孫小淇, 王林山
(1.中國海洋大學信息科學與工程學院,山東 青島 266100; 2.中國海洋大學數(shù)學科學學院,山東 青島 266100)
?
S-分布時滯的隨機Hopfield神經網絡的穩(wěn)定性?
孫小淇1, 王林山2??
(1.中國海洋大學信息科學與工程學院,山東 青島 266100; 2.中國海洋大學數(shù)學科學學院,山東 青島 266100)
研究一類具有S-分布時滯的隨機Hopfield神經網絡的穩(wěn)定性問題。通過構造隨機Lyapunov泛函與隨機分析技巧相結合的方法得到了實用有效的判別準則.具有S-分布時滯的Hopfield神經網絡解決了具有離散時滯的Hopfield神經網絡和具有連續(xù)分布時滯的Hopfield神經網絡不能相互包含的問題。且本文在已有文獻的系統(tǒng)模型中加入了隨機干擾項,證明了該隨機Hopfield神經網絡全局解的存在唯一性及其全局均方魯棒指數(shù)穩(wěn)定性,使其具有更廣泛的實際應用價值,推廣了相關文獻中的結果。
神經網絡; S-分布時滯; 全局均方魯棒指數(shù)穩(wěn)定性
引用格式:孫小淇,王林山. S-分布時滯的隨機Hopfield神經網絡的穩(wěn)定性[J].中國海洋大學學報(自然科學版), 2016, 46(10):139-142.
SUN Xiao-Qi, WANG Lin-Shan. Stability of stochastic Hopfield neural network with S-type distributed delays [J].Periodical of Ocean University of China, 2016, 46(10):139-142.
1982年美國生物物理學家J. Hopfield提出了具有聯(lián)想記憶功能,能量定律和動力方程等特點并且可以在集成電路上實現(xiàn)的Hopfield神經網絡模型[1],這些特點奠定了這種網絡的輝煌前景。此后,眾多學者對Hopfield神經網絡進行了深入的研究,研究成果增長迅速[2]。特別是關于網絡的穩(wěn)定性研究引起了人們的關注[3-7]。文獻[8-10]運用Lyapunov函數(shù)與Razumikhin條件相結的方法研究了隨機時滯Hopfield神經網絡的指數(shù)穩(wěn)定性,給出了依賴于時滯的穩(wěn)定性判據。具有離散時滯和分布時滯的神經網絡是相互獨立的,而具有S-分布時滯的神經網絡卻蘊含了二者。文獻[11-13]研究了具有S-分布時滯的Hopfield神經網絡的穩(wěn)定性,隨后關于這種網絡的穩(wěn)定性的研究文獻大量涌現(xiàn)。但是據作者所知,關于S-分布時滯的隨機Hopfield神經網絡穩(wěn)定性研究相對較少,其原因是隨機擾動的引入,給研究這類網絡帶來了較大的困難。本文運用隨機Lyapunov泛函和隨機分析技巧相結合的方法,研究了S-分布時滯隨機Hopfield神經網絡的全局均方魯棒指數(shù)穩(wěn)定性,給出了易于驗證的穩(wěn)定性判據。推廣了相關文獻中的結果。
考慮如下S-分布時滯隨機Hopfield神經網絡
(1)
(2)
(3)
初始條件φ=(φ1(t),φ2(t),…,φn)T:[-r,0]→Rn是F0可測的,且右連續(xù)。
引理1[14]考慮如下隨機泛函微分方程
(4)
若滿足下列條件:
(5)
(6)
dV(t,φ)=(Vt(t,φ(0))+Vx(t,φ(0))f(t,φ)+
LV(t,φ)dt+Vx(t,φ(0))g(t,φ)dWt。
(7)
(8)
其中
LV(t,φ)=Vt(t,φ(0))+Vx(t,φ(0))f(t,φ)+
(9)
定義1如果存在正常數(shù)P,β,使得系統(tǒng)(1)存在滿足條件(2)的解,且這個解滿足:
(10)
則稱系統(tǒng)(1)是全局均方魯棒指數(shù)穩(wěn)定的。
定理1假設下列條件成立:
(A1)設 fj(0)=σij(0,0)=0且存在常數(shù)lj>0,cij>0,dij>0,i,j=1,2,…,n,使得對任意ν,μ,x,y∈R,有
(11)
(12)
(A2)下列不等式成立
(13)
則滿足條件(A1)~(A2)的系統(tǒng)(1)存在唯一的全局解,且系統(tǒng)(1)是均方魯棒指數(shù)穩(wěn)定的。
證明
Ⅰ系統(tǒng)(1)存在唯一全局解
令
(14)
(15)
(16)
從而
(17)
同理由(A1)得
(18)
令
(19)
則 (5)式成立。從而由引理 1 知,則系統(tǒng)(1)存在唯一連續(xù)的全局解x(t),t≥0。
Ⅱ 系統(tǒng)(1)均方魯棒指數(shù)穩(wěn)定
定義
(20)
由(A2)可知
(21)
由H(u)在(0,+∞)上連續(xù),且當u→+∞時,H(u)→-∞。故存在u*∈[0,+∞),滿足
(22)
定義Lyapunov泛函
(23)
由(2), (7), (23)和 (A1)得
θ)dηj(θ))dwj(t)≤
(24)
由(8)和 (22)可知
θ)dηj(θ))dwj(s)≤
(25)
上式兩端取數(shù)學期望得
即
注1 如果擴散系數(shù)σij=0,i,j=1,2,…,n,則系統(tǒng)(1)轉化為文獻[2]中第三章研究的系統(tǒng),因此文獻[2] 第三章研究問題是本文的特例。
實例
kj=1。j=1,2。則顯然滿足定理中條件(A1),且可取
l1=l2=d11=d22=c11=c22=1,
則有
滿足定理中條件(A2),因此該系統(tǒng)是均方魯棒均方指數(shù)穩(wěn)定的。
[1]Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons [J]. Proceedings of the national academy of sciences, 1984, 81(10): 3088-3092.
