• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超級(jí)電容器用高性能石油焦基多孔炭的制備及改性

    2016-11-02 07:37:50譚明慧鄭經(jīng)堂椿范立吳明鉑
    新型炭材料 2016年3期
    關(guān)鍵詞:石油焦氨水電容器

    譚明慧,鄭經(jīng)堂,李 朋,椿范立,吳明鉑

    (1.中國(guó)石油大學(xué)(華東) 重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東 青島266580;2.Department of Applied Chemistry,Graduate School of Engineering,University of Toyama,Gofuku3190,Toyama930-8555,Japan)

    ?

    超級(jí)電容器用高性能石油焦基多孔炭的制備及改性

    譚明慧1,2,鄭經(jīng)堂1,李朋1,椿范立2,吳明鉑1

    (1.中國(guó)石油大學(xué)(華東) 重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東 青島266580;2.Department of Applied Chemistry,Graduate School of Engineering,University of Toyama,Gofuku3190,Toyama930-8555,Japan)

    以石油煉制副產(chǎn)品石油焦為原料,采用KOH活化法制備高比面積多孔炭,通過(guò)氨水水熱處理對(duì)多孔炭進(jìn)行表面滲氮改性。系統(tǒng)考察了KOH/石油焦比例(堿/炭比)對(duì)多孔炭孔結(jié)構(gòu)及電化學(xué)性能的影響。結(jié)果表明多孔炭的比表面積、孔結(jié)構(gòu)和電化學(xué)性能可以通過(guò)堿/炭比有效地調(diào)控。隨著堿/炭比的增大,多孔炭的孔道逐漸增大,當(dāng)堿炭比為3∶1時(shí)最大比表面積達(dá)到2 964 m2·g-1。當(dāng)堿/炭比為5∶1時(shí),多孔炭的比表面積和中孔率分別高達(dá)2 842 m2·g-1和67.0%,其在50 mA·g-1電流密度下的比電容達(dá)到350 F·g-1。氨水水熱處理多孔炭,可以有效地在多孔炭表面引入氮原子,從而提高了多孔炭電極的電化學(xué)性能,尤其提高其在高電流密度下的比電容值。KOH活化以及氨水水熱處理為制備高性能低成本石油焦基超級(jí)電容器電極材料提供了一種簡(jiǎn)單有效的方法。

    石油焦;多孔炭;超級(jí)電容器;氨水水熱改性;氮摻雜

    1 Introduction

    Electric double-layer capacitors (EDLCs) have attracted much attention as attractive energy storage devices owing to their high power density and excellent cycling stability[1-3].EDLCs store energy mainly via forming electric double layers (EDLs) on the electrode/electrolyte interface,thus their electrochemical performance highly depend on the available surface area of electrode materials[4-6].Porous carbons (PCs) have been widely used as electrode materials for commercial EDLCs owing to their relatively large specific surface area,good chemical stability,and a wide range of application temperatures[7-10].

    Generally,the larger the specific surface area of the PC is,the higher specific capacitance will be obtained according to the equation below[11]:

    C=εA/d

    (1)

    Where,A is the available surface area to electrolyte ions,εis the electrolyte dielectric constant,and d is the separation between electrolyte ions and carbon surface.The values of A and d depend on the specific surface area and pore size of electrode materials.PCs with high specific surface areas usually have relatively low capacitance than expected,due to a lot of ultramicropores (smaller than 0.7 nm) inaccessible to form EDLCs.Although the pores larger than the size of the electrolyte ions and their solvation shell are required for high value of A,the larger pores will certainly decrease the total specific surface area of PCs and increase the value of d,leading to an impressive power density but a low energy density.Therefore,an appropriate pore size distribution is very important for electrode materials to have excellent electrochemical performance.Many studies focus on template methods to produce controllable pores in the range of 2 to 4 nm[12-14].However,the complicated preparation procedure,high cost and low yield of PCs make the template methods difficult to achieve practical applications[15-17].Moreover,the micropores larger than 0.7 nm are proved available for electro-adsorption of hydrated ions in aqueous electrolytes[11,18].Therefore,PCs having lots of mesopores and a certain amount of micropores prepared from inexpensive raw material via simple methods may have excellent electrochemical performance and promising applications in EDLCs.Besides the pore structure,the surface properties also play important roles in improving the electrochemical performance of PCs.As an effective method,nitrogen-doping has received much attention and is often used to enhance the specific capacitance of electrode based on PCs[19-22].

    In this paper,petroleum coke was used as raw material to prepare PCs for EDLCs by KOH activation.Ammonia hydrothermal treatment on PCs was further used to improve the EDLC electrochemical performance.As a byproduct of oil refinery,petroleum coke has a high carbon content (about 90 wt%) and has been proved suitable raw material for PC preparation[23,24].The relationships among the KOH/coke ratio,the pore structure and the electrochemical performance were discussed.Ammonia hydrothermal treatment is an efficient approach to dope nitrogen on PCs and enhance the electrochemical performance of PC electrodes.

    2 Experimental

    Petroleum coke from Daqing Oilfield of China was used as raw material to prepare PCs.The proximate and elemental analysis are listed in Table 1[25].

    Table 1 The basic properties of petroleum coke.

    Note:*Ad:the ash content in petroleum coke on the dry basis; Mad:the water content in petroleum coke on the air dry basis; Vdaf:the volatile matter content in petroleum coke on dry and ash free basis

    PCs were prepared from petroleum coke with particle diameter smaller than 100 μm by KOH activation,using a mass ratio of KOH to petroleum coke of 1 to 5.The carbonization and activation were carried out in a horizontal tube furnace,where the samples were heated from room temperature to 500 ℃ at 5 ℃/min and kept for 1 h,then heated to 850 ℃ at 5 ℃/min,and kept for 1.5 h.The above processes were performed under nitrogen flow of 60 mL/min to protect the samples from oxidation.According to the mass ratio of KOH to petroleum coke (mKOH/mpetroleum coke),the obtained samples were denoted as PC-1,PC-2,PC-3,PC-4 and PC-5.

    In order to further increase the electrochemical performance of the PC electrodes,the PCs were hydrothermally treated in ammonia at different temperatures.PC-3 was mixed with ammonia,then placed into a hydrothermal reactor,and kept for 24 h at different temperatures.After the hydrothermal treatment,the samples were rinsed with distilled water,and then dried in an oven at 110 ℃.According to the temperature of hydrothermal treatment,hydrothermal treated PC-3 samples were named as PC-3-RT (room temperature),PC-3-100 (100 ℃),PC-3-150 (150 ℃) and PC-3-200 (200 ℃).

