耿小雪, 周 怡, 徐 瑋, 張文兵, 麥康森
(中國海洋大學(xué) 水產(chǎn)學(xué)院,水產(chǎn)動物營養(yǎng)與飼料農(nóng)業(yè)部重點實驗室,海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)
?
飼料中添加Fortilin蛋白對凡納濱對蝦免疫反應(yīng)和抗白斑綜合征病毒感染的影響?
耿小雪, 周怡, 徐瑋, 張文兵??, 麥康森
(中國海洋大學(xué) 水產(chǎn)學(xué)院,水產(chǎn)動物營養(yǎng)與飼料農(nóng)業(yè)部重點實驗室,海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)
為研究飼料中添加畢赤酵母表達(dá)的翻譯控制腫瘤蛋白fortilin對凡納濱對蝦免疫反應(yīng)和抗白斑綜合征病毒(WSSV)感染能力的影響。以酵母表達(dá)上清凍干粉和酵母培養(yǎng)物凍干粉2種形式在基礎(chǔ)飼料中分別添加100mg/kg的重組fortilin蛋白和空質(zhì)粒重組蛋白,制成4種實驗飼料,以基礎(chǔ)飼料作為空白對照,設(shè)計5個實驗組:基礎(chǔ)飼料組(C)、酵母表達(dá)上清凍干粉組(P-1)、酵母培養(yǎng)物凍干粉組(P-2)、fortilin酵母上清凍干粉組(F-1)和fortilin酵母培養(yǎng)凍干粉組(F-2)。用5種飼料分別飼喂初始體重(4.87±0.26)g的凡納濱對蝦20d,隨后進(jìn)行WSSV攻毒實驗。養(yǎng)殖實驗表明,F(xiàn)-1組和F-2組中凡納濱對蝦血淋巴的血細(xì)胞數(shù)(THC)、呼吸爆發(fā)活性(RB)和血清酚氧化酶活性(PO)顯著高于C組(P<0.05)。F-2組的THC、RB、PO和超氧化物歧化酶(SOD)活性均顯著高于P-2組(P<0.05)。F-1組的PO和一氧化氮合酶(NOS)活性顯著高于P-1組(P<0.05)。攻毒實驗顯示,飼料中添加fortilin蛋白顯著降低了凡納濱對蝦的死亡率(P<0.05):F-1和F-2組的累計死亡率分別為19.2%和15.4%,P-1和P-2組的累計死亡率分別為56.0%和47.8%,C組累計死亡率為84.6%。研究結(jié)果表明,凡納濱對蝦攝食添加重組fortilin蛋白的飼料后,對蝦的免疫力和抗WSSV感染的能力顯著增強(qiáng)。
凡納濱對蝦;fortilin蛋白;白斑綜合征病毒;免疫;飼料
引用格式:耿小雪, 周怡, 徐瑋, 等. 飼料中添加fortilin蛋白對凡納濱對蝦免疫反應(yīng)和抗白斑綜合征病毒感染的影響[J].中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2016, 46(10): 32-38.
GENG Xiao-Xue, ZHOU Yi, XU Wei, et al. Effect of dietary fortilin on immune response of white shrimpLitopenaeusvannameiand its resistance against white spot syndrome virus infection [J]. Periodical of Ocean University of China, 2016, 46(10): 32-38.
凡納濱對蝦(Litopenaeusvannamei)又稱南美白對蝦,是目前中國養(yǎng)殖產(chǎn)量最高的對蝦品種。2013年中國凡納濱對蝦養(yǎng)殖總產(chǎn)量達(dá)到142.99萬t,占全國蝦養(yǎng)殖總產(chǎn)量的51.4%[1]。但是,白斑綜合征病毒(WSSV)病的頻繁發(fā)生給對蝦養(yǎng)殖造成重大經(jīng)濟(jì)損失,這是限制凡納濱對蝦養(yǎng)殖業(yè)持續(xù)穩(wěn)定發(fā)展的主要因素之一[2]。
Fortilin蛋白也稱翻譯控制腫瘤蛋白(Translationally controlled tumor protein,TCTP),是一種廣泛表達(dá)、高度保守的真核蛋白,最初在小鼠艾氏腹水腫瘤細(xì)胞和紅白血病細(xì)胞中發(fā)現(xiàn)。該蛋白的mRNA是以一種mRNA-蛋白復(fù)合體的形式存在,表達(dá)量在腫瘤細(xì)胞中高于正常細(xì)胞,并且它的表達(dá)還在翻譯水平上受到高度的調(diào)控[3-4]。在哺乳動物中,TCTP具有鈣離子結(jié)合功能[5]、微管蛋白結(jié)合功能[6]、參與細(xì)胞應(yīng)激及細(xì)胞凋亡的功能[7]等。動物界中fortilin氨基酸序列相當(dāng)保守[7],對蝦fortilin與人類fortilin有64%的氨基酸是一致的。