吳家祺, 李福山, 聶 晨, 曾群英, 郭太良
(福州大學物理與信息工程學院 光電顯示技術研究所, 福建 福州 350002)
?
基于聚芴及陽離子銥配合物的白光發(fā)光電化學池
吳家祺, 李福山*, 聶晨, 曾群英, 郭太良
(福州大學物理與信息工程學院 光電顯示技術研究所, 福建 福州350002)
發(fā)光電化學池在柔性顯示和大面積發(fā)光面板的低成本制造方面具有顯著優(yōu)勢,但是白光發(fā)光電化學池器件的制備一直是一個難題。本文報道了基于陽離子銥離子配合物的柔性黃光發(fā)光電化學池,其在6 V時的電流效率高達11.6 cd/A。并將此銥離子配合物與藍光聚芴材料以一定比例混合,基于此材料制備了白光發(fā)光電化學池,其色坐標為(0.31,0.33),接近標準白光。
發(fā)光電化學池; 白光; 陽離子銥配合物; 聚芴
1995年,Pei等首次將離子型導電聚合物和固態(tài)電解液混合,而后發(fā)現(xiàn)了共軛聚合物的電化學氧化-還原機制,第一個發(fā)光電化學池(LECs)器件被制作出來[1-2]。與有機電致發(fā)光二極管(Organic light-emitting diode,OLED)相比,LECs由于更優(yōu)越的性能,如溶液可處理、對陰極功函數(shù)沒要求、單層器件結(jié)構等,使其更能實現(xiàn)像壁紙似的發(fā)光上的應用[3-6]。一般地,根據(jù)發(fā)光材料的不同可以將LECs分為兩類:在這里我們提到的聚合物發(fā)光電化學池(Polymer LECs, PLECs)指的是發(fā)光材料為聚合物的LECs,而離子型過渡金屬配合物發(fā)光電化學池(Ionic transition-metal complex LECs, iTMC-LECs)指的是發(fā)光材料為離子型過渡金屬配合物的LECs[3-5]。1997年,Yang等[7]報道了第一個基于聚芴衍生物與聚(環(huán)氧乙烷)(PEO)的相分離混合物的白光LECs。由于熒光材料自身的特性,其最終的電致發(fā)光效率會受到限制。所以近年來,白光LECs大多以離子型過渡金屬配合物為主。由于銥離子配合物具有高的發(fā)光效率、發(fā)光顏色可調(diào)、短的激發(fā)態(tài)壽命等優(yōu)點,現(xiàn)今iTMC-LECs主要采用的發(fā)光材料為雙環(huán)金屬的銥配合物[8-10]。2008年,Su等[11]首次報道了以藍綠光配合物為主體、紅光配合物為客體主客體摻雜的白色發(fā)光電化學池。2011年,Su等[12]將藍綠光發(fā)射的配合物和紅光發(fā)射的配合物還有黃光發(fā)射的配合物雙摻雜(紅光和黃光作為客體),得到白光發(fā)射的LEC。2014年,Takeo等[13]使用串聯(lián)結(jié)構制備了白光發(fā)光器件。對于大多數(shù)顏色的iTMC-LECs,高亮度和效率已經(jīng)得到實現(xiàn),然而高純藍光的LECs器件卻一直很難實現(xiàn),而這對于白光LECs器件的發(fā)展是極其重要的[10,14-16]。本文對黃光LECs進行了研究分析,并以OLED中常用的聚芴材料作為LECs中的藍光材料,將其與黃光陽離子銥配合物混合制備了白光LECs器件,提供了一種新的制備白光LECs的方法。
本實驗采用的黃光銥離子配合物和藍光聚芴材料分別為Ir(ppz)2Mptz(Y1),聚9,9-二辛基芴(poly(9,9-dioctylfluorene),PFO)。材料的結(jié)構式如圖1(a)所示,器件的結(jié)構為Al(100 nm)/發(fā)光層/PEDOT∶PSS/ITO陽極/柔性基底,如圖1(b)所示。
