郭佳佳,戴子淳,陸 晨,張 甜,施振旦,趙 偉,馬衛(wèi)明,應詩家*
(1.山東農(nóng)業(yè)大學動物科技學院,泰安 271018; 2.江蘇省農(nóng)業(yè)科學院畜牧研究所,南京 210014)
?
TLR家族基因在產(chǎn)蛋高峰期和停產(chǎn)期鴨腸道中的表達研究
郭佳佳1,2,戴子淳2,陸晨2,張?zhí)?,施振旦2,趙偉2,馬衛(wèi)明1*,應詩家2*
(1.山東農(nóng)業(yè)大學動物科技學院,泰安 271018; 2.江蘇省農(nóng)業(yè)科學院畜牧研究所,南京 210014)
旨在研究TLR家族基因在產(chǎn)蛋高峰期和停產(chǎn)期鴨腸道中的表達。選擇同日齡產(chǎn)蛋高峰期鴨20只,隨機均分為兩組,一組在限食7 d停產(chǎn)后自由采食10 d,另一組自由采食17 d。采用RT-PCR和qRT-PCR的方法,檢測TLR1-1、TLR1-2、TLR2-1、TLR2-2、TLR3、TLR4、TLR5、TLR7、TLR15和TLR21基因在鴨十二指腸、空腸、回腸和盲腸中的表達。結(jié)果顯示,10種禽類TLR家族基因均在鴨十二指腸、空腸、回腸和盲腸中表達;除TLR1-2、TLR2-2、TLR4和TLR21基因外,其他6種TLR家族基因在不同腸道中差異表達(P<0.05),其中,TLR3、TLR5和TLR7基因在十二指腸中高表達,TLR1-1、TLR2-1和TLR15基因在盲腸中高表達;除TLR4和TLR7基因外,其他8種TLR家族基因在產(chǎn)蛋高峰期鴨腸道中的表達水平高于停產(chǎn)期(P<0.05)。結(jié)果表明,蛋鴨腸道存在TLR介導的固有免疫反應機制,且產(chǎn)蛋高峰期蛋鴨腸道病原相關分子模式的識別能力強于停產(chǎn)期蛋鴨。
蛋鴨;Toll樣受體;腸道;產(chǎn)蛋高峰期;停產(chǎn)期
中國的蛋鴨養(yǎng)殖主要采用傳統(tǒng)的水面養(yǎng)殖模式[1-2]。這種粗放的養(yǎng)殖模式容易使養(yǎng)殖水體中腸道病原微生物及其釋放的代謝物進入鴨消化道,誘導腸道炎性反應,影響飼料消化吸收利用,進而影響產(chǎn)蛋性能[3]。研究表明,降低載禽水體微生物濃度能降低腸道TLR4表達水平和炎性反應[3],提高鴨[3]或鵝[4]的產(chǎn)蛋性能。此外,飼料中含有的病原微生物及其代謝產(chǎn)物,如細菌內(nèi)毒素、真菌毒素和霉菌毒素[5]等,也誘導腸道炎性反應。因此,蛋鴨腸道的病原分子識別能力對維持腸道功能穩(wěn)態(tài)和產(chǎn)蛋性能具有重要的作用。
Toll樣受體(TLRs)是一類病原模式識別受體基因,是非特異性免疫反應關鍵的組成部分[6-7]。目前,在雞的研究中,共發(fā)現(xiàn)10種TLRs家族基因[8-10],包括TLR1-1、TLR1-2、TLR2-1、TLR2-2、TLR3、TLR4、TLR5、TLR7、TLR15和TLR21。這些TLR家族基因識別多種病原分子[11-12],啟動胞內(nèi)信號級聯(lián)效應,誘導非特異性免疫反應[13-14],抵御病原微生物的侵害[15],維持組織細胞功能穩(wěn)態(tài)。禽類抗病力與TLR家族基因表達密切相關[16-18],而腸道是機體接觸病原分子的重要器官之一。腸道存在多樣化微生物區(qū)系,維持腸道功能穩(wěn)態(tài),而TLRs參與調(diào)節(jié)這一過程[19],并且腸道TLRs識別微生物和飼料抗原,修復損傷的腸道上皮細胞和清除進入腸黏膜的病原分子[20]。然而,目前國內(nèi)外研究了性成熟前鴨TLR家族部分基因,如:TLR2-1[21]、TLR3[22-23]、TLR4[24-27]、TLR5[28-29]和TLR7[30]基因的克隆和組織表達譜及其對病原分子的反應性,而對其他TLR家族基因的研究較少,對TLR家族基因在產(chǎn)蛋期鴨腸道不同功能部位的差異表達研究更少。由于產(chǎn)蛋高峰期蛋鴨采食量增加、嬉水習性增強,腸道接觸病原微生物的機率增加,因而,產(chǎn)蛋高峰期鴨腸道病原相關分子的識別能力對腸道免疫保護、功能穩(wěn)態(tài)、飼料消化吸收以及高產(chǎn)蛋性能維持至關重要。
本試驗研究10種TLR家族基因在產(chǎn)蛋高峰期和停產(chǎn)期鴨十二指腸、空腸、回腸和盲腸中的表達,為蛋鴨腸道啟動非特異性免疫反應、抵御病原微生物侵染的分子調(diào)控機理研究奠定基礎,對維持蛋鴨腸道功能穩(wěn)態(tài)和產(chǎn)蛋性能具有重要的意義。
