• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多孔CuCo2S4/石墨烯復(fù)合材料的合成及其在超級電容器上的應(yīng)用

    2016-11-02 06:14:02劉立樂Annamalai陶有勝
    新型炭材料 2016年3期
    關(guān)鍵詞:復(fù)合材料

    劉立樂,K.P.Annamalai,陶有勝

    (1.福州大學(xué) 化學(xué)學(xué)院,福建 福州350108;2.中國科學(xué)院海西研究院 中國科學(xué)院功能納米結(jié)構(gòu)設(shè)計與組裝重點實驗室,福建 福州350002)

    ?

    多孔CuCo2S4/石墨烯復(fù)合材料的合成及其在超級電容器上的應(yīng)用

    劉立樂1,2,K.P.Annamalai2,陶有勝2

    (1.福州大學(xué) 化學(xué)學(xué)院,福建 福州350108;2.中國科學(xué)院海西研究院 中國科學(xué)院功能納米結(jié)構(gòu)設(shè)計與組裝重點實驗室,福建 福州350002)

    采用水熱法合成了納米帶狀多孔CuCo2S4/石墨烯復(fù)合材料,并通過掃描電鏡、透射電鏡、X-射線衍射、77 K氮氣吸附等方法對其進行了表征分析。該復(fù)合材料具有0.7~1.2 nm 微孔和2~10 nm 介孔,其總孔容為0.1 cm3·g-1。電化學(xué)性能研究表明,該材料應(yīng)用于超級電容器具有良好的電化學(xué)儲能性能。

    石墨烯;金屬硫化物;復(fù)合材料;微孔;介孔;超級電容器

    1 Introduction

    Supercapacitors (SCs),a class of energy storage devices,can store a large amount of energy and then release when it is needed by a faradaic and non faradaic electrochemical reactions.They have attracted great attention owing to their fast charging-discharging rates,high power density and long cycle lifespan,high reliability and low cost[1-3].They are promising in the areas of uninterruptible power supplies,hybrid electric vehicles,aerospace,emergency lighting and renewable energies[4-8].Generally,SCs are classified into two types based on the charge storage mechanisms,non-Faradaic double layer capacitors (EDLCs) or reversible Faradaic redox electrochemical capacitors (pseudocapacitors)[9-10].The pseudocapacitors with metal oxides,metal sulfides and conductive polymers as active materials can provide much higher specific capacitance and higher energy density than EDLCs,attracting widespread attentions[11-13].

    Transition-metal oxides,hydroxides,and conducting polymers are applied in supercapacitors with their pseudocapacitive properties[14-18].More recently,metal sulfides have attracted extensive attention owing to their high specific capacitance,low cost,safety and environment benignity and high electrochemical activity.They have the very potential applications such as catalysis,sensors,solar energy and batteries[19-28].However,most of metal sulfides posses low electronic conductivity and undergo a large volume change during repetitive cycling.To overcome these problems,one of most effective way is to combine metal sulfides with carbon matrix[29].

    In carbon-based composite electrodes,two dimensional (2-D) graphene (GR) is flexible to integrate with metal compounds.GR nanomaterials serve as the conductive support to prevent electroactive nanomaterials from agglomerating.Moreover the notable synergistic effect between the graphene and electroactive nanomaterials can improve the diffusion rate of ions,leading to a high specific capacitance and rate capability[30].Thus,efforts have been devoted to GR-based electrode materials of SCs.

    Because of the richer redox reactions and high conductivity of GR based metal sulfide than the mono-metal sulfide,there are numerous research studies concerning the preparation of ternary compounds for supercapacitors[31-33].A combination of the metal sulfides and graphene synergizes the electrochemical properties of the ternary metal sulfide/graphene composite.Therefore,it is of significant importance and challenging to exploit multi-component materials for SCs[34].Several metal sulfides were synthesized by a hydrothermal anion-exchange reaction method[35].However,this anion exchange method is difficult to control the nanostructure because the uncontrollable exchange reaction dislocates the crystal growing significantly.Here we proposed a method to control the nanostructure and synthesized a uniform nano-belt- like nanocomposites.