器件的陽極為柔性氧化銦錫(ITO),分別用去離子水、丙酮、酒精、去離子水超聲20 min,將清洗后的器件放入干燥箱烘干,用等離子處理基片2 min以提高柔性ITO的表面浸潤性。將poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT∶PSS)溶液旋涂在ITO上,轉(zhuǎn)速為3 000 r/min,再放到120 ℃的加熱臺上熱處理20 min。將黃光材料Y1溶于乙腈溶液(20 mg/mL),并將1-丁基-3-甲基咪唑六氟磷酸鹽(BMIMPF6)以1∶0.2的量比混合。添加BMIMPF6是為了提供額外的陰離子以降低開啟電壓和減少器件的響應時間[17]。以3 000 r/min的轉(zhuǎn)速將溶液旋涂于PEDOT∶PSS上,隨后將其放置于70 ℃的加熱臺上加熱40 min。白光材料則由PFO三氯甲烷溶液(10 mg/mL)與Y1三氯甲烷溶液(20 mg/mL)按 80∶1的量比混合。以4 000 r/min的轉(zhuǎn)速將該混合溶液旋涂在PEDOT∶PSS上,隨后將其放到60 ℃的加熱臺上加熱1 h。以上步驟都在大氣中完成。最后,將基片放入真空腔體中,蒸鍍100 nm的Al電極。蒸發(fā)室的工作真空度為3×10-4Pa,沉積速度和厚度采用石英振蕩器監(jiān)控。
圖1 (a)發(fā)光材料結(jié)構式;(b)器件結(jié)構式。
Fig.1(a) Chemical structure of the light-emitting material.(b) As-fabricated device configuration.
材料的光致發(fā)光光譜(Photoluminescence,PL)和器件的電致發(fā)光光譜(Electroluminescent,EL)由日本日立公司的F-4600測試,亮度和色坐標由日本拓普康SR-3A分光輻射光度計測得。器件的I-V曲線由Kithley4200SCS半導體測試儀測得。所有測試均在室溫中進行。
3.1發(fā)光光譜分析
圖2(a)、(b)分別為黃光器件的電致發(fā)光光譜及其薄膜的光致發(fā)光光譜和白光器件的電致發(fā)光光譜。從圖中可以看出黃光的電致發(fā)光峰在572 nm,相對于光致發(fā)光光譜基本重合,稍微藍移了9 nm,并且在長波區(qū)域出現(xiàn)拖尾現(xiàn)象。這可能是由于銥離子配合物分子存在強相互作用和分子所處環(huán)境的變化所導致的[18-19]。白光器件的電致發(fā)光峰分別在430 nm和560 nm左右。它的色坐標(Commission International de L’Eclairage,CIE)為x=0.31和y=0.33。
圖2 (a)黃光器件的電致發(fā)光光譜及其薄膜的光致發(fā)光譜;(b)白光器件的電致發(fā)光光譜,插圖為所制備的白光器件。
Fig.2(a) Normalized EL spectrum of the yellow LECs and PL spectrum of the light-emitting layer. (b) Normalized EL spectrum of the white LECs. Inset shows the luminous LECs of the yellow and white LECs.
