circulation,approximately 40%of the patients proved to have a lengthened τ(duration>48 ms[44]),a sign of abnormal left ventricular relaxation.

    Simulation of cardiac parameters

    The feasibility of using the presented cardiac model to capture cardiac systolic function in a clinical setting,in its strengths and limitations,has been previously reported[2].In the present study,we aimed to examine how systolic and diastolic biomechanical parameters derived from the model,after completion of the fitting and personalization process,correspond to invasive and non-invasive clinical parameters of diastolic function. An example of a generated cardiac model of a patient in this study,after concluding the workflow algorithm,is shown in Figure 2.The systolic parameters,including computed LV-EF(cLV-EF;mean 35%),simulated stroke volume(sSV;mean 86 ml),maximum strength of active contraction(s0;mean 120 kPa),and global stiffness factor(HO factor;mean 1.1),are computed from the cardiac models for each patient as shown in Table 3.The distribution of global stiffness(HO factor)and LV maximum active stress(s0)across the study population is shown in Figure 1B and C,respectively.

    Assessment of the diastolic function

    Table1 Clinical characteristics of the recruited patients

    From early animal experiments investigating the maximal rate of pressure fall(max negative dP/dt)[45]to currentechocardiographic TDI parameters in humans[46],the search for a parameter representing left ventricular relaxation from non-invasive and invasive diagnostic tools has been extensive[44].The diastolic function of the heart is largely dependent on the passive myocardial properties,such as myocardial stiffness,which represents the effective elasticity of cardiac extra and intracellular composition.Preload,myocardial contractility,and regional dyssynchrony modulate myocardial relaxation[25].The accurate characterization and assessment of diastolic dysfunction requires the simultaneous measurement of pressure and volume changes in the left ventricle during the diastole,which increases the complexity and difficulty of its precise clinical evaluation in living patients.Tau(τ),the time constant of isovolumic relaxation,is acknowledged as the time period needed for the ventricular pressure to fall to approximately 37%(or 1/e)of the pressure at the start of the isovolumic relaxation phase[47].We used τ in this study,as a measure for the cardiac diastolic function,because τ remains a widely-accepted,less load-dependent surrogate for left ventricular relaxation and pressure decline[47,48].

    Table2 Summary of invasive pressure measurements and calculations

    Figure1 Distribution of the examined variables

    To assess the ability of the personalized cardiac model in capturing left ventricular relaxation,we correlated the model parameter of left ventricular global stiffness withτ.As presented in Table 4 and Figure 3A,there is a significant correlation(P=4.1E-4)between the global stiffness factor andτ,whereas no significant correlation was found between left ventricular maximum active stress andτ.N-terminal pro-brain natriuretic peptide(NT-proBNP)is accepted as a prognostic biomarker in both systolic and diastolic HF[13,49,50].We extended the analysis by subdividing the study population into patients with normal and elevated NT-proBNP plasma concentration(cut-off value of 125 ng/l).Interestingly,the correlation between global stiffness factor and τ was not only preserved but enhanced in the subpopulation with elevated NT-proBNP(125 ng/l)as shown in Table 4 and Figure 3B. The correlation between these two parameters was also preserved(R=0.58,P<0.05),with a higher cut-off level of 325 ng/l for NT-proBNP.At the same time,the correlation between LV maximum active stress,which represents the active and systolic component of myocardial contraction in the model,and τ remained non-significant.This observation underlines the potential benefit of combining molecular biomarkers with computational models.

    Doppler echocardiography remains the current reference method for non-invasive assessment of diastolic LV function. Kasner et al.performed a clinical study evaluating the correlation between conventional or TDI echocardiographic diastolic indexes and pressure volume measurements from heart catheterization.E′(early diastolic peak of the annular TDI measurements),E/E′(ratio of transmitral flow and annular velocity),E′/A′(ratio of early and late annular velocity)showed very modest correlations with τ of-0.33,0.34,and -0.24,respectively[51].Although the presented correlation between global stiffness factor andτappears modest,it remains at least on the same level as those between τ and the echocardiographic parameters mentioned above.

    Figure2 Map of the computed myocardium contraction strength in a patient-specific cardiac model

    Table3 Summary of the simulated parameters from the personalized model

    Table4 Statistical analysis of the correlations between the simulated systolic and diastolic parameters with Tau in patients

    Conclusions

    The clinical applicability of using in silico 3D computational cardiac models is promising,which strengthens the predilection toward its utilization in search of novel perspectives in risk stratification,therapy,and prognosis in other fields of cardiology[17].The incentive toward the search for a better strategy to diagnose and evaluate diastolic dysfunction stems from the heterogeneity of results in clinical studies investigating HF with preserved EF(HF-PEF),with respect to mortality,quality of life,and cardiovascular risk[52].The commonly-accepted consensus,which has prevailed over the years,remains that HF-PEF is associated with increased mortality and hospitalization[52-54].As a diagnosis of exclusion for patients presenting with dyspnea and other HF symptoms,HF-PEF presents a challenge to physicians especially in an ambulatory setting.The differences in patient characteristics and demographics between patients with HF-PEF and those carrying HF with reduced EF(HF-REF)have raised further questions about the disease pathomechanism,severity,and clinical significance.In this study,we show that this personalized cardiac model can capture patient-specific diastolic parameters,which could hold the key toward solving difficult challenges in patients with HF-PEF.

    More and more accurate and detailed models of cardiac function in both humans and animals have been abundantly reported,including biomechanical models that specifically investigate cardiac diastolic function[55-59].However,fewmodels integrate data from conventional standard clinical procedures to create a patient-specific electro-mechanical heart model.This study presents the feasibility of applying and integrating various experimentally-validated biophysical models to create a patient-specific multi-modal simulation of cardiac function in the diseased heart.