    Among metal sulfides,a few researches reported on the synthesis of copper and cobalt-based sulfide nanomaterials recently.Moosavifard et al.prepared Ni-foam templated nanoneedle array[36].Shen et al.fabricated three dimensional nanocomposite with graphene and CNTs[37].It is necessary to explore their properties for capacitive performance.In this work,we prepared nanoporous CuCo2S4/rGO nanocomposite with a nano-belt structure by a facile hydrothermal method and used the material as supercapacitor electrode.Electrochemical tests showed that the CuCo2S4/rGO electrode had a maximum specific capacitance of 525 F·g-1at 1 A·g-1and a capacitance retention of 58% at 20 A·g-1.A capacitance retention of 83% after 1 000 charge-discharge cycles at 4 A·g-1indicated their excellent cycling stability.The hierarchically nanoporous structure of the CuCo2S4/rGO nanocomposites would be advantageous for such an excellent electrochemical performance.

    2 Experimental

    2.1Materials and reagents

    Co(acetate)·4H2O,Cu(acetate)·H2O,Sodium carbonate (Na2CO3),Na2S·9H2O,potassium hydroxide(KOH),N-methyl-2-pyrrolidone (NMP) and polyvinylidene fluoride (PVDF) were purchased from Aladdin,China.Trimethylamine (TMA) was purchased from Sinopharm Co.,Ltd in analytical grade.All chemcals were used without further purification.Distilled water was used in this work.

    2.2Preparation of CuCo2S4/rGO nanocomposite

    CuCo2S4/rGO nanocomposites were prepared by a hydrothermal synthesis method as follows.Graphene oxide (GO) was synthesized from graphite powder by the improved Hummers’ method[38,39].3 mg/mL GO was dispersed in 15 mL distilled water by sonication for 3 h to obtain a homogeneous dispersion.5 mM of Cu(acetate)·H2O and 10 mM of Co(acetate)·4H2O were dissolved in 15 mL ethanol.The above metal ion solution was slowly dropped into the GO dispersion under vigorous stirring.Then 68 mM Na2CO3and 1.5 mL TMA were added drop wise into the above solution and stirred for 1 h at room temperature.The reaction mixture was transferred into a Teflon-lined autoclave and heated to 453 K for 12 h.After cooled down to room temperature,the composite precursors were obtained by washing with distilled water and ethanol separately,dried at 313 K and annealed at 573 k for 3 h in air.The annealed composites were dispersed in water at a concentration of 1 mg/mL and Na2S·9H2O water solution was added under stirring.The mixture was then treated at 453 K for 6 h in the autoclave.The product was washed with water,ethanol and dried at 313K to obtain the CuCo2S4/rGO nanocomposite.

    2.3Characterization

    The field emission scanning electron micrographs (FE-SEM) of the sample was obtained by a JSM-6700 (JEOL) scanning electron microscope,operating at 5 kV.Transmission electron micrographs (TEM) were obtained on a TecnaiF20 (Philips) transmission electron microscope,operating at 100 kV.Before the test,sample was dispersed in ethanol and placed in TEM grid.The powder X-ray diffraction (XRD) patterns were obtained on a M18XHF X-ray automatic diffractometer (MacScience) using a monochromatized X-ray 25 beam from nickel-filtered CuKα(λ=0.154 050 nm) radiation and operated at 50 kV and 250 mA from 10-70 degree at 0.2(°)/min.The nitrogen adsorption isotherms were measured at 77 K using a ASAP2020 (Micromeritics) gas adsorption analyzer.The samples were evacuated at 10-4Pa and 393 K for 2 h before the measurement.

    To test the electrochemical performance of the CuCo2S4/rGO nanocomposite,cyclic voltammetry (CV),galvanostatic charge-discharge (GCD) were conducted in 3 M KOH between the potential range of 0.01 to 0.6 V with a conventional three-electrode cell using a CHI 660E electrochemical workstation (Shanghai CH Instruments,China).Active material and polyvinylidene difluoride (PVDF) binder were uniformly mixed in the weight ratio of 80∶10 and made as a slurry using N-methyl 2-pyrrollidone.The slurry was coated on 1 cm2×1 cm2Ni-foam,dried in vacuum oven at 343 K overnight and then pressed under 5 MPa.As-prepared active material electrode,Hg/HgO electrode,and a platinum electrode were used as the working electrode,reference electrode and counter electrode,respectively.