    N2adsorption-desorption was carried out on a Micromeritics ASAP 2020 sorption analyzer (USA) to determine the BET specific surface areas and the pore size distributions of PCs.The crystal structures of samples were confirmed by X-Ray diffraction (XRD) (Rigaku RINT 2400,Japan).The surface morphology was characterized by scanning electron microscopy (SEM) (JEOL JSM-6360LV SEM,Japan) and transmission electron microscopy (TEM) (JEM-2100UHR,Japan).The temperature programmed desorption of carbon dioxide (CO2-TPD) was conducted by a Catalyst Analyzer BELCAT-B (Japan) with a heating rate of 10 ℃/min to measure the intensity of basic sites of samples.X-ray photoelectron spectra (XPS) were recorded on a ESCALAB 250Xi spectrometer (Thermo Scientific,USA).

    The electrodes were prepared from PCs by adding polytetrafluoroethylene emulsion (PTFE) as binder and acetylene black as conductive agent with a PC/acetylene black/PTFE mass ratio of 85/5/10.The mixture was pressed on the foam nickel with diameter of 12 mm at 20 MPa for 30 s,and then dried at 100 ℃ for 1 h in vacuum.Finally,button-type capacitor was assembled with two PC electrodes separated by a polypropylene membrane,using a 6 M KOH aqueous solution as an electrolyte.Galvanostatic charge/discharge analysis was carried out on a land cell tester (Land,CT-2001A,China).The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed on an electrochemical workstation (PARSTAT 4000,Princeton,USA).The potential range of CV was 0-1 V,and the Nyquist plot was recorded at the frequency from 100 kHz to 0.01 Hz.All electrochemical measurements were carried out at room temperature.

    3 Results and discussion

    The N2adsorption-desorption isotherms obtained at 77 K for PCs with different KOH/coke ratios are shown in Fig.1(a).PC-1 and PC-2 exhibit a typical type-I isotherm with a sharp increase in the amount of nitrogen adsorbed at low relative pressure until a plateau is formed and no obvious hysteresis loop is observed at high relative pressure.It is well known that the adsorption of microporous material at low p/p0is micropore filling.For PC-1 and PC-2,the plateaus are formed immediately following the quick increase.Compared to PC-1 and PC-2,the plateaus of PC-3,PC-4 and PC-5 are formed more slowly and the knees of the isotherms become wider successively as KOH/coke ratio increases from 3∶1 to 5∶1.In the case of PC-5,the plateau forms till 0.4 of the relative pressure.The saturation steps become long and the slopes of the plateaus increase due to multi-layer adsorptions of wide micropores and narrow mesopores[26],revealing that the pore size distribution of PCs becomes wide when more KOH is used.

    Fig.1 (a) N2adsorption-desorption isotherms and (b) pore size distributions of PCs.

    The pore size distributions of PCs calculated from the adsorption branch by Density Functional Theory method are given in Fig.1b,which clearly reveals the change on the pore size at different KOH/coke ratios.It can be seen that all PCs have similar pore size distributions in microporous range (less than 2 nm).Meanwhile,PCs at higher KOH/coke ratios (e.g.3∶1,4∶1 and 5∶1) have much more mesopores and larger volume in mesopore range (2-50 nm).The pore size becomes wide gradually with increasing KOH/coke ratio,indicating the pore size distributions of PCs could be finely controlled by the mass ratio of KOH/petroleum coke.

    It is obviously seen that the adsorption amounts of N2increase greatly as the KOH/coke ratio increases from 1∶1 to 5∶1 in Fig.1a,revealing that the BET surface area and pore volume of PCs increase remarkably (Table 2) with the KOH/coke ratio.The specific surface area increases from 906 to 1 841 m2·g-1as KOH/coke ratio increases from 1∶1 to 2∶1,while the pore volume increases from 0.40 to 0.61 cm3·g-1.Taken into consideration that PC-1 and PC-2 belong to microporous materials,it is clearly proved that more KOH used can generate more micropores,and the surface area and pore volume increase accordingly.As KOH/coke ratio increases from 2∶1 to 3∶1,the specific surface area and pore volume keep increasing.The pore volume especially mesopore volume increases much more sharply,indicating that the abundant KOH at high KOH/coke ratio not only generates more new micropores,but also enlarges the primary pores to form mesopores.When the KOH/coke ratio increases from 3∶1 to 5∶1,the specific surface area and the micropore volume slightly decrease and the total pore volume keeps increasing due to continuous enlarging of pore size by more KOH.As shown in Table 2,the pore volume,mesoporosity and average pore size all increase gradually with increasing KOH/coke ratio from 1∶1 to 5∶1.It is reported that relatively big pores and high surface area of PCs are beneficial for electrochemical performance[15].The mesoporosity of PC-5 reaches 67.0%,much bigger than 8.8% of PC-1,while the specific surface area of PC-5 is as high as 2 842 m2·g-1,indicating it is a good electrode material.

    Table 2 Pore parameters and yields of PCs.

    Note:SBET:BET specific surface area; Vt:the total pore volume; Vmic:the micropore volume; Vmes:the mesopore volume (Due to the very low content,the macropore volume was included in mesopore.); Dap:the average pore diameter; Yield:the percentage of PC obtained per initial weight of petroleum coke.

    In order to detect the effects of KOH/coke ratios on the structure of PCs,XRD was employed to investigate the crystalline structure of the raw petroleum coke and PCs prepared at different KOH/coke ratios.Fig.2 gives the XRD patterns of all samples.The crystalline structure of carbonaceous materials can be characterized by 2θat 26° and 43°.The peak (002) at 26° for petroleum coke is fairly narrow and sharp,indicating large crystalline size in petroleum coke[26].As the KOH/coke ratio increases from 1∶1 to 5∶1,the (002) peak gradually becomes broad and weak,finally almost disappears at 4∶1 and 5∶1,indicating that the KOH destroys the crystalline structure of petroleum coke during activation.The phenomenon also can be seen from the SEM and TEM images as shown in Fig.3.After activated at high KOH/coke ratios,the surface of PC-4 (Fig.3(c)) or PC-5 (Fig.3(d)) appears some big pores or slits compared to raw petroleum coke (Fig.3(a)) and PC-1 (Fig.3(b)).Figs.3e and 3f are the TEM images of PC-5,in which micropores and mesopores can be clearly seen.The plentiful pores in PCs are believed to be beneficial for their electrochemical performance.