    Our goal is the constant progression of the implementation of virtual cardiac models in a clinical setting to provide the patients with the optimal individualized medical care.Further advancement of computational modeling at different levels is anticipated in the near future.One of the first steps forward is validating the predictive prognostic power of such virtual models in a clinical setting.Secondly,capturing patientspecific cardiac fiber architecture remains one of the challenges and a limiting factor of advanced in vivo virtual models nowadays.The importance of fiber orientation in simulating cardiac electrophysiology and biomechanics has been abundantly described in previous studies[60]and diffusion tension MRI(DT-MRI)serves as a common approach to capture cardiac fiber orientation[61].Due to technical difficulties present,like scan duration,myocardial respiratory displacement,and short transversal relaxation time,high resolution DT-MRI imaging was mainly utilized on explanted animal and human hearts. Algorithms for rule-based assignment of fiber orientation currently provide alternative to in vivo virtual models[62].However,recent advances in cardiac DT-MRI render this approach feasible in the near future[63],opening up the possibility toward generating fully patient-specific myocardial fiber orientation and architecture.On another level,integrating not only parameters of cardiac electrophysiology but also histopathological myocardial structure and tissue specific passive physical parameters,like tensile strength,compaction and density of fibers,and fibrosis grade,from myocardial biopsies could be promising toward the complete in silico simulation of the individual heart.

    Figure3 Correlation between the global stiffness factor andτ

    Materials and methods

    Patient population

    Patients with HF symptoms were enrolled in this study after having given their written informed consent.Only patients receiving heart catheterization due to clinical necessity were included.To reflect broad representation of potential HF phenotypes,cases with slightly to severely reduced systolic function were included.Clinical evaluation,diagnostics,and follow-up were performed in adherence to hospital guidelines.

    The enrolled patients underwent comprehensive clinical assessment constituting a detailed clinical history,physical examination,12 lead electrocardiogram,echocardiography,6 Minute Walk Test,spiroergometry,and comprehensive laboratory tests including NT-proBNP.For the clinical diagnostic process,patients underwent also procedures to ensure exclusion of secondary causes of DCM(left heart catheterization,cardiac MRI,extensive blood panel,and clinical history). Acute myocarditis,significant coronary artery disease(CAD),history of chemotherapy with cardio-toxic agents or chest radiation,valvular heart diseases,and probable secondary causes for DCM were exclusion criteria.A total number of n=58 patients were investigated in this study.

    Hemodynamic data acquisition

    Hemodynamic assessment was performed using left and right heart catheterization.All pressure curves were checked for calibration errors.The customary femoral access was used in all patients receiving simultaneous left and right circulation evaluation.Pressure measurements of the left ventricle and aorta were performed over repeated cardiac cycles prior to application of the contrast agent.Hemodynamic pressure analysiswas performed using the computer-assisted software Metek(Roetgen,Germany).The intraventricular rate of change in pressure((-)(+)dP/dt)was calculated during the procedure. Maximum values for(-)(+)dP/dt were identified and output for each cardiac cycle.The calculation of τ(time constant of isovolumic relaxation)was based on the approach described by Weiss and colleagues[64],which assumes an exponential decline in left ventricular pressure during the isovolumic time period.P(t)=P(t=0)x e-t/τandτ=-P/(dP/dt).

    MR data acquisition

    To further evaluate the clinical phenotype,all patients underwent cardiac MRI analyses(1.5T cMRI,32Ch RF platform,Philips Achieva).Standard multi-slice 2D steady-state free precession sequences(SSFP),late gadolinium enhancement(LGE)multi-slice inversion recovery sequence,and feature tracking imaging were included in the procedure protocols. Comprehensive 2D echocardiographic assessment of systolic and diastolic function according to current guidelines and hospital standards was also performed in all patients.

    Personalized cardiac model in patients with dilated cardiomyopathy

    The computational work flow and process of simulating the personalized multi-scale multi-physics model based on the acquired clinical data has been thoroughly described previously[2].We briefly recallhere the model assumptions related more specifically to the description of cardiac biomechanics. We adopt the Hill-Maxwell framework to represent the interplay between active contraction and passive response of the myocardium[65](Figure 4).

    The myocyte contraction is modeled following the approach presented by Sermesant and colleagues,for which the contraction is related to the action potential through a bi-exponential law[66].We parameterize this law by the maximum strength of active contraction(s0),the rate of contraction(the speed at which the tissue contracts during depolarization),and the rate of relaxation(the speed at which the tissue relaxes during repolarization).The passive response of the myocardium to mechanical stress is described by the non-linear,hyper-elastic and orthotropic tissue model proposed by Holzapfel and colleagues[67].We consider a global scaling factor(HO factor)for the reference model parameters provided by Holzapfel and colleagues,offering a lumped representation of the tissue stiffness[67].The electromechanical model provides computed cardiac dynamics,from which we extract simulated ejection fraction as the clinical parameter of interest.More details on the personalized cardiac model can be found in the references cited in this section.

    Statistical analysis

    Figure4 Schematic representation of the classical Hill’s muscle model

    The statistical analysis was performed using the conventional‘R”software(Version 3.2.2).The parameters τ,global stiffness factor,and LV active force are continuous and show an approximate normal distribution.Therefore,a linear correlation analysis using Pearson’s correlation coefficient through the‘cor”and the‘cor.test”function was applied.The parametric P value,with a significance level of 0.05,was computed for all performed correlations.To account for a possible nonlinear relationship between τ and global stiffness factor,a logarithmic analysis of both parameters is also presented(Table S1).A possible monotonic correlation was analyzed using the Spearman rank correlation method.The results obtained were similar but non-superior to those based on the linear correlation analysis and were not presented in the current study to avoid repetition.Histograms were calculated using the‘hist”function with standard parameters.In order to visualize the output,scatter plots were generated for the significant correlations.Smoothing of scatter plots was carried out by the‘smoothScatter”function.