目前,研究者們已經(jīng)克隆到多種對蝦的fortilin/TCTP基因[8-10],并指出fortilin參與對蝦抗白斑綜合征病毒(White spot syndrome virus,WSSV)的反應(yīng),增強(qiáng)對蝦抗WSSV感染的能力[11]。斑節(jié)對蝦肌肉注射WSSV后,對蝦的Pm-fortilin基因表達(dá)量上調(diào)[8],給斑節(jié)對蝦注射重組Pm-fortilin蛋白后,進(jìn)行WSSV攻毒,存活率高達(dá) 80%~100%,且通過巢式PCR檢測發(fā)現(xiàn),瀕死對蝦血淋巴的WSSV水平比存活對蝦的高很多[12]。Pm-fortilin在昆蟲細(xì)胞系中的過表達(dá)研究發(fā)現(xiàn)fortilin可以通過信號通路和轉(zhuǎn)錄控制來干擾WSSV的繁殖[11],但是具體的機(jī)制還不清楚。凡納濱對蝦的fortilin/TCTP基因也早已被克隆提交到NCBI中(GenBank: EU305625.1),但關(guān)于該基因所表達(dá)的蛋白抗WSSV感染的研究卻不多。
近年來,關(guān)于抗WSSV蛋白疫苗和抗病毒蛋白的研究很多[13-14],這些都?xì)w功于重組蛋白體外表達(dá)的簡便性和經(jīng)濟(jì)性。畢赤酵母表達(dá)系統(tǒng)是一種高效、安全的真核表達(dá)系統(tǒng),具有表達(dá)外源蛋白用于規(guī)模化生產(chǎn)的優(yōu)勢。在對蝦的規(guī)模化集約養(yǎng)殖過程中,難以通過注射的方式為對蝦提供fortilin蛋白來達(dá)到抗病的目的。投喂飼料是對蝦養(yǎng)殖的日常行為,以飼料為載體使養(yǎng)殖動物口服活性制劑,具有使用范圍廣、養(yǎng)殖成本低、可行性好等優(yōu)點。本研究擬探討投喂含有畢赤酵母表達(dá)的fortilin蛋白的飼料,對凡納濱對蝦免疫反應(yīng)和抗病力的影響,以期為fortilin蛋白在凡納濱對蝦配合飼料中的使用提供基礎(chǔ)數(shù)據(jù)。
1.1 重組蛋白干粉的制備
參照周怡等的方法[15],得到重組酵母X33/pGAPZαA-Fortilin和空載酵母X33/pGAPZαA。簡單來說,根據(jù)Genbank中fortilin的基因序列設(shè)計引物,PCR擴(kuò)增得到凡納濱對蝦fortilin目的基因片段,將fortilin基因連接到表達(dá)載體pGAPZαA中,獲得酵母重組表達(dá)載體pGAPZαA-Fortilin,以pGAPZαA空載體作為對照,轉(zhuǎn)化X-33畢赤酵母細(xì)胞。對陽性重組酵母表達(dá)產(chǎn)物的上清液進(jìn)行聚丙烯酰胺凝膠電泳分析和質(zhì)譜分析,來證明畢赤酵母能夠成功表達(dá)fortilin蛋白。
取X-33/pGAPZαA和X-33/pGAPZαA-Fortilin菌液分別接種于1L的YPD培養(yǎng)基(1%酵母提取物,2%蛋白胨,2%葡萄糖)中,在溫度30℃和轉(zhuǎn)速220r/min條件下振蕩培養(yǎng)約72h。培養(yǎng)結(jié)束后,取出500mL收集酵母培養(yǎng)物,剩余的500mL酵母培養(yǎng)物在溫度為4℃和轉(zhuǎn)速為10000r/min條件下離心3min后,收集酵母表達(dá)上清液。隨后將酵母培養(yǎng)物和酵母表達(dá)上清液均于液氮中速凍后儲存在-80℃冰箱,然后冷凍干燥成干粉。
1.2 實驗飼料的制作
飼料中蛋白源主要是白魚粉、豆粕和花生粕,脂肪源主要是魚油和大豆卵磷脂,具體基礎(chǔ)飼料配方見表1。在基礎(chǔ)飼料中分別添加pGAPZαA-fortilin重組酵母的表達(dá)上清干粉和酵母培養(yǎng)物干粉,添加濃度為100mg/kg。同時,制作pGAPZαA重組酵母的上清干粉和酵母培養(yǎng)物干粉添加的飼料組,添加濃度也為100mg/kg。具體實驗飼料設(shè)計見表2。
表1 基礎(chǔ)飼料配方Table 1 Ingredients of the basal diet
注:1白魚粉White fish meal:粗蛋白Crude protein 67.5%,粗脂肪Crude lipid 7.8%,均為干物質(zhì)基礎(chǔ)Dry weight basis。
2維生素預(yù)混料Vitamin premix(mg/kg):鹽酸硫胺素Thiamin 90mg;核黃素Riboflavin 150mg;鹽酸吡哆醇Pyridoxine HCl 210mg;VB120.03mg;VK350mg;肌醇Inositol 600mg;泛酸鈣Calcium pantothenate 150mg;尼克酸Niacin acid 600mg;葉酸Folic acid 15mg;生物素Biotin 1.20mg;醋酸視黃醇Retinol acetate 32mg;VD312mg;VE 120mg;乙氧基喹啉Ethoxyquin 150mg。