    The capacitance of the electrode can be evaluated according to the following equations:

    Cs=[(∫IdV)/2(S*ΔV*m)]

    Cp= I Δt/m Δv

    Where both Csand Cp(F·g-1) are the specific capacitance,∫IdV is the area under the CV curve,I (A) is the current during the discharge process,Δt (s) is the discharge time,ΔV (V) is the potential window and m (g) is the mass of the active materials.S (mV·s-1) is the scan rate.

    3 Results and discussion

    Morphology architectures of the prepared nanocomposite were studied with FE-SEM and are shown in Fig.1.CuCo2S4was of a nano-belt structure with the relatively uniform widths.This nano-belt-like structure was mainly initiated by the formation of metal ions-TMA complex.The growth of nano-belt was controlled by the carbonate anions,while the final hydrothermal treatment alleviated the crystalline nature of the nanostructure.The magnified SEM (inset in Fig.1a) showed a highly crystalline nano-belt structure.TEM image of CuCo2S4/rGO as shown in Fig.1b further confirmed the crystalline nano-belt structure of the sample.Compared with the vertically-grown nanostructure,our sample of the robust and horizontal nanostructure can provide easy access to a wide range of electrolytes[34].Rough surface and defective edges additionally allowed the excess electrolyte interaction and boosted up the redox reaction at high current densities.

    Fig.1 (a) FE-SEM image and (b) TEM image of the CuCo2S4/rGO composite. Insets in (a) and (b) are the high magnification images of dotted line in the corresponding images.

    XRD analysis gave the composition and purity of the sample.Fig.2a shows a XRD pattern of the CuCo2S4/rGO.The diffraction peaks located at 16.1°,26.6°,31.3°,37.9°,46.9°,49.9°,54.8°,57.4°,61.9°,64.4°,and 68.6°,can be indexed to the (111),(022),(113),(224),(115),(044),(135),(026),(335),(444) and (511) planes of CuCo2S4,respectively (JCPDS no.42-1450).Weak peak around 25° indicated the presence of graphene in the composites.This result revealed that as-obtained sample was constructed with graphene and CuCo2S4.Absence of other peaks indicated that prepared nanocomposites were highly pure without any impurities.Composition and purities of the nanocomposite were studied by energy dispersive X-ray (EDX) spectroscopy.Fig.2b indicates the presence of copper,cobalt and sulfur.Their weight percentage ratio of 1∶2∶4 further confirmed that present nano-belt structure was CuCo2S4.Presence of carbon and oxygen in the composites proved the existence of graphene in the composite.

    Fig.2 (A) XRD pattern and (B) EDX spectrum of the CuCo2S4/rGO nanocomposite.

    Fig.3 shows the N2adsorption isotherms for the CuCo2S4/rGO and GO.Both isotherms had a gradual N2uptake below p/p0= 0.2 and a small hysteresis loop extending from p/p0= 0.45 to p/p0= ~1,suggesting the co-existence of random packed micropores and mesopores in the samples.The micropore and mesopore size distributions (insets in Fig.3) of the CuCo2S4/rGO indicated that it had micropores of 0.7-1.2 nm and mesopores of 2-10 nm.The total pore volume of the CuCo2S4/rGO was 0.1 cm3·g-1,much higher than that of GO.

    Fig.3 Adsorption/desorption isotherms of nitrogen at 77 K on CuCo2S4/rGO nanocomposite (●) with that of GO (○) included for the comparison.Insets show HK micropore and DH mesopore size distributions of the CuCo2S4/rGO.