[2]王林山. 時滯遞歸神經網絡(Delayed recurrent neural network)[M]. 北京: 科學出版社, 2008.
Wang L.Delayed Recurrent Neural Network[M]. Beijing: Science Press, 2008.
[3]Forti M, Tesi A. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 1995, 42(7): 354-366.
[4]Wan L, Sun J. Mean square exponential stability of stochastic delayed Hopfield neural networks [J]. Physics Letters A, 2005, 343(4): 306-318.
[5]Wang Z, Shu H, Fang J, et al. Robust stability for stochastic Hopfield neural networks with time delays [J]. Nonlinear Analysis: Real World Applications, 2006, 7(5): 1119-1128.
[6]Duan S, Hu W, Li C, et al. Exponential Stability of Discrete-Time Delayed Hopfield Neural Networks with Stochastic Perturbations and Impulses [J]. Results in Mathematics, 2012, 62(1-2): 73-87.
[7]Pradeep C, Vinodkumar A, Rakkiyappan R. Delay-dependent exponential stability results for uncertain stochastic Hopfield neural networks with interval time-varying delays [J]. Arabian Journal of Mathematics, 2012, 1(2): 227-239.
[8]沈軼, 廖曉昕. Hopfield 型時滯神經網絡的指數(shù)穩(wěn)定性[J]. 數(shù)學物理學報: A 輯, 1999, 19(2): 211-218.
Shen Y, Liao X.Exponential Stability of Hopfield Neural Networks[J].Acta Mathematica Scientia, 1999, 19(2): 211-218.
[9]沈軼, 廖曉昕. 非線性隨機時滯系統(tǒng)族的魯棒穩(wěn)定性[J]. 自動化學報, 1999, 25(4): 537-542.
Shen Y,Liao X.Robust stability of a family of nonlinear stochastic delay systems[J].Acta Automatica Sinica, 1999, 25(4): 537-542.
[10]Wallis G. Stability criteria for unsupervised temporal association networks [J]. IEEE Transactions on Neural Networks, 2005, 16(2): 301.
[11]Wang L, Xu D. Global asymptotic stability of bidirectional associative memory neural networks with S-type distributed delays [J]. International Journal of Systems Science, 2002, 33(11): 869-877.
[12]Wang Y, Lu C, Ji G, et al. Global exponential stability of high-order Hopfield-type neural networks with S-type distributed time delays [J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3319-3325.
[13]Zhang R J, Wang L S. Global exponential robust stability of interval cellular neural networks with S-type distributed delays[J].Mathematical and Computer Modelling, 2009, 50: 380-385.
[14]Mao X R. Stochastic Differential Equation and Application (second edition)[M]. Chichester: Horwood Publishing, 2007.
AMS Subject Classifications:00A69; 03B30; 03C05
責任編輯陳呈超
Stability of Stochastic Hopfield Neural Network with S-Type Distributed Delays
SUN Xiao-Qi1, WANG Lin-Shan2
(1.College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; 2.School of Mathematical sciences, Ocean University of China, Qingdao 266100, China)
This paper is studied the stochastic Hopfield neural network with S-type distributed delays and investigated stability problems of this neural network. Some sufficient conditions on global robust exponential stability in mean square are established in this paper. The means are mainly constructing the suitable Lyapunov functional and applying the stochastic analysis techniques. Because the systems with discrete time delays and the systems with continuously distributed delays do not contain each other. However, S-distributed delays are introducted in stochastic neural network with time delays. It effectively solves the problem that discrete and distributed delays issues not included in the mutual. More even, the existence and uniqueness of solutions and the global robust exponential stability in mean square of the system are proved, which are promoted the results of the relevant literature. An example was given to show the correctnessof the conclusions.
neural networks; S-type distributed delays; global robust exponential stability in mean square
國家自然科學基金項目(11171374); 山東省自然科學基金重點項目(ZR2011AZ001)資助
2014-10-12;
2015-06-12
孫小淇(1986-),女,博士生。E-mail:sunxiaoqi@live.com.
??通訊作者: E-mail:Wangls@ouc.edu.com
TP183
A
1672-5174(2016)10-139-04
10.16441/j.cnki.hdxb.20140231
Supported by National Natural Science Foundation of China(11171374);Shandong Municipal Natural Science Foundation(ZR2011AZ001)