3礦物質(zhì)預(yù)混料Mineral premix(mg/kg) :KI 0.8mg;CoCl2·6H2O(1%) 40mg;CuSO4·5H2O 100mg;FeSO4·7H2O 450mg;ZnSO4·H2O 250mg;MnSO4·H2O 60mg;MgSO4·7H2O 4000mg;Ca(H2PO4)2·H2O 10600mg。
表2 各實驗處理飼料組成Table 2 Formulation of the experimental diets
1.3 實驗動物與飼養(yǎng)管理
實驗用凡納濱對蝦為同一批孵化的蝦苗,購于青島寶榮水產(chǎn)科技發(fā)展有限公司。正式實驗前,蝦苗放于室內(nèi)海水系統(tǒng)中暫養(yǎng),期間飼喂基礎(chǔ)飼料。暫養(yǎng)10d后,挑選個體大小均勻的健康對蝦(體長5~6cm,體重(4.87±0.26)g)隨機(jī)分配到中國海洋大學(xué)水產(chǎn)館室內(nèi)海水養(yǎng)殖系統(tǒng)中的15只容積為50L的玻璃缸中進(jìn)行養(yǎng)殖實驗。共設(shè)置5個處理,每個處理3個重復(fù),每個重復(fù)12尾蝦。Bai等給凡納濱對蝦連續(xù)投喂β-葡聚糖或甘草酸等單一的免疫增強(qiáng)劑,發(fā)現(xiàn)作用有效期為20d左右,更長的投喂會造成對蝦免疫疲勞[16],因此本養(yǎng)殖實驗持續(xù)20d。初始投餌量為對蝦體重的5%~10%,然后根據(jù)對蝦的實際攝食情況對投餌量進(jìn)行適當(dāng)?shù)恼{(diào)整。每天分別在6:00、11:00和18:00喂飼對蝦,投喂2h后吸去殘餌和糞便。在養(yǎng)殖過程中需要連續(xù)充氣,海水鹽度為30~32,海水溫度控制在24~28℃,pH為7.8~8.2,水中溶解氧不低于6.5mg/L。
1.4 攻毒實驗
養(yǎng)殖實驗結(jié)束后進(jìn)行WSSV攻毒實驗。參照Xie等的方法[17]提取病毒并做了一定得調(diào)整,取WSSV攻毒后病蝦的血淋巴及鰓,鰓組織勻漿液和血淋巴離心后收集上清,將該上清在4℃條件下,30 000g離心30min,收集病毒顆粒沉淀,用PBS緩沖液(0.01mol/L Na2HPO4,0.01mol/L NaH2PO4,0.15mol/L NaCl,pH=7.2)重懸,即得到WSSV病毒的母液,于-80℃保存。用PBS緩沖液稀釋病毒為10-1~10-6,預(yù)實驗確定合適WSSV病毒攻毒濃度為1×10-5,通過肌肉注射感染凡納濱對蝦,每尾對蝦注射50μL病毒稀釋液。攻毒后繼續(xù)投喂相應(yīng)的實驗飼料(C、P-1、P-2、F-1和F-2),對應(yīng)的攻毒實驗組分別是Control-WSSV、P-1、P-2、F-1和F-2,持續(xù)喂養(yǎng)10 d。同時以注射等量PBS的實驗組(Control-PBS)作為陰性對照,投喂基礎(chǔ)飼料。攻毒實驗期間日常管理與養(yǎng)殖實驗期間相同。攻毒實驗結(jié)束后,對凡納濱對蝦的累計死亡率進(jìn)行統(tǒng)計。
累積死亡率=Dt/D0× 100%。
式中D0和Dt分別為攻毒實驗對蝦初始尾數(shù)和累計死亡尾數(shù)。
1.5 對蝦樣品采集與分析1.5.1 對蝦血淋巴的采集養(yǎng)殖實驗結(jié)束后,從每個重復(fù)中隨機(jī)取出3尾對蝦,經(jīng)過75%的酒精消毒后,用無菌注射器自腹血竇進(jìn)行取血。吸取對蝦血淋巴抗凝劑(10mmol/L EDTA·Na2,450mmol/L NaCl,10mmol/L KCl,10mmol/L HEPES,pH=7.3,調(diào)節(jié)滲透壓至850mOsm/kg)[18]至抗凝劑與血淋巴的體積比為2∶1,混勻后即得到抗凝血。血細(xì)胞計數(shù)和呼吸爆發(fā)活性的測定用抗凝血,而酚氧化酶活力、總超氧化物歧化酶活力和一氧化氮合酶的活力用經(jīng)離心后收集的血清。
1.5.2 對蝦免疫指標(biāo)的測定血細(xì)胞計數(shù):取20μL抗凝血滴在血球計數(shù)板上,在普通光學(xué)顯微鏡(×200)下直接計數(shù),然后折算出每毫升對蝦血淋巴中血細(xì)胞的數(shù)量。
酚氧化酶(PO)活性的測定:血清PO活性的測定參考 Hernández-López 等的方法[19],以實驗條件下每分鐘每毫升血淋巴上清液對應(yīng)的吸光值(492nm)增加0.001為一個酶活力單位。
呼吸爆發(fā)(RB)活性的測定:參考 Song 等的方法[20],以實驗條件下每106個血淋巴細(xì)胞對應(yīng)的吸光值(630nm)來表示RB活性。