1.1試驗動物
動物試驗在南京市畜牧家禽科學研究所江寧基地進行。試驗蛋鴨為連城白鴨和櫻桃谷鴨雜交F1代鴨。在產(chǎn)蛋高峰期時(產(chǎn)蛋率>80%),選擇20只蛋鴨,隨機分為兩組,每組10只,每組獨立一欄。一組高峰期蛋鴨自由采食;另一組高峰期蛋鴨當日自由采食后,停止供料7 d,使其停止產(chǎn)蛋,再自由采食10 d,恢復體況。采用“地面平養(yǎng)+水池”養(yǎng)殖模式,每欄有獨立運動場(長3.80 m,寬1.30 m)和水池(長1.10 m,寬1.30 m,深0.32 m)。試驗期間,鴨自由飲水,自然光照。試驗結(jié)束后,取脾、十二指腸、空腸、回腸和盲腸等組織,液氮保存。
1.2主要試劑
RNA抽提試劑盒購自天根生化科技(北京)有限公司;Taq PCR Master Mix購自上海翊圣生物科技有限公司;50 bp Marker和PrimeScriptRTMaster Mix購自寶生物工程(大連)有限公司;FastStart Universal SYBR Green Master購自羅氏診斷產(chǎn)品(上海)有限公司;其他常規(guī)試劑購自南京壽德化玻公司。
1.3總RNA提取和反轉(zhuǎn)錄
分別取蛋鴨脾、十二指腸、空腸、回腸和盲腸組織,按天根試劑盒說明書提取總RNA。RNA質(zhì)量檢測合格后,參照TaKaRa反轉(zhuǎn)錄試劑盒說明,合成cDNA第一鏈,-20 ℃保存?zhèn)溆?。反應體系為10 μL:2 μL 5 × Prime Script Buffer,8 μL RNA (<500 ng )。反轉(zhuǎn)錄程序:37 ℃ 15 min,85 ℃ 5 s,4 ℃ 保存。
1.4RT-PCR反應和測序
根據(jù)GenBank登錄號,利用Primer Premier 5.0軟件設計兼并引物,引物信息見表1,由上海英駿生物技術有限公司合成。由于目前禽類10種TLR家族基因是否都在蛋鴨腸道不同功能部位表達不清楚,因此,采用普通PCR的方法對停產(chǎn)期蛋鴨的脾、十二指腸、空腸、回腸和盲腸組織10種禽類TLR家族基因進行擴增,其中以脾組織為陽性對照[11],以不加cDNA模板為陰性對照。
PCR反應體系為20 μL:2 × Taq PCR Master Mix 10 μL,ddH2O 8 μL,上游和下游引物各0.5 μL,RT產(chǎn)物1 μL。反應程序:95 ℃預變性5 min;95 ℃變性30 s,57/60 ℃退火30 s,72 ℃延伸30 s,35個循環(huán);72 ℃延伸7 min,4 ℃保存。PCR產(chǎn)物用2.5%瓊脂糖凝膠電泳初步鑒定,由上海生工生物工程股份有限公司測序。
1.5qRT-PCR 分析
根據(jù)RT-PCR的表達譜結(jié)果,對在不同腸道組織中表達的TLR家族基因進行Real-time PCR。Real-time PCR反應體系為20 μL:1 μL RT產(chǎn)物,上游和下游引物各0.6 μL,7.8 μL ddH2O,10 μL FastStart Universal SYBR Green Master (ROX)。反應程序:50 ℃ 2 min,95 ℃預變性10 min;PCR循環(huán):95 ℃變性15 s,57/60 ℃退火30 s,72 ℃ 延伸30 s,讀板,共35個循環(huán)。以管家基因β-actin為內(nèi)參,每個樣品重復3次,取平均Ct值進行計算,所得試驗數(shù)據(jù)按2-△△Ct結(jié)果統(tǒng)計分析。
1.6數(shù)據(jù)分析
采用SPSS 13.0軟件進行統(tǒng)計分析,數(shù)據(jù)結(jié)果以“平均值 ± 標準誤(Mean ± SE)”表示。對于每個基因的表達數(shù)據(jù),以不同產(chǎn)蛋期和腸道不同功能部位為固定效應,采用兩因子線性模型進行統(tǒng)計分析,Bonferroni修正法多重比較;對于同一產(chǎn)蛋期,腸道不同功能部位的基因表達數(shù)據(jù),采用單因子方差分析,Duncan法多重比較;對于腸道同一功能部位,不同產(chǎn)蛋期的基因表達數(shù)據(jù),采用t檢驗分析。
表1定量PCR引物
Table 1Primer pairs used for Real-time PCR