3.2發(fā)光性能分析
黃光器件的結(jié)構為PET/ITO/PEDOT∶PSS/Y1∶BMIMPF6(1∶x)/Al,表1為器件的詳細的電學性能數(shù)值。如圖3(a)所示,在常壓(6 V)下,黃光LECs的電流密度和亮度一開始隨時間的增加而增大,然后在達到最大亮度或最大電流時開始衰減。隨著時間的增加,施加的電壓促使更多的陽離子在陽極附近累積而后在陰極耗盡,從而促進載流子的注入和復合,最后導致器件的電流和亮度增大。但是隨著電流密度的持續(xù)增大,載流子注入逐漸失衡,器件的亮度開始衰減。對于這個現(xiàn)象,Costa等[20]認為器件的穩(wěn)定性與發(fā)光階段直接相關,而與載流子注入和傳輸階段無關。從表1可以看出,對于引入離子液體BMIMPF6的黃光LECs,只需0.43 h就達到最大亮度53 cd/m2,但同時器件的壽命衰減到0.91 h。離子液體雖然會促進載流子的復合但是與此同時會導致更多激子的猝滅,從而降低器件的穩(wěn)定性[21-23]。在實際應用中,穩(wěn)定的電學性能也是柔性器件所必備的。因此本文對黃光器件進行了彎曲性測試,曲率半徑為10 mm,彎曲次數(shù)為200次,得出的曲線如圖3(b)所示。黃光器件的最大電流效率隨彎曲次數(shù)的變化基本保持不變,說明黃光柔性器件具有很好的機械柔韌性。
圖3(c)為白光LECs的電流密度曲線和最大亮度曲線。器件結(jié)構為ITO/PEDOT∶PSS/PFO∶Y1(80∶1)/Al。器件的起亮電壓為6 V,隨著電壓的增大,亮度逐漸增大,達到亮度最大值。圖3(d)為白光器件的電流效率曲線,當電壓為10 V時,器件達到效率最大值0.92 cd/A。我們注意到器件的整體效率比較低,這可能是由于所采用的聚芴材料與銥離子配合物的能級匹配度不高,材料性質(zhì)差異性較大,導致微相分離,器件內(nèi)部載流子輸出不平衡,還產(chǎn)生過多的熱量;并且PFO作為主體材料,其器件的發(fā)光效率不高,使得器件整體的效率較低[7,24-25]。
表1 基于配合物Y1的發(fā)光電化學池的電學性能
[a]亮度達到1 cd/m2所需時間;
[b]達到最大亮度所需時間(響應時間);
[c]在常壓下從最大亮度衰減到一半亮度所需時間。
圖3(a)6 V電壓下,有無添加離子液體的黃光LECs器件的電流密度和亮度隨時間的變化曲線;(b)有無添加離子液體的黃光LECs在10 mm曲率半徑下彎曲測試時的電流效率變化曲線;(c)白光LECs器件的電流密度曲線和最大亮度曲線;(d)白光LECs器件的電流效率曲線。
Fig.3(a) Time-dependent current-density and brightness curves of the yellow LECs and its device with ion liquid biased at 6 V. (b) Current efficiency behavior of the yellow LECs and its device with ion liquid biased at 6 V, as a function of the bending repetitions at 10 mm curvature radius. (c) Current density and peak brightness as a function of bias voltage for white LECs. (d) Current efficiency as a function of bias voltage for white LECs.
研究了基于銥離子配合物的柔性黃光發(fā)光電化學池。器件在6 V時的最高效率為11.6 cd/A,CIE (Commission International de L’Eclairage) 坐標為(0.51,0.47)。器件在曲率半徑為10 mm的彎曲性測試中顯示出了良好的發(fā)光穩(wěn)定性。將該銥離子配合物與聚芴材料混合,制備了白色發(fā)光電化學池,它在10 V時的最高效率為0.91 cd/A,CIE坐標為(0.31,0.33)。這些結(jié)果都表明,發(fā)光電化學池在下一代照明應用上具有良好的前景。
[1] PEI Q, YU G, ZHANG C,etal.. Polymer light-emitting electrochemical cells [J].Science, 1995, 269(5227):1086-1088.
[2] YANG Y, PEI Q. Voltage controlled two color light-emitting electrochemical cells [J].Appl.Phys.Lett., 1996, 68(19):2708-2710.
[3] SLINKER J, BERNARDS D, HOUSTON P L,etal.. Solid-state electroluminescent devices based on transition metal complexes [J].Chem.Commun., 2003(19):2392-2399.
[4] SLINKER J D, RIVNAY J, MOSKOWITZ J S,etal.. Electroluminescent devices from ionic transition metal complexes [J].J.Mater.Chem., 2007, 17(29):2976-2988.
[5] HU T, HE L, DUAN L,etal.. Solid-state light-emitting electrochemical cells based on ionic iridium (Ⅲ) complexes [J].J.Mater.Chem., 2012, 22(10):4206-4215.
[6] MATYBA P, YAMAGUCHI H, CHHOWALLA M,etal.. Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT-PSS as the electrode materials [J].AcsNano, 2010, 5(1):574-580.