    Authors’contributions

    BM,AA,EK,F(xiàn)S,and TM designed the study;AA,F(xiàn)S,HK,EK,BM,DM,EZ,and SB carried out patient data acquisition;TM,TP,VM,DN,BG,AEP and MW performed the computational analysis,and AL,AA,BM,F(xiàn)S,and EK carried out statistical analysis.AA,EK,BM,TM,TP,DM,and HK were involved in manuscript drafting and revision.All authors read and approved the final manuscript.

    Competing interests

    This work was in part conducted within an industry supported project(Siemens Healthcare,Siemens Research Project).TP,VM,DN,BG,AEP,MW,and TM are employees of Siemens Healthcare.There are no further conflicts of interest.The features mentioned herein are based on research,and are not commercially available.Its future availability cannot be guaranteed due to regulatory reasons.

    Acknowledgments

    This work was partially supported by grants from the German Ministry of Education and Research(BMBF),DZHK(‘Deutsches Zentrum fu¨r Herz-Kreislauf-Forschung”-German Centre for Cardiovascular Research),the European Union(FP7 BestAgeing)and Siemens Healthcare(Siemens Healthcare/University Heidelberg Joint Research Project: Care4DCM).

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.006.

    [1]Ghista DN,Sandler H.An analytic elastic-viscoelastic model for the shape and the forces in the left ventricle.J Biomech 1969;2:35-47.

    [2]Kayvanpour E,Mansi T,Sedaghat-Hamedani F,Amr A,Neumann D,Georgescu B,et al.Towards personalized cardiology:Multi-scale modeling of the failing heart.PLoS One 2015;10: e0134869.

    [3]Tobon-Gomez C,Duchateau N,Sebastian R,Marchesseau S,Camara O,Donal E,et al.Understanding the mechanisms amenable to CRT response:from pre-operative multimodal image data to patient-specific computational models.Med Biol Eng Comput 2013;51:1235-50.

    [4]Niederer SA,Smith NP.An improved numerical method for strong coupling of excitation and contraction models in the heart. Prog Biophys Mol Biol 2008;96:90-111.

    [5]Sermesant M,Chabiniok R,Chinchapatnam P,MansiT,Billet F,Moireau P,et al.Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT:a preliminary clinical validation.Med Image Anal 2012;16:201-15.

    [6]Relan J,Chinchapatnam P,Sermesant M,Rhode K,Ginks M,Delingette H,et al.Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia.Interface Focus 2011;1:396-407.

    [7]Murray CJ,Lopez AD.Mortality by cause for eight regions ofthe world:global burden of disease study.Lancet 1997;349:1269-76.

    [8]Lopez A,Mathers C,Ezzati M,Jamison D,Murray C.Global and regional burden of disease and risk factors 2001:systematic analysis of population health data.Lancet 2006;367:1747-57.

    [9]Santulli G.Epidemiology of cardiovascular disease in the 21st century:updated numbers and updated facts.JCvD 2013;1:1-2.

    [10]Murray C,Lopez A.Alternative projections of mortality and disability by cause 1990-2020:global burden of disease study. Lancet 1997;349:1498-504.

    [11]Lloyd-Jones D,Adams RJ,Brown TM,Carnethon M,Dai S,De Simone G,et al.Heart disease and stroke statistics—2010 update: a report from the American Heart Association.Circulation 2010;121:e46-e215.

    [12]Kayvanpour E,Katus HA,Meder B.Determined to fail—the role of genetic mechanisms in heart failure.Curr Heart Fail Rep 2015;12:333-8.

    [13]McMurray JJ,Adamopoulos S,Anker SD,Auricchio A,Bohm M,Dickstein K,et al.ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012.Eur J Heart Fail 2013;15:361-2.

    [14]Sacks CA,Jarcho JA,Curfman GD.Paradigm shifts in heartfailure therapy—a timeline.N Engl J Med 2014;371:989-91.

    [15]Ketchum ES,Levy WC.Establishing prognosis in heart failure:a multimarker approach.Prog Cardiovasc Dis 2011;54:86-96.

    [16]Blaus A,Madabushi R,Pacanowski M,Rose M,Schuck RN,Stockbridge N,et al.Personalized cardiovascular medicine today: a Food and Drug Administration/Center for Drug Evaluation and Research perspective.Circulation 2015;132:1425-32.

    [17]Trayanova NA,O’Hara T,Bayer JD,Boyle PM,McDowell KS,Constantino J,et al.Computational cardiology:how computer simulations could be used to develop new therapies and advance existing ones.Europace 2012;14:v82-9.

    [18]Gomes JA,Mehta D,Ip J,Winters SL,Camunas J,Ergin A,et al. Predictors of long-term survival in patients with malignant ventricular arrhythmias.Am J Cardiol 1997;79:1054-60.

    [19]Likoff MJ,Chandler SL,Kay HR.Clinical determinants of mortality in chronic congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy.Am J Cardiol 1987;59:634-8.

    [20]Cohn JN,Johnson GR,Shabetai R,Loeb H,Tristani F,Rector T,et al.Ejection fraction,peak exercise oxygen consumption,cardiothoracic ratio,ventricular arrhythmias,and plasma norepinephrine as determinants of prognosis in heart failure.The VHeFT VA Cooperative Studies Group.Circulation 1993;87:I5-16.

    [21]Juillie`re Y,Barbier G,F(xiàn)eldmann L,Grentzinger A,Danchin N,Cherrier F.Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy.Eur Heart J 1997;18:276.