    Fig.2 XRD patterns of petroleum coke and PCs.

    Fig.4(a) displays the cyclic voltammetry curves (scan rate 2 mV·s-1) of all the PC electrodes in a 6 M KOH aqueous electrolyte.The sweep curves are all in rectangular shape,a typical EDLC characteristic.

    Fig.4(b) shows the galvanostatic charge/discharge curves of PC electrodes at current density of 50 mA·g-1in a 6 M KOH aqueous electrolyte.All curves exhibit the typical symmetrical charge-discharge pattern,indicating that PC electrodes have the typical capacitive behavior.The results of the charge-discharge test are in accordance with that from the CV measurements,as shown in Fig.4(a).The specific capacitance of PC electrodes (C,F·g-1) can be calculated from the slope of the discharge curve according to the following equation[27].

    C=I/k/m

    (2)

    Where,I is the discharge current,k is the slope of the discharge curve,and m is the mass of the active material in electrode.The dependence of specific capacitance on the current density for PCs is shown in Fig.5(a).The specific capacitance of PC electrodes at 50 mA·g-1increases from 170 to 350 F·g-1with increasing the KOH/coke ratio and reaches a maximum at the KOH/coke ratio of 5∶1 (PC-5).Although PC-3 has the biggest surface area,the specific capacitances of PC-4 and PC-5 are bigger than that of PC-3,indicating the development of pore size and volume promotes the growth of capacitance,especially at high current densities.PC-5 electrode has the biggest specific capacitances at all current densities compared with other PC electrodes,which should be attributed to the enhanced pore size appropriate for EDL formation.The capacitance of PC-5 is 350 F·g-1,much higher than 220 F·g-1of PCs with large specific surface areas (>3 000 m2·g-1) in Ref .[28].

    Fig.3 SEM images of (a) petroleum coke,(b) PC-1,(c) PC-4 and (d) PC-5; (e,f) TEM images of PC-5.

    Fig.4 (a) Cyclic voltammetry curves of PC electrodes at a scan rate of 2 mV·s-1in a 6 M KOH aqueous electrolyte; (b) Charge-discharge curves of PC electrodes at a current density of 50 mA·g-1in a 6 M KOH aqueous electrolyte.

    Generally,the increase in the discharge current density leads to a decrease in specific capacitance.Those decreases are ascribed to the partial inaccessibility of some electrolyte ions into the internal micropores of electrodes,so inaccessible micropores are less effective in forming EDL.The specific capacitance of PC-1 electrode decreases by more than 59% with the discharge current density from 50 to 1 000 mA·g-1,while that of PC-5 electrode is only 38% (Fig.5b),which is should be ascribed to the high mesoporosity and the synergistic effect of the mesopores and micropores.The mesopores can act as favorable channels for penetration and transportation of electrolyte ions so that the micropores and small mesopores can store more ions,facilitating high capacitance retention and excellent rate performance at high current densities.

    The energy density (E,Wh·kg-1) and average power density (P,W·kg-1) can be calculated by using the following equations[2,29].

    E=1/2CV2

    (3)

    P=E/t

    (4)

    Where,V is the usable voltage (V),t is the discharge time (h).

    Fig.5 (a) Specific capacitance of PC electrodes versus current density in 6 M KOH aqueous electrolyte; (b) Specific capacitance and its reduction percent versus the KOH/coke ratio.

    The variation of the energy density of PC capacitors with the average power density is presented in Fig.6.It can be found that the energy density of PC electrodes drops with increasing average power density for all PC electrodes,implying that less energy can be released at higher discharge rate.The energy densities of PC-2,PC-3,PC-4 and PC-5 are obviously higher than that of PC-1,which can be attributed to the increasing surface area and pore volume.As the power density increases,the energy density of PC-1 electrode drops more quickly than those of the other PC electrodes.The energy density of PC-1 electrode in 6 M KOH electrolyte drops from 5.45 to 0.44 Wh·kg-1with the increase of current density from 0.05 to 1 A·g-1.For PC-5 electrode,the energy density drops from 11.67 to 4.16 Wh·kg-1,revealing the excellent rate capability of PC-5.Except for the bigger surface area and pore volume,the larger pore size and higher mesopore percentage of PCs are responsible for their bigger energy density at higher current density.

    Although PC-3 has the biggest specific surface area,its surface area is not utilized adequately.In order to improve the electrochemical performance of PC-3 electrode,hydrothermal modifications by ammonia at different temperatures have been studies.Fig.7(a) gives the dependence of specific capacitance on the current density for PC-3 and modified PC-3 electrodes in 6 M KOH solution.The capacitance of PC electrodes increases slightly with the increasing hydrothermal temperature,which agrees with the CV results in Fig.7(b).Especially at 200 ℃,the capacitance of PC-3-200 can reach 300 F·g-1at a current density of 50 mA·g-1,and can keep 200 F·g-1at 1 000 mA·g-1.Keep in mind that the capacitance is 289 F·g-1at 50 mA·g-1and 150 F·g-1at 1 000 mA·g-1for PC-3 electrode,the hydrothermal modification in ammonia at 200 ℃ can effectively improve the capacitance of PC-3 at high discharge current density,which could be ascribed to the doped nitrogen by the hydrothermal modifications of PC-3 in ammonia.

    Fig.6 Energy density versus power density of PC electrodes in a 6 M KOH aqueous electrolyte.

    The change of surface properties of PC-3 and modified PC-3-200 can be determined by XPS,as presented in Fig.8.Fig.8(a) compares the XPS survey spectra of PC-3 and PC-3-200.Compared to PC-3,in addition to the peaks of C1s and O1s,a N1s peak at 399.1 eV appears on PC-3-200,which demonstrates the successful N-doping with the hydrothermal modification of PC-3 in ammonia.The N1s peak can be fitted to investigate the types of nitrogen-containing groups.As shown in Fig.8b,three different peaks at about 398.4,399.5 and 402.4 eV could be attributed to pyridinic N,pyrrolic N and pyridine-N-oxide,respectively[30-32].These introduced N species can not only induce the extra pseudo-capacitance to increase the specific capacitance,but also improve the hydrophilicity of the carbon surface to facilitate the wettability of the pore with electrolyte[22,31].Thererfore,after hydrothermal modification by ammonia,PC-3-200 exhibits a higher specfic capacitance than PC-3.Otherwise,the doped-N can increase basic groups on PC.The previous research has proved the direct relationship between the number of basic groups and capacitance particularly at high current densities[33].To make sure the change of basic groups on PC caused by hydrothermal modification in ammonia,CO2-TPD has been used to analyze PC-3 and PC-3-200.As can be seen in Fig.9,two new peaks appear around 400 ℃ and 720 ℃ for PC-3-200,revealing that new and strong basic groups are formed by hydrothermal modification in ammonia.