目的基因Targetgene登錄號AccessionNo.引物序列(5'→3')Primersequence退火溫度/℃Annealingtemperature產(chǎn)物大小/bpProductsizeβ-actinM26111CCCTGTATGCCTCTGGTCCTCGGCTGTGGTGGTGAA60194TLR1-1NM_001310424CAAGCGTCAAAGTCTAACAGCCGTGCTCATCCCATCATACAAGAGG60102TLR1-2JN572686CATTGAAGCCTTGACAGTAGCTCCTCGCCTCCATCGGTA57270TLR2-1HQ166194AGGAAACTTTGAGGGCATTACGGAAGTGTAGAGTTCTGAACCAGT60243TLR2-2JQ687404ATAAGCATAAGAAGGGTAGACAATCCCAGGCACAGTAGC60196TLR3KC292270TAATCTGGCTATTTCTCCTCCAAAGTCGTGCTAAATTA57160TLR4HQ436371GGTGCCACATCCATACAATTAGGTCAGTCAGAGAGGATA60173TLR5KC845942GGGGAAGAACATATCAACAGATCACTAAAGTACCTGCT60139TLR7JQ910168CAACCTTTCCCAGAGCATTTCCTCAGCCTAACATACCG60191TLR15JQ014619ATATGAGGCTCAGACGAAGGGTAGTCCACAGCGGTTAG60100TLR21JN573269TGTGCTTCTACCTCTTCACCGTGGTACTTCAGCCGCCAGT6096
2.1腸道TLR家族基因的表達譜
分別對脾、十二指腸、空腸、回腸和盲腸組織進行RT-PCR擴增,PCR產(chǎn)物電泳檢測結(jié)果見圖1,所擴增的TLRs片段與預期的片段大小一致。通過測序,并與GenBank已登錄(表1)的序列比對,同源性為97%以上,表明PCR擴增片段為目的基因片段。并且,結(jié)果顯示,已公開的10種禽類TLR家族基因均在鴨十二指腸、空腸、回腸和盲腸組織中表達(圖1)。
1、2、3、4、5、6、7、8、9、10.分別表示TLR1-1、TLR1-2、TLR2-1、TLR2-2、TLR3、TLR4、TLR5、TLR7、TLR15、TLR21基因擴增片段;、S、K、H、N、P.分別表示十二指腸、空腸、回腸、盲腸和脾組織的擴增片段;B和M.分別表示空白對照和DNA相對分子質(zhì)量標準1,2,3,4,5,6,7,8,9,10.Indicate fragments amplified of TLR1-1,TLR1-2,TLR2-1,TLR2-2,TLR3,TLR4,TLR5,TLR7,TLR15 and TLR21 genes,respectively.S,K,H,N,P.Indicate fragments amplified of β-actin gene in duodenum,jejunum,ileum,cecum and spleen,respectively.B,M.Indicate the negative control and DNA marker,respectively圖1 TLR家族基因在腸道不同功能部位的RT-PCR電泳圖Fig.1 RT-PCR of TLRs in duck intestinal tracts
2.2腸道TLR家族基因的差異表達
不同腸段TLR家族基因表達的結(jié)果見表2和圖2。線性模型的統(tǒng)計結(jié)果顯示,除TLR1-2、TLR2-2、TLR4和TLR21基因,TLR1-1、TLR2-1、TLR3、TLR5、TLR7和TLR15基因在十二指腸、空腸、回腸和盲腸中的表達水平差異顯著(P<0.05,表2),其中,盲腸TLR1-1、TLR2-1和TLR15基因表達水平高于十二指腸、空腸和回腸,而十二指腸TLR3、TLR5和TLR7基因表達水平高于空腸、回腸和盲腸。在產(chǎn)蛋高峰期,TLR1-1、TLR2-1、TLR2-2、TLR3、TLR5、TLR7和TLR15基因在腸道不同功能組織中的表達水平差異顯著(P<0.05),而在停產(chǎn)期,僅TLR3基因在腸道不同功能組織中的表達水平差異顯著(P<0.05,圖2)。
2.3產(chǎn)蛋高峰期和停產(chǎn)期對腸道TLR家族基因表達的影響