    [22]Hallstrom A,Pratt C,Greene H,Huther M,Gottlieb S,DeMaria A,et al.Relations between heart failure,ejection fraction,arrhythmia suppression and mortality:analysis of the Cardiac Arrhythmia Suppression Trial.J Am Coll Cardiol 1995;25:1250.

    [23]Bart BA,Shaw LK,McCants Jr CB,F(xiàn)ortin DF,Lee KL,Califf RM,et al.Clinical determinants of mortality in patients with angiographically diagnosed ischemic or nonischemic cardiomyopathy.J Am Coll Cardiol 1997;30:1002-8.

    [24]Gaasch WH,Zile MR.Left ventricular diastolic dysfunction and diastolic heart failure.Annu Rev Med 2004;55:373-94.

    [25]Zile MR,Brutsaert DL.New concepts in diastolic dysfunction and diastolic heart failure:Part II:causal mechanisms and treatment.Circulation 2002;105:1503-8.

    [26]Yancy CW,Jessup M,Bozkurt B,Butler J,Casey Jr DE,Drazner MH,et al.2013 ACCF/AHA guideline for the management of heart failure:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.J Am Coll Cardiol 2013;62:e147-239.

    [27]Zile MR,Nappi J.Diastolic heart failure.Curr Treat Options Cardiovasc Med 2000;2:439-50.

    [28]Packer M.Abnormalities of diastolic function as a potential cause of exercise intolerance in chronic heart failure.Circulation 1990;81:III78-86.

    [29]Vasan RS,Levy D.Defining diastolic heart failure:a call for standardized diagnostic criteria.Circulation 2000;101:2118-21.

    [30]Yturralde RF,Gaasch WH.Diagnostic criteria for diastolic heart failure.Prog Cardiovasc Dis 2005;47:314-9.

    [31]Zile MR,Brutsaert DL.New concepts in diastolic dysfunction and diastolic heart failure:Part I:diagnosis,prognosis,and measurements of diastolic function.Circulation 2002;105:1387-93.

    [32]Noble D.Modeling the heart—from genes to cells to the whole organ.Science 2002;295:1678-82.

    [33]Burch GE,Ray CT,Cronvich JA.The George Fahr Lecture: certain mechanical peculiarities of the human cardiac pump in normal and diseased states.Circulation 1952;5:504-13.

    [34]Koushanpour E,Collings WD.Validation and dynamic applications of an ellipsoid model of the left ventricle.J Appl Physiol 1966;21:1655-61.

    [35]Vetter FJ,McCulloch AD.Three-dimensional analysis of regional cardiac function:a model of rabbit ventricular anatomy.Prog Biophys Mol Biol 1998;69:157-83.

    [36]Horan LG,Hand RC,Johnson JC,Sridharan MR,Rankin TB,F(xiàn)lowers NC.A theoretical examination of ventricular repolarization and the secondary T wave.Circ Res 1978;42:750-7.

    [37]Aoki M,Okamoto Y,Musha T,Harumi K.Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials:normal heart and bundle branch block.IEEE Trans Biomed Eng 1987;34:454-62.

    [38]Zienkiewicz O,Kelly D,Bettess P.The coupling of the finite element method and boundary solution procedures.Int J Numer Meth Eng 1977;11:355-75.

    [39]Bathe KJ.Finite element method.Wiley encyclopedia of computer science and engineering.Cambridge Massachusetts:Massachusetts Institute of Technology;2007.p.1-12.

    [40]Janz RF,Grimm AF.Finite-element model for the mechanical behavior of the left ventricle.Prediction of deformation in the potassium-arrested rat heart.Circ Res 1972;30:244-52.

    [41]Vinson CA,Gibson DG,Yettram AL.Analysis of left ventricular behaviour in diastole by means of finite element method.Br Heart J 1979;41:60-7.

    [42]Frangi AF,Niessen WJ,Viergever MA.Three-dimensional modeling for functional analysis of cardiac images:a review. IEEE Trans Med Imaging 2001;20:2-25.

    [43]Lopez-Perez A,Sebastian R,F(xiàn)errero JM.Three-dimensional cardiac computational modelling:methods,features and applications.Biomed Eng Online 2015;14:35.

    [44]Paulus WJ,Tschope C,Sanderson JE,Rusconi C,F(xiàn)lachskampf FA,Rademakers FE,et al.How to diagnose diastolic heart failure:a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology.Eur Heart J 2007;28:2539-50.

    [45]Cohn PF,Liedtke AJ,Serur J,Sonnenblick EH,Urschel CW. Maximal rate of pressure fall(peak negative dP-dt)during ventricular relaxation.Cardiovasc Res 1972;6:263-7.

    [46]Oh JK,Park SJ,Nagueh SF.Established and novel clinical applications of diastolic function assessment by echocardiography.Circ Cardiovasc Imaging 2011;4:444-55.

    [47]Leite-Moreira AF.Current perspectives in diastolic dysfunction and diastolic heart failure.Heart 2006;92:712-8.

    [48]Nagueh SF,Appleton CP,Gillebert TC,Marino PN,Oh JK,Smiseth OA,et al.Recommendations for the evaluation of left ventricular diastolic function by echocardiography.J Am Soc Echocardiogr 2009;22:107-33.

    [49]Tschope C,Kasner M,Westermann D,Gaub R,Poller WC,Schultheiss HP.The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction:correlation with echocardiographic and invasive measurements.Eur Heart J 2005;26:2277-84.

    [50]Hartmann F,Packer M,Coats AJ,F(xiàn)owler MB,Krum H,Mohacsi P,et al.NT-proBNP in severe chronic heart failure: rationale,design and preliminary results of the COPERNICUS NT-proBNP substudy.Eur J Heart Fail 2004;6:343-50.

    [51]Kasner M,Westermann D,Steendijk P,Gaub R,Wilkenshoff U,Weitmann K,et al.Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction:a comparative Doppler-conductance catheterization study.Circulation 2007;116: 637-47.