總超氧化物歧化酶(T-SOD)活性的測定:血清T-SOD活力的測定采用黃嘌呤氧化酶法,使用南京建成試劑盒測定。SOD活性定義為每毫升反應(yīng)液中SOD抑制率達(dá)到50%時所對應(yīng)的SOD量為一個SOD活力單位。
一氧化氮合酶(NOS)活性的測定:血清NOS活力的測定采用化學(xué)比色法,使用南京建成試劑盒測定,NOS活力定義為每毫升樣品每分鐘生成1nmol一氧化氮為一個酶活力單位。
1.6 數(shù)據(jù)統(tǒng)計分析
用 SPSS 統(tǒng)計軟件對實驗各處理的數(shù)據(jù)進(jìn)行單因素方差分析,當(dāng)不同處理之間存在顯著差異(P<0.05)時,采用 Tukey 檢驗進(jìn)行多重比較。所有數(shù)值用平均值±標(biāo)準(zhǔn)誤表示。
2.1 重組酵母表達(dá)上清SDS-PAGE檢測
如圖1所示,經(jīng)考馬斯亮藍(lán)R-250染色后,與空載質(zhì)粒pGAPZαA的酵母發(fā)酵上清相比,重組酵母pGAPZαA-Fortilin發(fā)酵上清明顯存在大小約為30kDa的目的蛋白條帶(箭頭標(biāo)識)。質(zhì)譜分析結(jié)果表明得到了fortilin肽段序列(見表3),說明fortilin蛋白成功分泌到發(fā)酵上清中。
綜上所述,通過詳細(xì)介紹了建筑室內(nèi)裝飾裝修設(shè)計當(dāng)中綠色環(huán)保設(shè)計理念的應(yīng)用要點,本建筑工程室內(nèi)裝飾裝修施工已經(jīng)順利完成,經(jīng)過檢驗之后,建筑室內(nèi)裝飾裝修各項指標(biāo)滿足相關(guān)要求,室內(nèi)裝修質(zhì)量較高,說明以上措施可行,可以為相關(guān)工程提供良好借鑒。
(泳道1:蛋白質(zhì)分子量標(biāo)準(zhǔn)(97.2、66.4、44.3、29.0和20.1kDa);泳道2~4:X-33/pGAPZαA-Fortilin;泳道5:X-33/pGAPZαA。Lane1: Protein molecular weight markers (97.2、66.4、44.3、29.0和20.1kDa);Lane 2~4:X-33/pGAPZαA-Fortilin;Lane 5:X-33/pGAPZαA.)
圖1 重組酵母發(fā)酵上清SDS-PAGE電泳Fig.1 SDS-PAGE analysis of recombinant protein expression in P. Pastoris表3 Fortilin蛋白質(zhì)譜檢測Mascot分析結(jié)果Table 3 Mascot Search Results of MS/MS about Fortilin
2.2 血細(xì)胞計數(shù)
由表4可知,各處理組間血細(xì)胞數(shù)量有顯著差異(P<0.05),所有酵母培養(yǎng)物及上清處理組(P-1、P-2、F-1和F-2)血細(xì)胞數(shù)均顯著高于基礎(chǔ)飼料組(C)。F-2組血細(xì)胞數(shù)(2.48×107cell/mL)顯著高于P-2和P-1組(P<0.05)。F-1組血細(xì)胞數(shù)也顯著高于P-2組(P<0.05),而其它組間的血細(xì)胞數(shù)沒有顯著差異。
2.3 酚氧化酶活性
由表4可知, F-2和F-1組酚氧化酶活性顯著高于C、P-2和P-1組(P<0.05),其他各組之間均無顯著差異。
2.4 呼吸爆發(fā)活性
由表4可知, F-2和F-1組呼吸爆發(fā)活性顯著高于C組,并且F-2組呼吸爆發(fā)活性也顯著高于P-2和P-1組(P<0.05);P-2和P-1組與C組卻無顯著性差異(P>0.05);其它酵母培養(yǎng)物和上清處理組間的呼吸爆發(fā)活性沒有顯著差異。
2.5 超氧化物歧化酶活性
由表4可知, F-2和F-1組超氧化物歧化酶活性顯著高于P-2組(P<0.05),其他各組之間沒有出現(xiàn)顯著性差異。
由表4可知,F(xiàn)-1組一氧化氮合酶活性顯著高于其他各個處理組(P-1,P-2,F(xiàn)-2和C)(P<0.05),其他各組之間均無顯著性差異。
表4 飼料中添加fortilin對凡納濱對蝦免疫反應(yīng)的影響(平均值±標(biāo)準(zhǔn)誤)Table 4 Effects of dietary fortilin on the immune responses of L. vannamei (Mean ± SE)
注:表中同一列數(shù)據(jù)中具有相同上標(biāo)字母表示差異不顯著(P>0.05)。
Note:Means in each column with the same superscripts have no significant differences (P>0.05).