[7] YANG Y, PEI Q. Efficient blue-green and white light-emitting electrochemical cells based on poly [9, 9-bis (3, 6-dioxaheptyl)-fluorene-2, 7-diyl] [J].J.Appl.Phys., 1997, 81(7):3294-3298.
[8] SLINKER J D, GORODETSKY A A, LOWRY M S,etal.. Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex [J].J.Am.Chem.Soc., 2004, 126(9):2763-2767.
[9] LOWRY M S, BERNHARD S. Synthetically tailored excited states: phosphorescent, cyclometalated iridium (Ⅲ) complexes and their applications [J].Chem.—AEur.J. , 2006, 12(31):7970-7977.
[10] HE L, DUAN L, QIAO J,etal.. Highly efficient blue-green and white light-emitting electrochemical cells based on a cationic Iridium complex with a bulky side group [J].Chem.Mater., 2010, 22(11):3535-3542.
[11] SU H C, CHEN H F, FANG F C,etal.. Solid-state white light-emitting electrochemical cells using iridium-based cationic transition metal complexes [J].J.Am.Chem.Soc., 2008, 130(11):3413-3419.
[12] SU H C, CHEN H F, SHEN Y C,etal.. Highly efficient double-doped solid-state white light-emitting electrochemical cells [J].J.Mater.Chem., 2011, 21(26):9653-9660.
[13] AKATSUKA T, ROLDN-CARMONA C, ORTE,etal.. Dynamically doped white light emitting tandem devices [J].Adv.Mater., 2014, 26(5):770-774.
[14] SU H C, CHENG C Y. Recent advances in solid-state white light-emitting electrochemical cells [J].IsraelJ.Chem., 2014, 54(7):855-866.
[15] TAMAYO A B, GARON S, SAJOTO T,etal.. Cationic bis-cyclometalated iridium (Ⅲ) diimine complexes and their use in efficient blue, green, and red electroluminescent devices [J].Inorg.Chem., 2005, 44(24):8723-8732.
[16] HE L, QIAO J, DUAN L,etal.. Toward highly efficient solid-state white light-emitting electrochemical cells: blue-green to red emitting cationic iridium complexes with imidazole-type ancillary ligands [J].Adv.Funct.Mater., 2009, 19(18):2950-2960.
[17] PARKER S T, SLINKER J D, LOWRY M S,etal.. Improved turn-on times of iridium electroluminescent devices by use of ionic liquids [J].Chem.Mater., 2005, 17(12):3187-3190.
[18] WANG Y M, TENG F, HOU Y B,etal.. Copper (Ⅰ) complex employed in organic light-emitting electrochemical cells: device and spectra shift [J].Appl.Phys.Lett., 2005, 87(23):233512.
[19] BOLINK H J, CAPPELLI L, CHEYLAN S,etal.. Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium (Ⅲ) complex [J].J.Mater.Chem., 2007, 17(48):5032-5041.
[20] COSTA R D, ORTIE, BOLINK H J,etal.. Intramolecular π-stacking in a phenylpyrazole-based iridium complex and its use in light-emitting electrochemical cells [J].J.Am.Chem.Soc., 2010, 132(17):5978-5980.
[21] HABRARD F, OUISSE T, STEPHAN O,etal.. Conjugated polymer/molten salt blends: the relationship between morphology and electrical aging [J].J.Appl.Phys., 2004, 96(12):7219-7224.
[22] KOSILKIN I V, MARTENS M S, MURPHY M P,etal.. Polymerizable ionic liquids for fixed-junction polymer light-emitting electrochemical cells [J].Chem.Mater., 2010, 22(17):4838-4840.
[23] NORELL BADER A J, ILKEVICH A A, KOSILKIN I V,etal.. Precise color tuning via hybrid light-emitting electrochemical cells [J].NanoLett., 2010, 11(2):461-465.
[24] LEE C, KIM J J. Enhanced light out-coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blends [J].Small, 2013, 9(22):3858-3863.
[25] SHAO Y, BAZAN G C, HEEGER A J. Long-lifetime polymer light-emitting electrochemical cells [J].Adv.Mater., 2007, 19(3):365-370.