    [52]Berry C,Doughty R,Granger C,Kober L,Massie B,McAlister F,et al.The survivalof patients with heart failure with preserved or reduced left ventricular ejection fraction:an individual patient data meta-analysis.Eur Heart J 2012;33:1750-7.

    [53]Yusuf S,Pfeffer MA,Swedberg K,Granger CB,Held P,McMurray JJ,et al.Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction:the CHARM-Preserved Trial.Lancet 2003;362:777-81.

    [54]Massie BM,Carson PE,McMurray JJ,Komajda M,McKelvie R,Zile MR,et al.Irbesartan in patients with heart failure and preserved ejection fraction.N Engl J Med 2008;359:2456-67.

    [55]Bishop MJ,Plank G,Burton RA,Schneider JE,Gavaghan DJ,Grau V,et al.Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function.Am J Physiol Heart Circ Physiol 2010;298:H699-718.

    [56]Dokos S,Smaill BH,Young AA,LeGrice IJ.Shear properties of passive ventricular myocardium.Am J Physiol Heart Circ Physiol 2002;283:H2650-9.

    [57]Vetter FJ,McCulloch AD.Three-dimensional stress and strain in passive rabbit left ventricle:a model study.Ann Biomed Eng 2000;28:781-92.

    [58]Wang HM,Gao H,Luo XY,Berry C,Griffith BE,Ogden RW,et al.Structure-based finite strain modelling of the human left ventricle in diastole.Int J Numer Method Biomed Eng 2013;29:83-103.

    [59]Niederer S,Rhode K,Razavi R,Smith N.The importance of model parameters and boundary conditions in whole organ models of cardiac contraction.Lect Notes Comput Sco 2009:348-56.

    [60]Clayton RH,Bernus O,Cherry EM,Dierckx H,F(xiàn)enton FH,Mirabella L,et al.Models of cardiac tissue electrophysiology: progress,challenges and open questions.Prog Biophys Mol Biol 2011;104:22-48.

    [61]Helm P,Beg MF,Miller MI,Winslow RL.Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging.Ann N Y Acad Sci 2005;1047:296-307.

    [62]Bayer JD,Blake RC,Plank G,Trayanova NA.A novel rulebased algorithm for assigning myocardial fiber orientation to computational heart models.Ann Biomed Eng 2012;40:2243-54.

    [63]Mekkaoui C,Reese TG,Jackowski MP,Bhat H,Sosnovik DE. Diffusion MRI in the heart.NMR Biomed 2015.http://dx.doi. org/10.1002/nbm.3426.

    [64]Weiss JL,F(xiàn)rederiksen JW,Weisfeldt ML.Hemodynamic determinants of the time-course of fall in canine left ventricular pressure.J Clin Invest 1976;58:751-60.

    [65]Fung YC.Biomechanics:mechanical properties of living tissues.New York:Springer-Verlag;1993.

    [66]Sermesant M,Delingette H,Ayache N.An electromechanical model of the heart for image analysis and simulation.IEEE Trans Med Imaging 2006;25:612-25.

    [67]Holzapfel GA,Ogden RW.Constitutive modelling of passive myocardium:a structurally based framework for material characterization.Philos Trans A Math Phys Eng Sci 2009;367:3445-75.

    *Corresponding author.

    E-mail:Benjamin.Meder@meduni-heidelbergde(Meder B).

    aORCID:0000-0002-2615-4089.

    bORCID:0000-0001-7285-2825.

    cORCID:0000-0002-3266-0527.

    dORCID:0000-0002-2130-0112.

    eORCID:0000-0002-1743-4505.

    fORCID:0000-0003-0916-9227.

    gORCID:0000-0003-2494-5124.

    hORCID:0000-0001-9601-7103.

    iORCID:0000-0003-3893-3562.

    jORCID:0000-0003-4494-9608.

    kORCID:0000-0003-0741-2633.