    Fig.7 (a) Specific capacitance of PC-3 and modified PC-3 electrodes versus current density in 6 M KOH aqueous electrolyte; (b) Cyclic voltammetry curves of PC-3 and modified PC-3 electrodes at a scan rate of 2 mV·s-1in 6 M KOH aqueous electrolyte.

    Fig.8 (a) XPS survey spectra of PC-3 and PC-3-200 and (b) N1s XPS spectrum of PC-3-200.

    In order to make sure why nitrogen-doped PC-3-200 electrode exhibits better electrochemical performance in comparison with PC-3 electrode,electrochemical impedance spectra were measured.The Nyquist plots of PC electrodes in 6 M KOH are given in Fig.10.All plots exhibit a near vertical line in the low frequency range,showing almost purely capacitive behavior.The semicircle at high frequency regions is indicative of interfacial charge transfer resistance,and a small semicircle diameter presents a low charge transfer resistance and better electrical conductivity.It can be seen that all modifed samples have smaller diameter than that of PC-3,and PC-3-200 has the smallest diameter,indicating the hydrothermal modification in ammonia can reduce interfacial charge transfer resistance and thus improve the conductivity.The intersections of these curves with the Z’ axis (real impedance) represent the equivalent series resistance (ESR)[34].Based on the Nyquist plots,the ESR of PC-3,PC-3-RT,PC-3-100,PC-3-150 and PC-3-200 is 3.37,2.40,1.84,1.78 and 0.62 ohm,respectively.For all the above mentioned reasons,all ammonia modified samples show much better electrochemical performance than that of PC-3.It is easily seen that hydrothermal treatment in ammonia at 200 ℃ is an effective method to dope nitrogen on PC and enhance the electrochemical performance of PC electrodes.

    Fig.9 CO2-TPD curves of PC-3 and PC-3-200.

    Fig.10 Nyquist plots of the PC-3 and modified PC-3 electrodes.

    4 Conclusions

    PCs with high surface areas and wide pore size distributions were prepared from petroleum coke via KOH activation.The specific surface area and pore size distribution of PCs can be adjusted by changing the mass ratio of KOH to petroleum coke.The largest specific surface area of PC reaches 2 964 m2·g-1at a KOH/coke ratio of 3∶1.PC-5 prepared with the KOH/coke ratio of 5∶1 can simultaneously keep a high specific surface area (2 842 m2·g-1) and high mesoporosity (67.0%).With increasing KOH/coke ratio from 1∶1 to 5∶1,the specific capacitance of PC electrodes increases from 170 to 350 F·g-1at a current density of 50 mA·g-1in 6 M KOH,while the reduction percentage of the capacitance decreases from 59% to 38% with increasing current density from 50 to 1 000 mA·g-1.PC-5 electrode has the biggest specific capacitance at all current densities owing to beneficial EDL formation in the pores with enlarged sizes.Hydrothermal modification in ammonia at 200 ℃ can introduce nitrogen to PC and reduce the interfacial charge transfer resistance and equivalent series resistance of PC electrodes,resulting in an improvement on their electrochemical performance,especially at a high discharge current density.KOH activation with subsequent ammonia hydrothermal modification is proved to be a simple yet efficient approach to prepare cost-effective PCs for supercapacitors.

    [1]Burke A.Ultracapacitors:Why,how,and where is the technology[J].Journal of Power Sources,2000,91(1):37-50.

    [2]Lewandowski A,Galinski M.Practical and theoretical limits for electrochemical double-layer capacitors[J].Journal of Power Sources,2007,173(2):822-828.

    [3]Choi N S,Chen Z,Freunberger S A,et al.Challenges facing lithium batteries and electrical double-layer capacitors[J].Angewandte Chemie International Edition,2012,51(40):9994-10024.

    [4]Simon P,Gogotsi Y.Materials for electrochemical capacitors[J].Nature Materials,2008,7(11):845-854.

    [5]Wang G,Zhang L,Zhang J.A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,2012,41(2):797-828.

    [6]Zhai Y,Dou Y,Zhao D,et al.Carbon materials for chemical capacitive energy storage[J].Advanced Materials,2011,23(42):4828-4850.

    [7]Inagaki M,Konno H,Tanaike O.Carbon materials for electrochemical capacitors[J].Journal of Power Sources,2010,195(24):7880-7903.

    [8]Frackowiak E,Béguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.

    [9]Pandolfo A G,Hollenkamp A F.Carbon properties and their role in supercapacitors[J].Journal of Power Sources,2006,157(1):11-27.

    [10]Qu D.Studies of the activated carbons used in double-layer supercapacitors[J].Journal of Power Sources,2002,109(2):403-411.

    [11]Chmiola J,Yushin G,Gogotsi Y,et al.Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J].Science,2006,313(5794):1760-1763.

    [12]Zhou H,Zhu S,Hibino M,et al.Electrochemical capacitance of self-ordered mesoporous carbon[J].Journal of Power Sources,2003,122(2):219-223.

    [13]Li L,Song H,Chen X.Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors[J].Electrochimica Acta,2006,51(26):5715-5720.

    [14]Wang J,Xue C,Lv Y,et al.Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance[J].Carbon,2011,49(13):4580-4588.

    [15]Wu M,Ai P,Tan M,et al.Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J].Chemical Engineering Journal,2014,245:166-172.

    [16]Ryoo R,Joo S H,Kruk M,et al.Ordered Mesoporous Carbons[J].Advanced Materials,2001,13(9):677-681.

    [17]Fuertes A B,Nevskaia D M.Control of mesoporous structure of carbons synthesised using a mesostructured silica as template[J].Microporous Mesoporous Materials,2003,62(3):177-190.

    [18]Chmiola J,Yushin G,Dash R,et al.Effect of pore size and surface area of carbide derived carbons on specific capacitance[J].Journal of Power Sources,2006,158(1):765-772.