2.7 攻毒結(jié)果
病毒感染實驗的數(shù)據(jù)及分析結(jié)果見圖2,表明基礎(chǔ)飼料中添加重組蛋白pGAPZαA-fortilin提高了WSSV攻毒后凡納濱對蝦的存活率。從圖中可知,凡納濱對蝦攻毒后5~8 d死亡率大幅度增加,之后趨于穩(wěn)定狀態(tài)。與基礎(chǔ)飼料攻毒組(Control-WSSV)相比,給凡納濱對蝦喂食含有pGAPZαA-fortilin重組蛋白的飼料后,可顯著提高其抵抗WSSV侵染的能力(P<0.05),其中F-1和F-2組的累計死亡率分別為19.2%和15.4%; P-2組同樣顯著提高了對蝦病毒感染后的存活率(P<0.05),而P-1組卻無顯著性差異,P-1和P-2的累計死亡率分別為56.0%和47.8%,然而基礎(chǔ)飼料組(Control-WSSV)攻毒后累計死亡率高達(dá)84.6%。F-1組的累計死亡率顯著性低于P-1組(P<0.05),而F-2組的累計死亡率雖然低于P-2組,卻未出現(xiàn)顯著性差異,說明fortilin蛋白對提高對蝦抗WSSV侵染具有重要作用。
圖2 WSSV攻毒后凡納濱對蝦的累積死亡率Fig.2 Cumulative mortality of shrimp challenged with WSSV
研究表明,對蝦血細(xì)胞數(shù)與蝦體健康狀況密切相關(guān)。葡聚糖、脂多糖、滅活哈維氏弧菌和滅活鰻弧菌等免疫增強(qiáng)劑能顯著提高對蝦的總血細(xì)胞數(shù)量[21-22]。本研究飼料中添加100mg/kg的fortilin重組蛋白顯著提高了凡納濱對蝦血細(xì)胞數(shù),表明fortilin重組蛋白可能通過提高對蝦血細(xì)胞數(shù)量來調(diào)節(jié)對蝦細(xì)胞免疫。本實驗同時還發(fā)現(xiàn)與基礎(chǔ)飼料C組相比,P-1和P-2組的血細(xì)胞數(shù)顯著增高,而F-1組的血細(xì)胞數(shù)雖然高于P-1組,但并未出現(xiàn)顯著性的差異。這說明畢赤酵母本身也是一種免疫增強(qiáng)劑,這點在Burgents等的研究中也有體現(xiàn)[23]。
酚氧化酶活性的高低反映著對蝦的免疫狀態(tài)[24],病原體的入侵可以激活蝦體的酚氧化酶原系統(tǒng),從而殺死包括病毒在內(nèi)的病原微生物,從而達(dá)到免疫的效果[25-27]。本研究中fortilin重組蛋白能顯著提高凡納濱對蝦血清中PO活性,該結(jié)果與血細(xì)胞數(shù)的相符,均說明對蝦血清PO活性的增強(qiáng)以及血細(xì)胞數(shù)目的增多可以看作是對蝦免疫力增強(qiáng)的體現(xiàn)。而且無論是發(fā)酵上清組還是酵母培養(yǎng)物組,含有fortilin蛋白的實驗組的PO活性均顯著高于空載組,而P-1和P-2組的PO活性與空白對照組無顯著性差異,說明fortilin蛋白作為外源物激活了酚氧化酶活性。
當(dāng)對蝦等甲殼動物受到外界病原刺激時,吞噬細(xì)胞會激活磷酸己糖支路代謝,從而引發(fā)呼吸爆發(fā),產(chǎn)生大量活性氧,繼而殺滅被吞噬的病原,這是吞噬作用消除入侵機(jī)體的病原的重要機(jī)制[28]。本研究發(fā)現(xiàn)fortilin重組蛋白能顯著提高凡納濱對蝦血細(xì)胞的呼吸爆發(fā)活性,說明fortilin激活了呼吸爆發(fā)途徑,但具體機(jī)制尚不清楚。這與周怡等進(jìn)行的對蝦血細(xì)胞體外培養(yǎng)實驗證明fortilin不能激活活性氧生成的結(jié)果不一致[21],這可能是因為體外細(xì)胞實驗與體內(nèi)實際情況存在差異。呼吸爆發(fā)途徑的激活會產(chǎn)生活性氧,但是大量活性氧對機(jī)體本身也會造成一定的氧化危害[29],超氧化物歧化酶可催化活性氧生成對機(jī)體無害的物質(zhì),從而消除活性氧對機(jī)體細(xì)胞的直接毒害[30],以達(dá)到增強(qiáng)對蝦免疫力的目的。本研究發(fā)現(xiàn)fortilin重組蛋白可以提高凡納濱對蝦血清超氧化物歧化酶活性,但差異不顯著,猜測fortilin蛋白提高RO活性產(chǎn)生的活性氧并未對機(jī)體產(chǎn)生損傷,因此不需要提高SOD活性消除活性氧來保護(hù)機(jī)體細(xì)胞,這可能是由于fortilin蛋白雖然是外源物質(zhì),但是并不像病原物那樣引起機(jī)體強(qiáng)烈免疫應(yīng)急 。但是空載酵母培養(yǎng)物組的SOD活性卻顯著低于fortilin的2個實驗組,是否說明fortilin在提高SOD活性方面也具有重要作用,還需進(jìn)一步確認(rèn)。一氧化氮合酶系統(tǒng)在對蝦疾病感染的早期起到一定防御作用[31],NOS也是對蝦免疫相關(guān)的重要活性酶。本實驗中,fortilin重組蛋白可以提高NOS的活性,特別是fortilin凍干上清組,顯著高于基礎(chǔ)飼料組和空載實驗組,說明fortilin蛋白可以通過作用于一氧化氮合酶系統(tǒng)來提高對蝦的免疫能力。
WSSV注射感染的實驗結(jié)果與酶活免疫反應(yīng)的結(jié)果一致,飼料中添加100mg/kg的fortilin重組蛋白增強(qiáng)了凡納濱對蝦的免疫力,提高了WSSV感染后對凡納濱對蝦的存活率。Tonganunt等給斑節(jié)對蝦飼喂含原核表達(dá)的Pm-fortilin蛋白的飼料,WSSV攻毒后存活率僅有10%[10],本實驗中F-1組凡納濱對蝦的存活率高達(dá)80.8%,可能因為實驗中使用的是未純化重組蛋白,酵母本身具有一定的免疫增強(qiáng)及抗病作用,且酵母表達(dá)蛋白的活性要優(yōu)于原核表達(dá)蛋白,同時也可能與實驗對蝦品種的不同及投喂周期長短的不同有關(guān)。Sinthujaroen等研究發(fā)現(xiàn),給凡納濱對蝦飼喂3 d含1%和5%畢赤酵母表達(dá)的Pm-fortilin重組蛋白飼料后,進(jìn)行WSSV注射攻毒,最終存活率分別為66.7%和91.7%[32]。本實驗也得到了相似的結(jié)果,飼喂F-2組的存活率為84.6%,與5%的Pm-fortilin組的91.7%的存活率相比,本研究中fortilin組的存活率稍低。究其原因,可能是由于fortilin蛋白的來源不同,或飼料中fortilin的添加量不同而造成,具體原因尚有待進(jìn)一步研究。從本研究中可知,對蝦累計死亡率:F-2 總的來說,飼料中添加100 mg/kg的重組fortilin蛋白可以通過提高總血細(xì)胞數(shù)、酚氧化酶活性和呼吸爆發(fā)活力以提高凡納濱對蝦的免疫力,同時提高其WSSV感染后的存活率。然而,凡納濱對蝦飼料中重組fortilin蛋白的最適使用量尚待進(jìn)一步研究。 [1]農(nóng)業(yè)部漁業(yè)局. 中國漁業(yè)統(tǒng)計年鑒[M]. 