    #Equal contribution.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.006

    1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    亚洲av免费高清在线观看| 国产大屁股一区二区在线视频| 简卡轻食公司| 少妇熟女欧美另类| 最近的中文字幕免费完整| 欧美成人一区二区免费高清观看| 亚洲欧美日韩卡通动漫| 久久人人爽人人爽人人片va| 国产成年人精品一区二区| 看非洲黑人一级黄片| 哪个播放器可以免费观看大片| 欧美三级亚洲精品| 夫妻性生交免费视频一级片| 成人高潮视频无遮挡免费网站| 波多野结衣巨乳人妻| 免费少妇av软件| 久久久a久久爽久久v久久| 亚洲精品一区蜜桃| 嘟嘟电影网在线观看| 国产精品国产三级国产专区5o| 亚洲精品日本国产第一区| 高清欧美精品videossex| 王馨瑶露胸无遮挡在线观看| 亚洲欧美日韩卡通动漫| 听说在线观看完整版免费高清| 亚洲国产精品专区欧美| 少妇人妻 视频| 日本午夜av视频| 最新中文字幕久久久久| 97人妻精品一区二区三区麻豆| 黄片无遮挡物在线观看| 亚洲av欧美aⅴ国产| av网站免费在线观看视频| 亚洲精品自拍成人| 蜜臀久久99精品久久宅男| 国产亚洲5aaaaa淫片| 免费看a级黄色片| 国产精品国产三级专区第一集| 国产精品国产三级专区第一集| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美精品专区久久| 日本与韩国留学比较| 亚洲成人精品中文字幕电影| 亚洲欧美精品专区久久| 亚洲欧美成人综合另类久久久| 日韩大片免费观看网站| 久久国产乱子免费精品| 美女主播在线视频| 精品久久久久久久久亚洲| 99久久精品热视频| 一本色道久久久久久精品综合| 日本猛色少妇xxxxx猛交久久| 国国产精品蜜臀av免费| 舔av片在线| 免费观看性生交大片5| 国产成人a∨麻豆精品| 美女cb高潮喷水在线观看| 亚洲四区av| 免费黄色在线免费观看| 欧美丝袜亚洲另类| 香蕉精品网在线| 国产乱人偷精品视频| 又爽又黄a免费视频| tube8黄色片| 少妇的逼水好多| 色5月婷婷丁香| 亚洲国产日韩一区二区| 国产男女超爽视频在线观看| 我的老师免费观看完整版| 成人毛片a级毛片在线播放| 91午夜精品亚洲一区二区三区| 天天躁夜夜躁狠狠久久av| 2021天堂中文幕一二区在线观| 亚洲天堂av无毛| 日本wwww免费看| 亚洲av福利一区| 91久久精品国产一区二区三区| 中国国产av一级| 久久6这里有精品| 亚洲国产精品成人综合色| 一区二区三区四区激情视频| 性插视频无遮挡在线免费观看| 91精品伊人久久大香线蕉| videossex国产| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 在线精品无人区一区二区三 | 天堂网av新在线| 国产高清三级在线| 人妻 亚洲 视频| 91精品一卡2卡3卡4卡| 在线播放无遮挡| 熟女av电影| 国产精品.久久久| 夜夜看夜夜爽夜夜摸| 亚洲av中文av极速乱| 亚洲成人中文字幕在线播放| 亚洲国产av新网站| 日本猛色少妇xxxxx猛交久久| 国产视频首页在线观看| 性插视频无遮挡在线免费观看| 最近2019中文字幕mv第一页| 亚洲精品456在线播放app| 亚洲国产精品国产精品| 国产午夜精品一二区理论片| 91精品一卡2卡3卡4卡| 亚洲经典国产精华液单| 成年女人看的毛片在线观看| 22中文网久久字幕| 精品久久久久久久久亚洲| 777米奇影视久久| 天美传媒精品一区二区| 人妻少妇偷人精品九色| 又爽又黄无遮挡网站| 黄色欧美视频在线观看| 精品亚洲乱码少妇综合久久| 欧美3d第一页| 国产精品熟女久久久久浪| 亚洲欧美中文字幕日韩二区| 美女高潮的动态| 国产色爽女视频免费观看| 91精品一卡2卡3卡4卡| 少妇的逼水好多| 亚洲国产日韩一区二区| 国产午夜福利久久久久久| 亚洲天堂av无毛| 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影在线观看一区二区三区 | 久久久成人免费电影| 久久久国产一区二区| 亚洲av一区综合| 春色校园在线视频观看| 久久精品夜色国产| 成人亚洲精品av一区二区| 久久久久久久久久久丰满| 青春草视频在线免费观看| 人妻 亚洲 视频| 国产精品.久久久| 亚洲精品aⅴ在线观看| av国产免费在线观看| 日韩三级伦理在线观看| 色视频在线一区二区三区| 国产在视频线精品| 51国产日韩欧美| 高清毛片免费看| 国产日韩欧美在线精品| 十八禁网站网址无遮挡 | 99热6这里只有精品| 麻豆乱淫一区二区| 色视频www国产| 丝袜喷水一区| 少妇高潮的动态图| 两个人的视频大全免费| 久久精品国产自在天天线| 一级a做视频免费观看| 最近中文字幕高清免费大全6| 日本欧美国产在线视频| 久久久久久久大尺度免费视频| 欧美一级a爱片免费观看看| 伊人久久精品亚洲午夜| 寂寞人妻少妇视频99o| 日本午夜av视频| 丰满乱子伦码专区| 一个人观看的视频www高清免费观看| 99热6这里只有精品| av黄色大香蕉| 亚洲,欧美,日韩| 亚洲国产高清在线一区二区三| 久久国产乱子免费精品| 日韩av免费高清视频| videossex国产| 久久99热6这里只有精品| 国产日韩欧美亚洲二区| 国产伦在线观看视频一区| 大话2 男鬼变身卡| 亚洲av成人精品一二三区| 久久人人爽av亚洲精品天堂 | 成年人午夜在线观看视频| 久久久久久久大尺度免费视频| 成人午夜精彩视频在线观看| 大陆偷拍与自拍| 黄片wwwwww| a级毛片免费高清观看在线播放| 国产在视频线精品| 亚洲av不卡在线观看| 97超碰精品成人国产| 大话2 男鬼变身卡| 亚洲综合色惰| 精品少妇久久久久久888优播| 亚洲欧美中文字幕日韩二区| av在线老鸭窝| 网址你懂的国产日韩在线| 免费人成在线观看视频色| 国产欧美亚洲国产| 22中文网久久字幕| 99久久中文字幕三级久久日本| 欧美性感艳星| 午夜爱爱视频在线播放| 欧美高清性xxxxhd video| 麻豆成人av视频| 欧美精品一区二区大全| 亚洲国产av新网站| 久久人人爽av亚洲精品天堂 | 亚洲国产色片| 日日啪夜夜爽| 国产欧美亚洲国产| 亚洲精品久久久久久婷婷小说| 