產(chǎn)蛋高峰期和停產(chǎn)期對腸道TLR家族基因表達的影響見表2和圖2。線性模型的統(tǒng)計結(jié)果顯示,除TLR4和TLR7基因外,其他8種TLR家族基因在產(chǎn)蛋高峰期的表達水平顯著高于停產(chǎn)期(P<0.05;表2)。高峰期蛋鴨十二指腸的TLR1-1、TLR1-2、TLR2-1、TLR2-2、TLR3、TLR5和TLR15基因、空腸的TLR1-1、TLR1-2、TLR2-1、TLR2-2和TLR5基因、回腸的TLR1-2、TLR2-1、TLR2-2、TLR3、TLR5和TLR21以及盲腸的TLR1-1、TLR1-2、TLR2-1、TLR2-2、TLR3、TLR5和TLR21基因表達水平顯著高于停產(chǎn)期(P<0.05),而高峰期蛋鴨回腸的TLR7和TLR15以及空腸的TLR21基因表達水平顯著低于停產(chǎn)期(P<0.05,圖2)。
表2蛋鴨腸道TLR家族基因的表達
Table 2mRNA levels ofTLRgenes in duck intestinal tracts
基因Gene腸道組織Intestinaltissue產(chǎn)蛋狀態(tài)Egglayingstate十二指腸Duodenum空腸Jejunum回腸Ileum盲腸Caecum產(chǎn)蛋高峰期Peakoflay停產(chǎn)期EndoflayTLR1-11.28±0.53b0.92±0.30b1.24±0.31b6.64±2.30a4.30±1.22**0.76±0.19TLR1-20.75±0.180.73±0.131.00±0.271.07±0.311.53±0.18**0.26±0.04TLR2-10.76±0.22b0.39±0.10b0.37±0.11b1.89±0.65a1.56±0.33**0.16±0.04TLR2-21.64±0.471.31±0.362.43±0.601.76±0.573.14±0.35**0.70±0.24TLR34.03±1.35a1.03±0.16b2.47±0.75ab3.05±0.65ab4.56±0.72**0.72±0.21TLR43.65±1.503.37±1.071.37±0.222.73±0.653.05±0.422.52±0.90TLR530.62±15.09a1.50±0.45b2.16±0.67b2.66±0.67b19.85±8.59*0.61±0.25TLR7606.68±171.03a202.84±63.37b95.13±24.91b474.03±116.54ab350.48±70.83338.86±93.25TLR1573.74±22.83ab38.47±14.59ab20.45±6.53b96.33±24.43a81.09±15.64*33.41±10.28TLR21477.63±180.2977.37±21.66299.64±135.08419.41±142.87480.49±126.60*162.64±51.22
同行不同字母表示差異顯著(P<0.05)。同列中,*.P<0.05;**.P<0.01
Values with different small letters differ significantly in the same row (P<0.05).*.Indicates significant difference (P<0.05);**.Indicates extremely significant difference (P<0.01) in the same column
在同一組織中,*.P<0.05,**.P<0.01;在同一產(chǎn)蛋期中,不同小寫字母或不同大寫字母表示差異顯著(P<0.05)*.Indicates significant difference (P<0.05),**.Indicates extremely significant difference (P<0.01) in the same tissue.Values with different small letters or different capital letters differ significantly (P<0.05) in the same laying period圖2 不同產(chǎn)蛋期鴨腸道TLRs家族基因差異表達Fig.2 Differential gene expression of TLRs in duck intestinal tracts between peak and end of lay