    [19]Gao F,Shao G,Qu J,et al.Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes[J].Electrochimica Acta,2015,155:201-208.

    [20]Li B,Dai F,Xiao Q,et al.Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J].Energy & Environmental Science,2016,9(1):102-106.

    [21]Chen L,Zhang X,Liang H,et al.Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors[J].ACS Nano,2012,6(8):7092-7102.

    [22]Zhao L,Fan L,Zhou M,et al.Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J].Advanced Materials,2010,22(45):5202-5206.

    [23]Wu M,Zha Q,Qiu J,et al.Preparation of porous carbons from petroleum coke by different activation methods[J].Fuel,2005,84(14-15):1992-1997.

    [24]Lu C,Xu S,Gan Y,et al.Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH[J].Carbon,2005,43(11):2295-2301.

    [25]He X,Geng Y,Qiu J,et al.Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J].Carbon,2010,48(5):1662-1669.

    [26]Xu B,Chen Y,Wei G,et al.Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J].Materials Chemistry and Physics,2010,124(1):504-509.

    [27]Zhao Q,Wang X,Wu C,et al.Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method[J].Journal of Power Sources,2014,254(0):10-17.

    [28]Lozano-Castelló D,Cazorla-Amorós D,Linares-Solano A,et al.Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte[J].Carbon,2003,41(9):1765-1775.

    [29]Lei Z,Liu Z,Wang H,et al.A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte[J].Journal of Materials Chemistry A,2013,1(6):2313-2321.

    [30]Wu M,Wang Y,Wu W,et al.Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J].Carbon,2014,78:480-489.

    [31]Fan L,Chen T,Song W,et al.High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors[J].Scientific Reports,2015,5:15388.

    [32]Zhou J,Zhang Z,Xing W,et al.Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance[J].Electrochimica Acta,2015,153:68-75.

    [33]Seredych M,Hulicova-Jurcakova D,Lu G,et al.Surface functional groups of carbons and the effects of their chemical character,density and accessibility to ions on electrochemical performance[J].Carbon,2008,46(11):1475-1488.

    [34]Pendashteh A,Mousavi M F,Rahmanifar M S.Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor[J].Electrochimica Acta,2013,88:347-357.

    Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes

    TAN Ming-hui1,2,ZHENG Jing-tang1,LI Peng1,Tsubaki Noritatsu2,WU Ming-bo1

    (1.State Key Laboratory of Heavy Oil Processing,China University of Petroleum,Qingdao266580,China;2.Department of Applied Chemistry,Graduate School of Engineering,University of Toyama,Gofuku3190,Toyama930-8555,Japan)

    As a byproduct of oil refining,petroleum coke with a high carbon content (about 90 wt%) has been shown to be a good raw material for porous carbons (PCs).PCs with high specific surface areas were derived from petroleum coke by KOH activation.The effect of KOH/coke mass ratio on the pore structure of the PCs and their electrochemical performance as electrodes of electric double layer capacitors were investigated.Results showed that the specific surface area and pore size distribution of the PCs could be efficiently controlled by the KOH/coke ratio.The pore sizes of the PCs increase with increasing KOH/coke ratio,and the largest specific surface area was as high as 2 964 m2·g-1.A PC-5 electrode prepared with a KOH/coke ratio of 5∶1 has a high specific surface area of 2 842 m2·g-1and mesoporosity of 67.0%,and has the largest specific capacitance at all investigated current densities among the PCs examined.This is ascribed to its high specific surface area and high mesoporosity.Hydrothermal modification of PC-3 (KOH/coke ratio at 3∶1) in ammonia at 200 ℃ increases its specific capacitance,especially at high discharge current densities.This improved electrochemical performance can be attributed to nitrogen-doping that occurs during the process,and this can induce pseudo-capacitance and improve the hydrophilicity of the PC electrode to the electrolyte.KOH activation combined with ammonia hydrothermal modification is a simple yet efficient approach to prepare cost-effective PCs for supercapacitors with excellent electrochemical performance.

    Petroleum coke; Porous carbon; Supercapacitors; Ammonia hydrothermal modification; Nitrogen doping

    date:2016-05-10;Revised date:2016-06-10

    National Natural Science Foundation of China (51172285,51372277,51402192); Fundamental Research Funds for the Central Universities (15CX08005A).

    WU Ming-bo.E-mail:wumb@upc.edu.cn; Tsubaki Noritatsu.E-mail:tsubaki@eng.u-toyama.ac.jp

    introduction:TAN Ming-hui,Ph.D Candidate.E-mail:tantanlele@163.com

    1007-8827(2016)03-0343-09

    TQ127.1+1

    A

    國(guó)家自然科學(xué)基金(51172285,51372277,51402192);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金(15CX08005A).

    吳明鉑.E-mail:wumb@upc.edu.cn;椿范立.E-mail:tsubaki@eng.u-toyama.ac.jp

    譚明慧,博士研究生.E-mail:tantanlele@163.com

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805).