北京: 中國農(nóng)業(yè)出版社, 2014: 28-30. Fisheries Service of Ministry of Agriculture. China Fishery Statistical Yearbook [M]. Beijing: China Agriculture Press, 2014: 28-30. [2]Escobedo-Bonilla C M. Application of RNA interference (RNAi) against viral infections in shrimp: a review[J]. Antivirals & Antiretrovirals, 2011, 9: 2. [3]Yenofsky R, Cereghini S, Krowczynska A, et al. Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide [J]. Molecular and Cellular Biology, 1983, 3(7): 1197-1203. [4]Bohm H, Benndorf R, Gaestel M, et al. The growth-related protein P23 of the Ehrlich ascites tumor: translational control, cloning and primary structure [J]. Biochemistry International, 1989, 19(2): 277-286. [5]Xu A, Bellamy A R, Taylor J A. Expression of translationally controlled tumor protein is regulated by calcium at both the transcriptional and post transcriptional level [J].Biochemistry Journal, 1999, 342(3): 683-689. [6]Gachet Y, Tournier S, Lee M, et al. The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein an associates transiently with microtubules during the cell cycle [J]. Journal of Cell Science, 1999, 112: 1257-1271. [7]Bommer U A, Thiele B J. The translationally controlled tumor protein (TCTP) [J]. International Journal of Biochemistry and Cell Biology, 2004, 36(3): 379-385. [8]Bangrak P, Graidist P, Chotigeat W, et al. Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein (TCTP) gene fromPenaeusmonodonshrimp [J]. Journal of Biotechnology, 2004, 108(3): 219-226. [9]Chen D, He N, Lei K, et al. Genomic organization of the translationally controlled tumor protein (TCTP) gene from shrimpMarsupenaeusjaponicas[J]. Molecular Biology Reports, 2009, 36(5): 1135-1140. [10]Wang S, Zhao X F, Wang J X. Molecular cloning and characterization of the translationally controlled tumor protein fromFenneropenaeuschinensis[J]. Molecular Biology Reports, 2009, 36(7): 1683-1693. [11]Nupan B, Phongdara A, Saengsakda M, et al. Shrimp Pm-fortilin inhibits the expression of early and late genes of white spot syndrome virus (WSSV) in an insect cell model[J]. Developmental & Comparative Immunology, 2011, 35(4): 469-475. [12]Tonganunt M, Nupan B, Saengsakda M, et al. The role of Pm-fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection [J]. Fish & Shellfish Immunology, 2008, 25 (5): 633-637. [13]Musthaq S K S, Kwang J. Evolution of specific immunity in shrimp-A vaccination perspective against white spot syndrome virus[J]. Developmental & Comparative Immunology, 2014, 48 (2): 342-353. [14]Pathan M, Gireesh-Babu P, Pavan-Kumar A, et al. In vivo therapeutic efficacy of recombinantPenaeusmonodonantiviral protein (rPmAV) administered in three different forms to WSSV infectedPenaeusmonodon[J]. Aquaculture, 2013, 376-379: 64-67. [15]周怡, 張文兵, 麥康森. 凡納濱對蝦翻譯控制腫瘤蛋白Fortilin的畢赤酵母表達(dá)及其對血細(xì)胞免疫反應(yīng)的影響[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2012, 42(1-2): 54-58. Zhou Y, Zhang W B, Mai K S. Secretion expression of fortilin in yeastPichiapastorisand its effects on immune responses of hemocytes in white shrimpLitopenaeusvannamei[J]. Journal of Ocean University of China,2012,42(1-2): 54-58. [16]Bai N, Zhang W B, Mai K S, et al. Effects of discontinuous administration of β-glucan and glycyrrhizin on the growth and immunity of white shrimpLitopenaeusvannamei[J]. Aquaculture, 2010, 306(1-4): 218-224. [17]Xie X X, Li H Y, Xu L M, et al. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles [J]. Virus Research, 2005, 108(1): 63-67. [18]Vargas-Albores F, Guzmán M A, Ochoa J L. An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeuscaliforniensis) [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1993, 106(2): 299-303. [19]Hernández-López J, Gollas-Galván T, Vargas-Albores F. Activation of the prophenoloxidase system of the brown shrimp (Penaeuscaliforniensis) Holmes[J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1996, 113(1): 61-66. [20]Song Y L, Hsieh Y T. Immunostimplation of tiger shrimp (Penaeusmonodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species[J]. Developmental & Comparative Immunology, 1994, 18(3): 201-209. [21]姜令緒, 潘魯青, 肖國強(qiáng). 氨氮對凡納對蝦免疫指標(biāo)的影響[J]. 中國水產(chǎn)科學(xué), 2004, 11(6): 537-541. Jiang L X, Pan L Q, Xiao G Q. Effects of ammonia-N on immune parameters of white shrimpLitopenaeusvannamei[J]. Journal of Fishery Sciences of China, 2004, 11(6): 537-541. [22]汪小鋒,樊廷俊,叢日山,等.幾種免疫促進(jìn)劑對中國對蝦血細(xì)胞數(shù)量、形態(tài)結(jié)構(gòu)以及酚氧化酶產(chǎn)量和活性的影響[J].水產(chǎn)學(xué)報, 2005, 29(1): 66-73. Wang X F, Fan T J, Cong R S, et al. Effects of several immunostimulants on the number, ultrastructure of hemocytes and the yield, activities of phenoloxidase inPenaeuschinensis[J]. Journal of Fisheries of China, 2005, 29(1): 66-73. [23]Burgents J E, Burnett K G, Burnett L E. Disease resistance of Pacific white shrimp,Litopenaeusvannamei, following the dietary administration of a yeast culture food supplement[J]. Aquaculture, 2004, 231(1-4): 1-8. [24]Wang Y C, Chang P S, Chen H Y. Tissue distribution of prophenoloxidase transcript in the Pacific white shrimp(Litopenaeusvannamei)[J]. Fish & Shellfish Immunology, 2006, 20(3): 414-418. [25]Dziarski R. Peptidoglycan recognition proteins (PGRPs) [J]. Molecular Immunology, 2004, 40(12): 877-886. [26]Amparyup P, Charoensapsri W, Tassanakajon A. Two prophenoloxidases are important for the survival of Vibrio harveyi challenged shrimpPenaeusmonodon[J]. Developmental & Comparative Immunology, 2009, 33(2): 247-256. [27]Ai H S, Huang Y C, Li S D, et al. Characterization of a prophenoloxidase from hemocytes of the shrimpLitopenaeusvannameithat is down-regulated by white spot syndrome virus[J]. Fish & Shellfish Immunology, 2008, 25(1-2): 28-39. [28]Murphy R, DeCoursey T E. Charge compensation during the phagocyte respiratory burst[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006, 1757(8): 996-1011. [29]Parihar M S, Javeri T, Hemnani T, et al. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustesfossilis)to short-term elevated temperature[J]. Journal of Thermal Biology, 1997, 22(2): 151-156. [30]Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas [J]. Biology Chemistry, 1989, 264(14): 7761-7764. [31]Jiang G, Yu R, Zhou M. Modulatory effects of ammonia-N on the immune system ofPenaeusjaponicasto virulence of white spot syndrome virus[J]. Aquaculture, 2004, 241(1): 61-75. [32]Sinthujaroen P, Tonganunt-Srithaworn M, Eurwilaichitr L, et al. Protection ofLitopenaeusvannameiagainst the white spot syndrome virus using recombinant Pm-fortilin expressed inPichiapastoris[J]. Aquaculture, 2015, 435: 450-457. 