非特異性免疫反應是機體抵抗感染性疾病的第一道屏障,而TLR家族基因是非特異性免疫反應的關鍵調(diào)節(jié)基因[6-7],也是連接非特異性免疫和特異性免疫的橋梁[31]。目前,在雞的研究中,共發(fā)現(xiàn)10種TLRs家族基因識別廣泛的病原微生物及其代謝產(chǎn)物。TLR1可識別肽聚糖、脂磷壁酸、阿拉伯糖甘露糖脂及酵母和真菌的酵母多糖[32];TLR2除具有TLR1識別功能外還可識別革蘭氏陰性菌釋放的LPS[32];TLR3識別雙鏈RNA[33];TLR4識別革蘭氏陰性菌釋放的LPS[34-36];TLR5識別細菌鞭毛蛋白[32];TLR7識別單鏈RNA[32];TLR15識別革蘭氏陰性菌,而TLR21識別細菌基因組產(chǎn)生的未甲基化CpG DNA序列[12]。本試驗中,10種TLRs家族基因均在蛋鴨腸道的十二指腸、空腸、回腸和盲腸組織中表達,表明除免疫器官和免疫細胞外,蛋鴨腸道組織本身也存在TLR-介導的非特異性免疫應答機制,維持腸道功能穩(wěn)態(tài)。
水禽腸道不同功能部位差異性表達TLRs基因,對病原分子的識別能力具有差異性特點。雛鵝空腸和回腸TLR2-1表達水平高于十二指腸和盲腸[37],而雛鴨空腸TLR5表達水平高于十二指腸、回腸和盲腸[28]。TLR3在70日齡的馬崗鵝胰腺組織中表達量最高,其次是脾、十二指腸和肺,而在肌肉和皮膚中表達量最低[33]。本試驗中,性成熟期蛋鴨十二指腸組織TLR3、TLR5和TLR7基因以及盲腸組織TLR1-1、TLR2-1和TLR15基因表達水平高于其他腸段組織,說明蛋鴨十二指腸對單鏈RNA、雙鏈RNA和細菌鞭毛蛋白的識別能力更強,而盲腸對肽聚糖、脂磷壁酸、阿拉伯糖甘露糖脂、酵母和真菌的酵母多糖、LPS以及革蘭氏陰性菌的識別能力更強。TLR家族基因在十二指腸和盲腸中高表達,可能由于伴有病原分子的食糜最先抵達十二指腸,其作為誘發(fā)因子啟動病原識別模式受體基因表達,而盲腸本身富含微生物,其對病原的識別能力有助于盲腸微生物區(qū)系穩(wěn)態(tài)。
不同日齡家禽組織識別病原微生物的能力存在差異。研究表明,不同日齡雞陰道組織TLR2-1、TLR2-2和TLR4基因[38]、睪丸組織TLR2-1、TLR2-2、TLR3、TLR4、TLR5和TLR15基因[39]、卵巢組織TLR2-1、3、4、5、7、15和21基因[40]表達差異顯著,而性成熟期鴨小腸TLR7基因表達高于非性成熟期[30]。由于不能在同一日齡和同一養(yǎng)殖水環(huán)境下選擇產(chǎn)蛋高峰期和停產(chǎn)期鴨,本試驗參照蛋雞[41]限飼停產(chǎn)的研究方法,避免了不同日齡和養(yǎng)殖環(huán)境對TLR家族基因表達的影響。試驗發(fā)現(xiàn),產(chǎn)蛋高峰期鴨腸道TLR1-1、TLR1-2、TLR2-1、TLR2-2、TLR3、TLR5、TLR15和TLR21基因表達水平高于停產(chǎn)期鴨,其中空腸和回腸分別有5和6種基因表達水平高于停產(chǎn)期,而十二指腸和盲腸有7種基因高于停產(chǎn)期,說明高峰期蛋鴨腸道識別病原微生物的能力顯著高于停產(chǎn)期蛋鴨,而且在高峰期蛋鴨十二指腸和空腸的病原識別能力更強。產(chǎn)蛋高峰期水禽增加的采食量和增多的水面嬉戲行為導致腸道接觸病原微生物機率增大,因而,可能誘導高峰期蛋鴨腸道病原模式識別受體的表達。在蛋禽研究中,限飼停產(chǎn)后自由采食的處理方式,保證了試驗動物年齡的一致性,且最大限度減少限飼應激對基因表達的影響,但對于TLR家族基因,停產(chǎn)后的自由采食能否恢復腸道TLR家族基因表達需要進一步驗證。
4.110種禽類TLR家族基因在蛋鴨腸道十二指腸、空腸、回腸和盲腸中表達,腸道存在TLR-介導的非特異性免疫應答機制,維持腸道功能穩(wěn)態(tài)。
4.26種TLR家族基因在蛋鴨腸道十二指腸、空腸、回腸和盲腸中差異表達,其中十二指腸和盲腸各有3種TLR基因高表達。
4.38種TLR家族基因在產(chǎn)蛋高峰期鴨腸道中的表達高于停產(chǎn)期,其中空腸和回腸分別有5和6種TLR基因表達高于停產(chǎn)期,而十二指腸和盲腸有7種TLR基因表達高于停產(chǎn)期。
[1]施振旦,劉麗,孫愛東.“禽-魚”高密度養(yǎng)殖對水禽生產(chǎn)性能危害的研究[J].中國家禽,2011,33(13):1-3.