    10.1016/S1872-5805(16)60018-5

    猜你喜歡
    石油焦氨水電容器
    氨水知識(shí)要點(diǎn)與考題例析
    電容器的實(shí)驗(yàn)教學(xué)
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應(yīng)用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無(wú)功補(bǔ)償電容器的應(yīng)用
    山東冶金(2019年5期)2019-11-16 09:09:38
    高硫石油焦的堿催化煅燒脫硫?qū)嶒?yàn)研究
    氨水吸收式制冷系統(tǒng)性能模擬分析
    石墨烯在超級(jí)電容器中的應(yīng)用概述
    高溫煅燒石油焦排料過(guò)程余熱回收
    兩種石油焦氣化制氫工藝的系統(tǒng)模擬研究
    防止農(nóng)用氨水中毒
    祝您健康(1985年3期)1985-12-30 06:51:16
    欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o | 卡戴珊不雅视频在线播放| 十八禁人妻一区二区| 满18在线观看网站| 最近的中文字幕免费完整| 欧美日韩亚洲国产一区二区在线观看 | 美女午夜性视频免费| 人妻人人澡人人爽人人| 啦啦啦在线观看免费高清www| 国产精品一国产av| 久久亚洲国产成人精品v| 在线亚洲精品国产二区图片欧美| 色视频在线一区二区三区| 精品午夜福利在线看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲天堂av无毛| 丝袜人妻中文字幕| 国产成人精品久久久久久| 精品国产乱码久久久久久男人| 18禁国产床啪视频网站| 在线观看人妻少妇| 亚洲欧美日韩另类电影网站| netflix在线观看网站| 久久性视频一级片| 精品国产一区二区三区久久久樱花| 熟女av电影| 十八禁高潮呻吟视频| 国产亚洲av高清不卡| 午夜福利影视在线免费观看| av一本久久久久| 爱豆传媒免费全集在线观看| 久久性视频一级片| 亚洲,欧美,日韩| 亚洲少妇的诱惑av| 一边摸一边做爽爽视频免费| 久久精品亚洲熟妇少妇任你| 欧美日韩视频精品一区| 久久婷婷青草| 国产精品一区二区精品视频观看| 人妻人人澡人人爽人人| 亚洲成人手机| 一级毛片电影观看| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费午夜福利视频| 观看av在线不卡| 欧美日韩成人在线一区二区| 亚洲人成电影观看| 国产免费福利视频在线观看| 肉色欧美久久久久久久蜜桃| 黄色视频不卡| 久久av网站| 日韩一本色道免费dvd| 视频在线观看一区二区三区| 国产精品av久久久久免费| 欧美老熟妇乱子伦牲交| 黑人巨大精品欧美一区二区蜜桃| 美女视频免费永久观看网站| 水蜜桃什么品种好| 超碰成人久久| 亚洲综合精品二区| 国产成人a∨麻豆精品| 日本av手机在线免费观看| 欧美国产精品一级二级三级| 成年女人毛片免费观看观看9 | 2018国产大陆天天弄谢| 日韩制服骚丝袜av| 午夜av观看不卡| 欧美亚洲 丝袜 人妻 在线| 久久免费观看电影| 国产精品av久久久久免费| 久久女婷五月综合色啪小说| 亚洲国产日韩一区二区| 考比视频在线观看| 美女中出高潮动态图| 波多野结衣av一区二区av| 国产日韩欧美亚洲二区| 熟妇人妻不卡中文字幕| 男人舔女人的私密视频| 人人妻,人人澡人人爽秒播 | 亚洲精品视频女| 国产伦人伦偷精品视频| 精品国产露脸久久av麻豆| 亚洲精品美女久久av网站| 日本黄色日本黄色录像| 最近2019中文字幕mv第一页| 亚洲国产中文字幕在线视频| 日本一区二区免费在线视频| 亚洲av中文av极速乱| 在线看a的网站| 美女脱内裤让男人舔精品视频| 叶爱在线成人免费视频播放| 国产精品二区激情视频| 麻豆精品久久久久久蜜桃| 韩国高清视频一区二区三区| 日韩 亚洲 欧美在线| 国产老妇伦熟女老妇高清| 亚洲欧美精品综合一区二区三区| 一级黄片播放器| 狂野欧美激情性bbbbbb| 777久久人妻少妇嫩草av网站| 精品少妇久久久久久888优播| 国产日韩一区二区三区精品不卡| 久久久久国产一级毛片高清牌| 一级毛片 在线播放| 亚洲欧美成人综合另类久久久| 久久天躁狠狠躁夜夜2o2o | 精品视频人人做人人爽| 丝袜喷水一区| 少妇精品久久久久久久| 美女中出高潮动态图| 欧美黑人精品巨大| 国产免费又黄又爽又色| 亚洲欧美成人精品一区二区| 午夜福利,免费看| 久久亚洲国产成人精品v| 不卡视频在线观看欧美| 老司机影院毛片| 99精国产麻豆久久婷婷| 亚洲av欧美aⅴ国产| 精品福利永久在线观看| 男的添女的下面高潮视频| 满18在线观看网站| 亚洲精品美女久久久久99蜜臀 | 精品国产国语对白av| 一二三四中文在线观看免费高清| 丰满迷人的少妇在线观看| 色视频在线一区二区三区| 久久热在线av| www.精华液| 日韩电影二区| 国产又爽黄色视频| 国产精品麻豆人妻色哟哟久久| 老汉色∧v一级毛片| 日韩中文字幕欧美一区二区 | 极品人妻少妇av视频| bbb黄色大片| 国产成人免费观看mmmm| 一本—道久久a久久精品蜜桃钙片| 久久人人爽人人片av| 最近的中文字幕免费完整| 天堂俺去俺来也www色官网| 久久精品久久久久久久性| 亚洲av成人不卡在线观看播放网 | 一本大道久久a久久精品| 又黄又粗又硬又大视频| 一本大道久久a久久精品| 欧美日韩av久久| 少妇 在线观看| 麻豆乱淫一区二区| 美女视频免费永久观看网站| 老司机靠b影院| 亚洲伊人色综图| 亚洲美女搞黄在线观看| videos熟女内射| 国产野战对白在线观看| 国产成人系列免费观看| 日韩视频在线欧美| 久久婷婷青草| 久久久久久久久久久免费av| 国产淫语在线视频| 久久毛片免费看一区二区三区| 男女床上黄色一级片免费看| 国产一卡二卡三卡精品 | 亚洲国产欧美日韩在线播放| 欧美成人精品欧美一级黄| 人人妻,人人澡人人爽秒播 | av福利片在线| 成人手机av| 亚洲精品自拍成人| 国产一区二区三区av在线| 欧美日韩视频精品一区| 国产欧美日韩综合在线一区二区| 99热国产这里只有精品6| 国产欧美日韩综合在线一区二区| 极品人妻少妇av视频| 国产亚洲欧美精品永久| 伦理电影免费视频| av在线播放精品| 久久精品亚洲熟妇少妇任你| 999精品在线视频| 亚洲国产精品国产精品| 日韩 欧美 亚洲 中文字幕| 日韩欧美一区视频在线观看| 欧美激情 高清一区二区三区| 日韩 欧美 亚洲 中文字幕| 人人妻人人爽人人添夜夜欢视频| 久久久久精品人妻al黑| 99国产综合亚洲精品| 欧美精品一区二区大全| 久久99精品国语久久久| 日本午夜av视频| 可以免费在线观看a视频的电影网站 | 超色免费av| 视频区图区小说| 可以免费在线观看a视频的电影网站 | 亚洲欧洲日产国产| av一本久久久久| 精品少妇久久久久久888优播| 欧美日韩国产mv在线观看视频| 亚洲四区av| 麻豆乱淫一区二区| 亚洲精品一区蜜桃| 中文字幕人妻丝袜一区二区 | 精品少妇内射三级| 亚洲av综合色区一区| 精品一品国产午夜福利视频| 国产成人一区二区在线| 男女边摸边吃奶| 日韩制服骚丝袜av| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费男女啪啪视频观看| 亚洲精品一二三| 国产精品.