責(zé)任編輯朱寶象 Effect of Dietary Fortilin on Immune Response of White ShrimpLitopenaeusvannameiand Its Resistance Against White Spot Syndrome Virus Infection GENG Xiao-Xue, ZHOU Yi, XU Wei, ZHANG Wen-Bing, MAI Kang-Sen (The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China) Fortilin, also called translationally controlled tumor protein (TCTP), is ubiquitously expressed in all eukaryotic organisms. This protein is proved to perform several functions including tubulin-binding, calcium-binding and anti-apoptotosis. It involves in many important cellular processes, such as cell growth, cell cycle and the protection of cells against various stress conditions and apoptosis. Since injection of Pm-fortilin reduces shrimp mortality caused by WSSV, there was potential application of fortilin in shrimp culture. The present study was designed to analyze the effect of dietary fortilin on immune response of white shrimpLitopenaeusvannameiand its resistance against white spot syndrome virus (WSSV) infection. The fortilin was expressed in yeastPichiapastoris. One hundred milligrams of the supernatants of the cultured fortilin recombinant yeast (F-1) or the recombinant yeast culture (F-2) were added into 1 kg basal diet. So did the null vector (P-1, P-2). Meanwhile, the basal diet was used as the control (C). Five experimental diets (F-1, F-2, P-1, P-2 and C) were made to feed white shrimps (initial weight (4.87±0.26)g for 20 days. After that, the shrimps were challenged with WSSV. Results showed that the total haemocyte count (THC), the respiratory burst (RB) and phenoloxidase (PO) activity in F-1 group were significantly higher than those in the control (P<0.05). Meanwhile, there was a significant difference in the THC, RB, PO and SOD between F-2 and P-2 group (P<0.05). Activities of the PO and nitric oxide synthase (NOS) in F-1 group were significantly higher than those in P-2 group (P<0.05). The results of WSSV infection experiment showed that cumulative mortality rate in F-1 and F-2 groups was significantly lower than that in the control (P<0.05). The mortality rate in F-1, F-2, P-1, P-2 and C were 19.2%, 15.4%, 56.0%, 47.8% and 84.6%, respectively. In conclusion, inclusion of recombinant fortilin in diet enhanced the immunity and the resistance of shrimp against the WSSV. Further work is needed to point out how to improve the immune stimulant effect of fortilin supplemented in shrimp diet. Litopenaeusvannamei; fortilin; white spot syndrome virus; immunity; feed 國家公益性行業(yè)(農(nóng)業(yè))專項經(jīng)費項目(201103034)資助 2015-07-24; 2016-01-12 耿小雪(1990-),女,碩士,研究方向:水產(chǎn)動物營養(yǎng)與飼料。E-mail: gengxue2013@163.com ??通訊作者: E-mail:wzhang@ouc.edu.cn S945.1 A 1672-5174(2016)10-032-07 10.16441/j.cnki.hdxb.20150269 Supported by the Special Fund for Agro-scientific Research in the Public Interest (201103034)