SHI Z D,LIU L,SUN A D.Detrimental effect of stocking density on geese production performance in “Goose-Fish” production system[J].ChinaPoultry,2011,33(13):1-3.(in Chinese)
[2]CHEN Y S.Integrated livestock-fish production in China.In:BRANCKAERT R D,MUKHERJEE T K,eds.,Integrated Livestock-Fish Production Systems[M].FAO Animal Production and Health Paper.FAO,Rome,Italy,1992:58-60.
[3]應詩家,許愛紅,戴子淳,等.益生菌對載鴨水體和產(chǎn)蛋性能的影響及其分子機制[J].中國農(nóng)業(yè)科學,2015,48(11):2262-2269.
YING S J,XU A H,DAI Z C,et al.Effects of pro-biotic microbes on living water and laying performance in layer ducks and molecular mechanisms[J].ScientiaAgriculturaSinica,2015,48(11):2262-2269.(in Chinese)
[4]YANG X W,LIU L,JANG D L,et al.Improving geese production performance in “Goose-Fish” production system by competitive reduction of pathogenic bacteria in pond water[J].JIntegrAgr,2012,11(6):993-1001.
[5]馮鵬,孫啟忠.不同比例玉米與沙打旺混貯營養(yǎng)成分及有毒有害物質(zhì)分析[J].畜牧獸醫(yī)學報,2011,42(9):1264-1270.
FENG P,SUN Q Z.Nutrient composition and content of poisonous substances in corn and astragalus adsurgens mixed silage[J].ActaVeterinariaetZootechnicaSinica,2011,42(9):1264-1270.(in Chinese)
[6]SONODA Y,ABDEL MAGEED A M,ISOBE N,et al.Induction of avian beta-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cellsinvitro[J].Reproduction,2013,145(6):621-631.
[7]ADEREM A,ULEVITCH R J.Toll-like receptors in the induction of the innate immune response[J].Nature,2000,406(6797):782-787.
[8]YOSHIMURA Y.Avian beta-defensins expression for the innate immune system in hen reproductive organs[J].PoultSci,2015,94(4):804-809.
[9]MICHAILIDIS G,ANASTASIADOU M,GUIBERT E,et al.Activation of innate immune system in response to lipopolysaccharide in chicken Sertoli cells[J].Reproduction,2014,148(3):259-270.
[10]CHEN C,ZIBIAO H,MING Z,et al.Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit[J].DevCompImmunol,2014,46(2):341-348.
[11]SUBEDI K,ISOBE N,NISHIBORI M,et al.Changes in the expression of toll-like receptor mRNAs during follicular growth and in response to lipopolysaccharide in the ovarian follicles of laying hens[J].JReprodDev,2007,53(6):1227-1235.
[12]BROWNLIE R,ALLAN B.Avian toll-like receptors[J].CellTissueRes,2011,343(1):121-130.
[13]DAS S C,ISOBE N,YOSHIMURA Y.Changes in the expression of interleukin-1 beta and lipopolysaccharide-induced TNF factor in the oviduct of laying hens in response to artificial insemination[J].Reproduction,2009,137(3):527-536.
[14]SUBEDI K,ISOBE N,NISHIBORI M,et al.Changes in the expression of gallinacins,antimicrobial peptides,in ovarian follicles during follicular growth and in response to lipopolysaccharide in laying hens (Gallus domesticus)[J].Reproduction,2007,133(1):127-133.
[15]KAISHO T,AKIRA S.Toll-like receptor function and signaling[J].JAllergyClinImmunol,2006,117(5):979-987.
[16]WANG Q,WU Y,CAI Y,et al.Spleen transcriptome profile of muscovy ducklings in response to infection with muscovy duck reovirus[J].AvianDis,2015,59(2):282-290.
[17]SONG C,YU S,DUAN Y,et al.Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection[J].ArchVirol,2014,159(5):905-914.