亚洲精品色激情综合| 卡戴珊不雅视频在线播放| a级毛色黄片| 国产成人a区在线观看| 欧美最新免费一区二区三区| 国产 一区精品| 综合色av麻豆| 国语对白做爰xxxⅹ性视频网站| 亚洲av不卡在线观看| 免费av观看视频| 中文天堂在线官网| 免费电影在线观看免费观看| 在线观看免费高清a一片| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩东京热| 亚洲av中文av极速乱| 一级a做视频免费观看| 亚洲精品国产av成人精品| 九九爱精品视频在线观看| 人妻一区二区av| 肉色欧美久久久久久久蜜桃 | 国产v大片淫在线免费观看| 国产精品人妻久久久久久| 人妻夜夜爽99麻豆av| 大码成人一级视频| 亚洲va在线va天堂va国产| 高清毛片免费看| 伦理电影大哥的女人| 国产真实伦视频高清在线观看| 丰满乱子伦码专区| 人妻少妇偷人精品九色| 男女无遮挡免费网站观看| 免费av不卡在线播放| 又大又黄又爽视频免费| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 亚洲三级黄色毛片| 国产精品久久久久久久电影| 久久久成人免费电影| 欧美成人a在线观看| 成人二区视频| 精品少妇黑人巨大在线播放| 两个人的视频大全免费| 在线观看三级黄色| 亚洲精品国产av成人精品| 日日啪夜夜爽| 久久女婷五月综合色啪小说 | av国产精品久久久久影院| 婷婷色av中文字幕| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看| 日韩av免费高清视频| 久久久久精品性色| 夜夜爽夜夜爽视频| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 美女cb高潮喷水在线观看| av在线app专区| 国产午夜福利久久久久久| 男女边吃奶边做爰视频| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 日日摸夜夜添夜夜添av毛片| 自拍偷自拍亚洲精品老妇| 自拍欧美九色日韩亚洲蝌蚪91 | .国产精品久久| 99热国产这里只有精品6| 亚洲,一卡二卡三卡| 国产精品久久久久久久久免| 小蜜桃在线观看免费完整版高清| 日韩一本色道免费dvd| 男女国产视频网站| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 国产有黄有色有爽视频| 99热网站在线观看| av国产精品久久久久影院| 一级av片app| 日日摸夜夜添夜夜添av毛片| 汤姆久久久久久久影院中文字幕| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 欧美老熟妇乱子伦牲交| 少妇人妻一区二区三区视频| 青青草视频在线视频观看| 又爽又黄无遮挡网站| 欧美日本视频| 久久99精品国语久久久| 噜噜噜噜噜久久久久久91| 99热6这里只有精品| 另类亚洲欧美激情| 国产乱人视频| 激情五月婷婷亚洲| 少妇人妻精品综合一区二区| 免费看不卡的av| av免费观看日本| 午夜老司机福利剧场| 国产爽快片一区二区三区| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 六月丁香七月| 老师上课跳d突然被开到最大视频| 色网站视频免费| 亚洲精品乱久久久久久| 日韩亚洲欧美综合| 欧美潮喷喷水| 蜜臀久久99精品久久宅男| 色视频在线一区二区三区| av.在线天堂| 国产精品无大码| 久久韩国三级中文字幕| 久久精品国产鲁丝片午夜精品| 99视频精品全部免费 在线| 国产成年人精品一区二区| 精品人妻熟女av久视频| 国产成人午夜福利电影在线观看| 只有这里有精品99| 久久99热这里只频精品6学生| 精品亚洲乱码少妇综合久久| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久 | 插逼视频在线观看| 国产成人免费观看mmmm| 国产亚洲av嫩草精品影院| 在线观看人妻少妇| 国产午夜福利久久久久久| 午夜激情久久久久久久| 国产精品久久久久久精品电影小说 | 99九九线精品视频在线观看视频| 久久99热6这里只有精品| 看免费成人av毛片| 中国三级夫妇交换| 一本一本综合久久| 中国美白少妇内射xxxbb| 少妇被粗大猛烈的视频| 日韩免费高清中文字幕av| 午夜精品一区二区三区免费看| 精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 熟妇人妻不卡中文字幕| 熟女电影av网| 国产精品三级大全| 免费看av在线观看网站| 色综合色国产| 黑人高潮一二区| 免费黄色在线免费观看| 亚洲欧美日韩东京热| 26uuu在线亚洲综合色| 禁无遮挡网站| 国产在线男女| 黄片wwwwww| 2021少妇久久久久久久久久久| 亚洲精品一二三| 婷婷色综合大香蕉| 一本久久精品| 国产欧美日韩精品一区二区| av播播在线观看一区| 18禁在线无遮挡免费观看视频| 可以在线观看毛片的网站| 亚洲精品,欧美精品| 一区二区三区免费毛片| 欧美97在线视频| 91aial.com中文字幕在线观看| 午夜福利视频精品| 国产日韩欧美在线精品| 久久99精品国语久久久| 一区二区三区免费毛片| 国产探花在线观看一区二区| 自拍偷自拍亚洲精品老妇| 欧美成人a在线观看| 国产成人a区在线观看| av在线观看视频网站免费| videossex国产| 可以在线观看毛片的网站| 五月伊人婷婷丁香| 久久久色成人| 搞女人的毛片| 精品久久久久久电影网| 国产亚洲精品久久久com| 亚洲精品一二三| 七月丁香在线播放| 国产美女午夜福利| 女人久久www免费人成看片| 中国三级夫妇交换| 国产乱来视频区| 精品国产一区二区三区久久久樱花 | 国产欧美日韩精品一区二区| 亚洲欧美精品专区久久| 欧美成人a在线观看| 国产在线男女| 午夜日本视频在线| 亚洲自偷自拍三级| 亚洲色图综合在线观看| 国产在视频线精品| 精品视频人人做人人爽| 美女脱内裤让男人舔精品视频| 在线观看一区二区三区| 午夜亚洲福利在线播放| 亚洲最大成人手机在线| 亚洲高清免费不卡视频| 毛片一级片免费看久久久久| 蜜桃亚洲精品一区二区三区| 午夜免费观看性视频| eeuss影院久久| 乱系列少妇在线播放| 人人妻人人澡人人爽人人夜夜| 久久久精品94久久精品| 