吳家祺(1990-),男,福建漳州人,碩士研究生,2013年于集美大學獲得學士學位,主要從事有機電致發(fā)光器件的研究。
E-mail: wjq2009536020@126.com李福山(1978-),男,福建莆田人,博士,研究員,2005年于北京大學獲得博士學位,主要從事納米電子材料與器件的研究。
E-mail: fushanli@hotmail.com
基金項目: “863”國家高技術研究發(fā)展計劃(2014AA032606); 國家自然科學基金(61376090)資助項目
文章編號: 1000-7032(2016)05-0578-05
Abstract: This essay has reported the fabrication of a metal-oxide-semiconductor AlGaN/GaN high electron mobility transistor (MOS-HEMT) with an Al2O3insulator layer which was deposited by atomic layer deposition (ALD) as the gate dielectric. The MOS-HEMT with a gate-drain distance of 10 μm exhibits a drive current density of 680 mA/mm at a gate-source bias (Vgs) of +3 V and a specific on-resistance of 1.47 mΩ·cm2. Under a negative gate bias of -20 V, the gate leakage current of the MOS HEMT is over four orders of magnitude, which is lower than that of the Schottky-gate HEMT. The off-state breakdown voltage is 640 V at drain leakage current of 27 μA/mm withVgs=-14 V. The Schottky-gate HEMT leakage current is 191 μA at the gate bias of +2 V and the MOS HEMT leakage current is as low as 23.6 nA at the gate bias of +20 V, which is approximately seven orders of magnitude lower than that of the Schottky-gate HEMT with similar gate dimensions. The on/off drain-current ratio (Ion/Ioff) is over 109for the MOS-HEMT.
Key words: AlGaN/GaN; Al2O3; high breakdown voltage; MOS-HEMT
White Light-emitting Electrochemical Cells Based on Polyfluorene and Cationic Iridium Complexes
WU Jia-qi, LI Fu-shan*, NIE Chen, ZENG Qun-ying, GUO Tai-liang
((InstituteofOptoelectronicDisplay,CollegeofPhysicsandInformationEngineering,F(xiàn)uzhouUniversity,Fuzhou350002,China)
*CorrespondingAuthor,E-mail:fushanli@hotmail.com
Light-emitting electrochemical cells (LECs) have a crucial benefit in low cost fabrication processes in flexible and large area illumination panels, but the white light emission remains to be a problem. The fabrication of flexible yellow LECs based on a cationic iridium complex was reported in this paper, which showed yellow electroluminescence with high current efficiency of 11.6 cd/A at 6 V. White light-emitting electrochemical cells were fabricated by blending material mixing polyfluorene with cationic iridium complexes. The cells show white electroluminescence with CIE coordinates of (0.31, 0.33), which is close to standard white emission.
light-emitting electrochemical cells; white light; cationic iridium complexes; polyfluorene
Al2O3/AlGaN/GaN MOS-HEMT with High On/Off Drain Current Ratio
ZHAO Yong-bing1,2,3,4, ZHANG Yun1,2,3*, CHENG Zhe1,2,3,HUANG Yu-liang1,2,3,4, ZHANG Lian1,2,3, LIU Zhi-qiang1,2,3,YI Xiao-yan1,2,3, WANG Guo-hong1,2,3, LI Jin-min1,2,3
(1.ResearchandDevelopmentCenterforSolidStateLighting,InstituteofSemiconductors,ChineseAcademyofSciences,Beijing100083,China;2.StateKeyLaboratoryofSolidStateLighting,Beijing100083,China;3.BeijingEngineeringResearchCenterforThe3rdGenerationSemiconductorMaterialsandApplication,Beijing100083,China;4.UniversityofChineseAcademyofSciences,Beijing100049,China)
*CorrespondingAuthor,E-mail:yzhang34@semi.ac.cn
TN3; TN4; TN5 Document code: A
10.3788/fgxb20163705.0578
1000-7032(2016)05-0573-05
2015-11-03;
2016-03-07
國家自然科學基金(61377027); 福建省自然科學基金(2013J01233)資助項目
TN383+.1
ADOI: 10.3788/fgxb20163705.0573
16-01-18; 修訂日期: 2016-03-03