[18]李秀,畢瑜林,徐琪,等.ALB、TLR7、PSPH和WSB1基因在雛鴨肝炎病毒易感與抗性群體間的差異表達分析[J].中國獸醫(yī)學報,2013,33(2):161-165.
LI X,BI Y L,XU Q,et al.Comparison ofALB,TLR7,PSPHandWSB1 genes mRNA expression between susceptible and resistant populations to duck hepatitis virus[J].ChineseJournalofVeterinaryScience,2013,33(2):161-165.(in Chinese)
[19]HAAG L M,SIEGMUND B.Intestinal microbiota and the innate immune system-A crosstalk in Crohn's disease pathogenesis[J].FrontImmunol,2015,6:489.
[20]ABREU M T,F(xiàn)UKATA M,ARDITI M.TLR signaling in the gut in health and disease[J].JImmunol,2005,174(8):4453-4460.
[21]李國勤,馬永升,賈紅敏,等.鴨TLR2基因的克隆、序列分析及其結(jié)構預測[J].中國畜牧雜志,2011,47(19):17-21.
LI G Q,MA Y S,JIA H M,et al.Molecular cloning,sequential analysis and structure prediction of duckTLR2[J].ChineseJournalofAnimalScience,2011,47(19):17-21.(in Chinese)
[22]JIAO P R,WEI L M,CHENG Y Q,et al.Molecular cloning,characterization,and expression analysis of the Muscovy duck Toll-like receptor 3 (MdTLR3) gene[J].PoultSci,2012,91(10):2475-2481.
[23]ZHANG M,SONG K,LI C,et al.Molecular cloning of Peking duck Toll-like receptor 3 (duTLR3) gene and its responses to reovirus infection[J].VirolJ,2015,12:207.
[24]ZHAO W,HUANG Z,CHEN Y,et al.Molecular cloning and functional analysis of the duck TLR4 gene[J].IntJMolSci,2013,14(9):18615-18628.
[25]JIA H,LI G,LI J,et al.Cloning,expression and bioinformatics analysis of the duck TLR 4 gene[J].BrPoultSci,2012,53(2):190-197.
[26]ELFEIL W K,ABOUELMAATTI R R,SUN C,et al.Identification,cloning,expression of a novel functional anas platyrhynchos mRNA TLR4[J].JAnimVetAdv,2012,11(10):1727-1733.
[27]黃正洋,陳陽,李欣鈺,等.鴨TLR4基因可變剪接體的克隆、鑒定及組織表達分析[J].畜牧獸醫(yī)學報,2013,44(5):697-702.
HUANG Z Y,CHEN Y,LI X Y,et al.Identification and expression analysis of alternative splicing ofTLR4 in duck[J].ActaVeterinariaetZootechnicaSinica,2013,44(5):697-702.(in Chinese)
[28]CHENG Y,SUN Y,WANG H,et al.Cloning,expression and functional analysis of the duck Toll-like receptor 5 (TLR5) gene[J].JVetSci,2015,16(1):37-46.
[29]XIONG D,PAN Z,KANG X,et al.Molecular cloning and functional analysis of duck Toll-like receptor 5[J].ResVetSci,2014,97(1):43-45.
[30]KOLLURI G,RAMAMURTHY N,CHURCHIL R R,et al.Influence of age,sex and rearing systems on Toll-like receptor 7 (TLR7) expression pattern in gut,lung and lymphoid tissues of indigenous ducks[J].BrPoultSci,2014,55(1):59-67.
[31]AKIRA S,TAKEDA K,KAISHO T.Toll-like receptors:critical proteins linking innate and acquired immunity[J].NatImmunol,2001,2(8):675-680.
[32]KOGUT M H,IQBAL M,HE H,et al.Expression and function of Toll-like receptors in chicken heterophils[J].DevCompImmunol,2005,29(9):791-807.
[33]劉少豐.鵝TLR3和TLR5基因的克隆及其功能研究[D].湛江:廣東海洋大學,2013.
LIU S F.Molecular cloning and fuction studies on gooseTLR3 and 5 genes[D].Zhanjiang:Guangdong Ocean University,2013.(in Chinese)
[34]OZOE A,ISOBE N,YOSHIMURA Y.Expression of Toll-like receptors (TLRs) and TLR4 response to lipopolysaccharide in hen oviduct[J].VetImmunolImmunopathol,2009,127(3-4):259-268.