久久久| 男女边摸边吃奶| 99热网站在线观看| 精品一区二区三区四区五区乱码 | 看免费成人av毛片| 黄色一级大片看看| 天天躁夜夜躁狠狠久久av| 在线观看免费午夜福利视频| 国产男女超爽视频在线观看| 亚洲av欧美aⅴ国产| 亚洲欧美成人综合另类久久久| 十分钟在线观看高清视频www| 成人18禁高潮啪啪吃奶动态图| 午夜日韩欧美国产| 亚洲精品第二区| 97在线人人人人妻| 久久天堂一区二区三区四区| 最近中文字幕2019免费版| 国产免费现黄频在线看| 老司机影院毛片| 国产精品一区二区在线观看99| 欧美精品人与动牲交sv欧美| 观看av在线不卡| 色综合欧美亚洲国产小说| 亚洲精品av麻豆狂野| 久久久久精品性色| 亚洲专区中文字幕在线 | 黄片无遮挡物在线观看| 只有这里有精品99| 亚洲一级一片aⅴ在线观看| 久久影院123| 国产在视频线精品| 国产成人欧美| 男女无遮挡免费网站观看| 国产欧美亚洲国产| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美精品济南到| 免费久久久久久久精品成人欧美视频| 国产免费视频播放在线视频| 亚洲欧美清纯卡通| 丝袜在线中文字幕| 欧美在线黄色| 日韩,欧美,国产一区二区三区| 电影成人av| 欧美亚洲 丝袜 人妻 在线| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 超碰成人久久| 欧美 日韩 精品 国产| h视频一区二区三区| 久久国产精品大桥未久av| 又大又爽又粗| 亚洲免费av在线视频| 青春草亚洲视频在线观看| 在线观看免费高清a一片| 九色亚洲精品在线播放| 妹子高潮喷水视频| 美女中出高潮动态图| 亚洲av电影在线进入| av网站免费在线观看视频| 成人国产麻豆网| 成人18禁高潮啪啪吃奶动态图| 老司机影院成人| 纯流量卡能插随身wifi吗| 午夜福利乱码中文字幕| 在线天堂中文资源库| 男女免费视频国产| 国产麻豆69| 一级毛片电影观看| 99久国产av精品国产电影| 一区二区三区激情视频| 美女午夜性视频免费| 久久久久久久久久久免费av| 视频在线观看一区二区三区| 亚洲国产av影院在线观看| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区| 欧美成人精品欧美一级黄| 伊人久久国产一区二区| 亚洲精品美女久久久久99蜜臀 | 午夜福利视频在线观看免费| 男女床上黄色一级片免费看| 亚洲精品久久久久久婷婷小说| 别揉我奶头~嗯~啊~动态视频 | 中文字幕亚洲精品专区| 岛国毛片在线播放| 亚洲第一av免费看| 一区二区日韩欧美中文字幕| 国产有黄有色有爽视频| 一区二区三区精品91| 国产男人的电影天堂91| 丝袜美足系列| 麻豆精品久久久久久蜜桃| 国产成人系列免费观看| www.av在线官网国产| 国产精品国产三级专区第一集| 国产亚洲欧美精品永久| 亚洲成人手机| 18禁动态无遮挡网站| 国产一卡二卡三卡精品 | 精品酒店卫生间| 日本黄色日本黄色录像| a级毛片在线看网站| 国产一区亚洲一区在线观看| 男男h啪啪无遮挡| 久久久久久人人人人人| 男女无遮挡免费网站观看| 色网站视频免费| 精品久久久久久电影网| 久久97久久精品| 欧美日韩亚洲高清精品| 久久毛片免费看一区二区三区| 十八禁网站网址无遮挡| 精品福利永久在线观看| 国产国语露脸激情在线看| 日本av手机在线免费观看| 麻豆乱淫一区二区| 两个人免费观看高清视频| 免费观看人在逋| 国产极品粉嫩免费观看在线| 精品一区二区三区av网在线观看 | 午夜激情av网站| 亚洲成人免费av在线播放| 国产成人精品在线电影| 国产熟女午夜一区二区三区| 制服人妻中文乱码| 侵犯人妻中文字幕一二三四区| 精品亚洲乱码少妇综合久久| 汤姆久久久久久久影院中文字幕| 亚洲精品国产一区二区精华液| 欧美人与性动交α欧美软件| 少妇精品久久久久久久| 成人免费观看视频高清| 少妇被粗大猛烈的视频| 久久午夜综合久久蜜桃| 亚洲五月色婷婷综合| 一区福利在线观看| 亚洲第一区二区三区不卡| 亚洲伊人久久精品综合| 大片免费播放器 马上看| 亚洲av成人不卡在线观看播放网 | 久久天躁狠狠躁夜夜2o2o | 国产精品成人在线| 亚洲av福利一区| 欧美精品亚洲一区二区| h视频一区二区三区| 精品国产露脸久久av麻豆| 精品一区二区免费观看| 久久国产亚洲av麻豆专区| 成年av动漫网址| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 精品一区二区三区av网在线观看 | 国产精品国产av在线观看| 一级毛片黄色毛片免费观看视频| 国产精品 国内视频| 国产 一区精品| 美女脱内裤让男人舔精品视频| 精品卡一卡二卡四卡免费| 深夜精品福利| 我的亚洲天堂| 一级毛片电影观看| 黑人欧美特级aaaaaa片| 国产精品免费视频内射| 国产av一区二区精品久久| 国产精品 国内视频| 大片电影免费在线观看免费| 五月天丁香电影| 免费黄网站久久成人精品| 久久久久久久久久久免费av| 青草久久国产| 国产精品欧美亚洲77777| 侵犯人妻中文字幕一二三四区| 女性生殖器流出的白浆| 一本色道久久久久久精品综合| 丰满饥渴人妻一区二区三| 国产一区二区激情短视频 | 国产乱人偷精品视频| 欧美xxⅹ黑人| 精品第一国产精品| 人人妻,人人澡人人爽秒播 | 国产日韩欧美在线精品| 久久久亚洲精品成人影院| 看免费av毛片| 一级爰片在线观看| 超色免费av| 在现免费观看毛片| 国产精品二区激情视频| 色吧在线观看| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 国产男女内射视频| 久久久久久人妻| 亚洲国产欧美一区二区综合| 欧美另类一区| av国产精品久久久久影院| 亚洲国产欧美日韩在线播放| 黑丝袜美女国产一区| 成人国产av品久久久| 久久久久久久精品精品| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 午夜老司机福利片| 亚洲欧美清纯卡通| 国产精品香港三级国产av潘金莲 | 亚洲第一av免费看| 欧美精品一区二区大全| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃| 99国产综合亚洲精品| 成人国产av品久久久| 男女午夜视频在线观看| 免费观看人在逋| www.