精品99又大又爽又粗少妇毛片| 两个人的视频大全免费| 卡戴珊不雅视频在线播放| 赤兔流量卡办理| 久久久久久久久大av| 亚洲精品第二区| 老司机影院毛片| 嫩草影院精品99| 亚洲人成网站高清观看| 国产精品无大码| 在现免费观看毛片| 看免费成人av毛片| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 国产真实伦视频高清在线观看| 亚洲欧美中文字幕日韩二区| h日本视频在线播放| 一级毛片电影观看| 日日啪夜夜爽| 2021天堂中文幕一二区在线观| 一本一本综合久久| 三级经典国产精品| 亚洲精品国产成人久久av| 久久久a久久爽久久v久久| 精品久久久久久久久亚洲| 精品人妻熟女av久视频| 亚洲av二区三区四区| 亚洲国产欧美人成| 精品亚洲乱码少妇综合久久| 2022亚洲国产成人精品| 五月天丁香电影| 久久女婷五月综合色啪小说 | 干丝袜人妻中文字幕| 国产高潮美女av| 一个人观看的视频www高清免费观看| 久久亚洲国产成人精品v| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 久久久精品免费免费高清| 中国三级夫妇交换| 国产欧美日韩一区二区三区在线 | 99精国产麻豆久久婷婷| 成人漫画全彩无遮挡| 99热这里只有是精品50| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 永久免费av网站大全| 男男h啪啪无遮挡| 国产毛片在线视频| 国产成人免费无遮挡视频| 亚洲国产色片| 亚洲色图av天堂| 少妇裸体淫交视频免费看高清| 男女无遮挡免费网站观看| 少妇人妻久久综合中文| 干丝袜人妻中文字幕| 中文天堂在线官网| 女人十人毛片免费观看3o分钟| 免费av观看视频| 九色成人免费人妻av| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 久久久久性生活片| 两个人的视频大全免费| 久久久久九九精品影院| 天天一区二区日本电影三级| 狂野欧美激情性xxxx在线观看| 欧美97在线视频| 日韩大片免费观看网站| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 国产亚洲一区二区精品| 久久久久久九九精品二区国产| 久久午夜福利片| 九草在线视频观看| 综合色丁香网| 80岁老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 久久精品夜色国产| 成人毛片a级毛片在线播放| 免费观看的影片在线观看| 欧美区成人在线视频| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡 | 久久鲁丝午夜福利片| 成人特级av手机在线观看| 丝袜喷水一区| 亚洲av男天堂| 亚洲国产精品国产精品| 免费播放大片免费观看视频在线观看| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 国产成人aa在线观看| 边亲边吃奶的免费视频| 午夜福利视频1000在线观看| 少妇高潮的动态图| 免费观看性生交大片5| 亚洲,欧美,日韩| 舔av片在线| 中文资源天堂在线| 一级毛片电影观看| 久久久精品免费免费高清| 啦啦啦在线观看免费高清www| 国产综合懂色| 日本wwww免费看| 精品亚洲乱码少妇综合久久| 男女下面进入的视频免费午夜| 国产一级毛片在线| 日产精品乱码卡一卡2卡三| 丝袜脚勾引网站| 国产精品一区二区性色av| 热99国产精品久久久久久7| av福利片在线观看| 久久午夜福利片| av天堂中文字幕网| 国产成人a∨麻豆精品| 五月开心婷婷网| 国产免费视频播放在线视频| h日本视频在线播放| 成人漫画全彩无遮挡| 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 国产色爽女视频免费观看| 国产欧美另类精品又又久久亚洲欧美| 高清毛片免费看| 免费av毛片视频| 亚洲av在线观看美女高潮| 日韩不卡一区二区三区视频在线| 午夜精品国产一区二区电影 | 午夜亚洲福利在线播放| 欧美激情国产日韩精品一区| 午夜亚洲福利在线播放| 亚洲在久久综合| 女人十人毛片免费观看3o分钟| 白带黄色成豆腐渣| 在线观看免费高清a一片| 看十八女毛片水多多多| 国产免费一区二区三区四区乱码| 在线a可以看的网站| 一级毛片我不卡| 高清午夜精品一区二区三区| 美女cb高潮喷水在线观看| 国产有黄有色有爽视频| 99久久精品国产国产毛片| 国产精品久久久久久久电影| 国产在视频线精品| 欧美最新免费一区二区三区| 插阴视频在线观看视频| 欧美三级亚洲精品| 在线 av 中文字幕| 午夜福利网站1000一区二区三区| 午夜爱爱视频在线播放| 婷婷色麻豆天堂久久| 免费在线观看成人毛片| 国产一区二区三区av在线| 国产v大片淫在线免费观看| 久久精品久久久久久噜噜老黄| 亚洲av不卡在线观看| 国内揄拍国产精品人妻在线| 熟妇人妻不卡中文字幕| 精品一区二区免费观看| 国产成人精品一,二区| 亚洲国产欧美在线一区| 亚洲不卡免费看| 精华霜和精华液先用哪个| 狠狠精品人妻久久久久久综合| freevideosex欧美| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 大香蕉97超碰在线| 成人毛片a级毛片在线播放| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 亚洲成人一二三区av| 久久久亚洲精品成人影院| 人妻系列 视频| 少妇被粗大猛烈的视频| 亚洲精品一区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91 | 中国国产av一级| 国产一区二区三区综合在线观看 | 久久99精品国语久久久| 极品教师在线视频| www.色视频.com| 国产探花在线观看一区二区| 精品一区在线观看国产| 成人黄色视频免费在线看| 国产爽快片一区二区三区| 大码成人一级视频| 国产精品人妻久久久久久| 午夜亚洲福利在线播放| www.av在线官网国产| 成人无遮挡网站| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网| av国产免费在线观看| 中文字幕人妻熟人妻熟丝袜美|