[35]HEUMANN D,ROGER T.Initial responses to endotoxins and Gram-negative bacteria[J].ClinChimActa,2002,323(1-2):59-72.
[36]李欣,李中改,張小藝,等.金英黃歸湯對LPS介導乳腺上皮細胞TLR4信號通路中相關因子的影響[J].畜牧獸醫(yī)學報,2016,47(3):609-614.
LI X,LI Z G,ZHANG X Y,et al.Effects of Jin-Ying-Tang on correlated molecules of Toll-like receptor 4 signaling of LPS-induced mouse mammary epithelial cellsinvitro[J].ActaVeterinariaetZootechnicaSinica,2016,47(3):609-614.(in Chinese)
[37]YONG Y,LIU S,HUA G,et al.Identification and functional characterization of Toll-like receptor 2-1 in geese[J].BMCVetRes,2015,11:108.
[38]MICHAILIDIS G,THEODORIDIS A,AVDI M.Effects of sexual maturation and Salmonella infection on the expression of Toll-like receptors in the chicken vagina[J].AnimReprodSci,2011,123(3-4):234-241.
[39]ANASTASIADOU M,THEODORIDIS A,AVDI M,et al.Changes in the expression of Toll-like receptors in the chicken testis during sexual maturation andSalmonellainfection[J].AnimReprodSci,2011,128(1-4):93-99.
[40]MICHAILIDIS G,THEODORIDIS A,AVDI M.Transcriptional profiling of Toll-like receptors in chicken embryos and in the ovary during sexual maturation and in response toSalmonellaenteritidisinfection[J].AnimReprodSci,2010,122(3-4):294-302.
[41]NII T,SONODA Y,ISOBE N,et al.Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and the subsequent recruitment of immunocompetent cells in the oviduct of laying and molting hens[J].PoultSci,2011,90(10):2332-2341.
(編輯郭云雁)
Expression of Toll-like Receptors in Duck Intestinal Tract at the Peak and End of Lay
GUO Jia-jia1,2,DAI Zi-chun2,LU Chen2,ZHANG Tian2,SHI Zhen-dan2,ZHAO Wei2,MA Wei-ming1*,YING Shi-jia2*
(1.CollegeofAnimalScienceandTechnology,ShandongAgriculturalUniversity,Taian271018,China;2.InstituteofAnimalScience,JiangsuAcademyofAgriculturalSciences,Nanjing210014,China)
This study aimed to investigate expression of toll-like receptors in different segments of intestinal tract in duck at the peak and end of lay.Twenty laying ducks at the peak of lay were randomly assigned to 2 groups.One group ducks were given a restricted feed for 7 days,and then provided with feedadlibitumfor 10 days.Another group ducks were provided with feedadlibitumfor 17 days.Expression ofTLR1-1,TLR1-2,TLR2-1,TLR2-2,TLR3,TLR4,TLR5,TLR7,TLR15 andTLR21 were analyzed in duck duodenum,jejunum,ileum and caecum by RT-PCR and qRT-PCR methods.The results showed that 10TLRs genes were all expressed in duodenum,jejunum,ileum and caecum.Except forTLR1-2,TLR2-2,TLR4 andTLR21,the otherTLRs genes mRNA expression was significantly different among different segments of duck intestinal tract (P<0.05).Of these,TLR3,TLR5 andTLR7 mRNA expression were higher in duodenum than in the other tissues,whileTLR1-1,TLR2-1 andTLR15 mRNA expression were higher in caecum than in the other tissues.Except forTLR4 andTLR7,the otherTLRs genes mRNA expression was higher in ducks at the peak of lay than that in ducks at the end of lay (P<0.05).In conclusion,a TLR-mediated innate immune response mechanism exists in the laying duck intestinal tract,and there was stronger ability to recognize pathogens in duck intestinal tract at the peak of lay than that at the end of lay.
laying duck;toll-like receptors (TLRs);intestinal tract;peak of lay;end of lay
10.11843/j.issn.0366-6964.2016.10.009
2016-02-18
江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金(CX(12)3070);國家水禽產(chǎn)業(yè)技術體系(CARS-43-16)
郭佳佳(1992-),女,福建寧德人,碩士生,主要從事家禽非特異性免疫反應研究,Tel:025-84390956,E-mail: 767171432@qq.com
馬衛(wèi)明,教授,Tel: 0538-8242593-8205,E-mail:mawm@sdau.edu.cn;應詩家,副研究員,Tel: 025-84390772,E-mail:ysj@jaas.ac.cn
S834;S813.3
A
0366-6964(2016)10-2012-08