熟女人妻精品国产| 国产精品久久久久久精品古装| 国产av精品麻豆| 成年女人毛片免费观看观看9 | 久久久精品94久久精品| 亚洲精品国产区一区二| 人人妻人人澡人人爽人人夜夜| 中国三级夫妇交换| 又黄又粗又硬又大视频| 午夜福利一区二区在线看| 日本色播在线视频| 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 亚洲一区二区三区欧美精品| 人人妻人人添人人爽欧美一区卜| 免费黄网站久久成人精品| 成年美女黄网站色视频大全免费| 国产高清国产精品国产三级| 午夜精品国产一区二区电影| 丝袜美腿诱惑在线| 欧美少妇被猛烈插入视频| 一区二区三区激情视频| 色94色欧美一区二区| 在线观看免费午夜福利视频| 丝袜喷水一区| 人成视频在线观看免费观看| 黄片播放在线免费| 国产亚洲精品第一综合不卡| 久久久久久久久久久久大奶| 久热这里只有精品99| avwww免费| 午夜av观看不卡| 国产成人免费无遮挡视频| avwww免费| 青草久久国产| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| 操出白浆在线播放| 欧美国产精品va在线观看不卡| 晚上一个人看的免费电影| 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 久热爱精品视频在线9| 看免费成人av毛片| 亚洲国产欧美在线一区| 青春草国产在线视频| 黑丝袜美女国产一区| 激情五月婷婷亚洲| 女的被弄到高潮叫床怎么办| 免费观看av网站的网址| √禁漫天堂资源中文www| 亚洲av综合色区一区| 国产有黄有色有爽视频| 精品一区在线观看国产| 另类精品久久| 免费观看人在逋| 欧美最新免费一区二区三区| 亚洲av福利一区| 一二三四在线观看免费中文在| 夫妻性生交免费视频一级片| 欧美少妇被猛烈插入视频| 韩国精品一区二区三区| 丝袜人妻中文字幕| 国产精品熟女久久久久浪| 人体艺术视频欧美日本| 丝袜美足系列| 日韩,欧美,国产一区二区三区| 伦理电影免费视频| 日韩一区二区视频免费看| 亚洲av男天堂| 欧美 日韩 精品 国产| 大香蕉久久成人网| 少妇 在线观看| 纵有疾风起免费观看全集完整版| 一本久久精品| 国产成人精品在线电影| 啦啦啦在线免费观看视频4| 国产探花极品一区二区| av天堂久久9| 国产av一区二区精品久久| av网站在线播放免费| 午夜影院在线不卡| 成人国产av品久久久| 亚洲熟女毛片儿| 欧美在线一区亚洲| av不卡在线播放| 精品国产乱码久久久久久男人| 丝袜美足系列| tube8黄色片| 天天躁日日躁夜夜躁夜夜| 好男人视频免费观看在线| 18禁裸乳无遮挡动漫免费视频| 美国免费a级毛片| 亚洲精品第二区| 国产又爽黄色视频| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美成人综合另类久久久| 国产免费一区二区三区四区乱码| avwww免费| 又大又黄又爽视频免费| 国产精品99久久99久久久不卡 | 人妻一区二区av| 久久韩国三级中文字幕| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 黑人欧美特级aaaaaa片| 丝瓜视频免费看黄片| 伊人亚洲综合成人网| 国精品久久久久久国模美| 日韩制服丝袜自拍偷拍| 日韩av不卡免费在线播放| 久久97久久精品| 国产精品久久久久久久久免| 在线天堂中文资源库| 国产精品无大码| 中文字幕高清在线视频| 久久毛片免费看一区二区三区| 日韩伦理黄色片| 最近2019中文字幕mv第一页| 免费高清在线观看日韩| 黄色怎么调成土黄色| 熟女av电影| 最新在线观看一区二区三区 | av又黄又爽大尺度在线免费看| 精品少妇一区二区三区视频日本电影 | 人人妻,人人澡人人爽秒播 | 免费高清在线观看日韩| 午夜久久久在线观看| 搡老岳熟女国产| 免费不卡黄色视频| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线| 999精品在线视频| 成人手机av| 18禁动态无遮挡网站| 日韩精品有码人妻一区| 嫩草影视91久久| 国产一区二区在线观看av| 国产日韩欧美亚洲二区| 一级毛片 在线播放| 国产精品久久久av美女十八| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 亚洲国产精品999| 国精品久久久久久国模美| 波野结衣二区三区在线| 无限看片的www在线观看| 亚洲欧美一区二区三区黑人| 欧美日韩精品网址| 婷婷色麻豆天堂久久| 激情视频va一区二区三区| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| 日韩伦理黄色片| 伊人久久国产一区二区| 一本—道久久a久久精品蜜桃钙片| 十八禁高潮呻吟视频| 精品久久蜜臀av无| 考比视频在线观看| 激情五月婷婷亚洲| 欧美黄色片欧美黄色片| 卡戴珊不雅视频在线播放| 看免费成人av毛片| 咕卡用的链子| 男的添女的下面高潮视频| 亚洲欧美精品综合一区二区三区| 汤姆久久久久久久影院中文字幕| 另类精品久久| 亚洲欧美成人综合另类久久久| videos熟女内射| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品aⅴ一区二区三区四区| 久久综合国产亚洲精品| 国产成人一区二区在线| 啦啦啦视频在线资源免费观看| 成人亚洲精品一区在线观看| 最近手机中文字幕大全| 最近最新中文字幕大全免费视频 | 国产精品免费视频内射| 一区在线观看完整版| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频| h视频一区二区三区| 国产成人av激情在线播放| 国产成人精品在线电影| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 丝袜在线中文字幕|