    The electrochemical properties of CuCo2S4/rGO nanocomposites were investigated by CV and GCD in a three electrode system.Fig.4a shows the CV curves of the CuCo2S4/rGO sample.It was found that all the CV curves had a similar shape and the current increased with the scan rates from 7.5 to 100 mV·s-1in the potential window of 0.01 to 0.6 V.According to these curves,the distinct pairs of redox peaks presented in the CV curves,suggesting the pseudocapacitive characteristics of the CuCo2S4active material.With the increase of sweep rates,the current density increased and the position of anodic and cathodic peaks shifted to high and low potentials,respectively.The composite exhibited a maximum capacitance of 665 F·g-1at 7.5 mV·s-1,as shown in Fig.3b.However,the capacitance gradually decreased with the current density and reached 284 F·g-1at a scan rate of 100 mV·s-1.This capacitance drop is mainly attributed to the incomplete reversible redox reaction within the potential range at fast scan rates.GCD measurements were conducted in 3 M KOH electrolyte in a potential window of 0.01 to 0.5 V.Fig.3c shows the charge-discharge curves with the current densities ranging from 1 to 20 A·g-1.Charge and discharge rates were almost identical in all the current densities,indicating the high columbic efficiency under various current densities.The triangular charge-discharge curves at low current densities showed two obvious platforms,which corresponded to the redox reactions in alkaline medium.At a current density of 1 A·g-1,the electrode delivered a specific capacitance of 525 F·g-1(Fig.3d).The superior performance of the electrode must be benefited from the short diffusion paths of ions in the hierarchically nanoporous nano-belts of CuCo2S4/rGO and the increased electrical conductivity of the CuCo2S4/rGO nano-architecture.It is worth to note that the CuCo2S4/rGO electrode demonstrated a remarkable specific capacitance of 425 and 370 F·g-1even at the current density as high as 5 and 10 A·g-1,respectively.Because with the increasing of current density the mobility of the OH-ions increased and the utilization ratio of the active material was significantly decreased[40],the capacitance gradually decreased at high current densities.

    Fig.4 (a) Cyclic voltammetry (CV) measurement at different scan rates; (b) Summary of capacitance vs.scan rate; (c) Galvanostatic charge-discharge (GCD) curves from 1 to 20 A·g-1current densities and (d) Specific capacitance as a function of current density (Inset:cycle stability over 1 000 cycles).

    Long cycling life is an important requirement for supercapacitors.The cycling performance of the CuCo2S4/rGO electrode at a current density of 4 A·g-1is shown in Fig.3d.After 1 000 successive cycles,83% capacitance was retained.The sudden capacitance drop around 200 cycle was due to poor wetting nature of the electrode.After that there was gradual decrement in the capacitance mainly because of the dissolution and conversion of metal sulfide to hydroxide under alkaline medium as well as detachment of active materials from the electrode surface.This high performance and excellent cycle stability were ascribed to the presence of conductive graphene support and highly active CuCo2S4of hierarchically nanoporous structure.

    4 Conclusions

    Hierarchically nanoporous CuCo2S4/rGO composite of a nano-belt structure was prepared with a facile hydrothermal method.The material showed an enhanced capacitance and desirable rate performance (525 F·g-1at 1 A·g-1and 304 F·g-1at 20 A·g-1) and a high specific capacitance retention ( 83%) after 1 000 cycles at 4 A·g-1.Such excellent electrochemical properties makes the CuCo2S4/rGO nanocomposite a promising electrode material for supercapacitors.

    [1]Chen Y J,Qu B h,Hu L L,et al.High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes[J].Nanoscale,2013,5(20):9812-9820.

    [2]Xia X H,Tu J P,Zhang Y Q,et al.High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J].ACS Nano,2012,6(6):5531-5538.

    [3]Shim B S,Chen W,Doty C,et al.Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes[J].Nano Letters,2008,8(12):4151-4157.

    [4]Chen L F,Huang Z H,Liang H W,et al.Bacterial-cellulose-derived carbon nanofiber@MnO2and nitrogen-doped carbon nanofiber electrode materials:An asymmetric supercapacitor with high energy and power density[J].Advanced Materials,2013,25(34):4746-4752.

    [5]Boukhalfa S,Evanoff K,Y S Gleb.Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes[J].Energy & Environmental Science,2012,5(5):6872-6879.

    [6]Liu D Q,Wang Q,Qiao L,et al.Preparation of nano-networks of MnO2shell/Ni current collector core for high-performance supercapacitor electrodes[J].Journal of Materials Chemistry,2012,22(2):483-487.

    [7]Zhang G Q,Lou X W.General solution growth of mesoporous NiCo2O4nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J].Advanced Materials,2013,25(7):976-979.

    [8]Wang S B,Pu J,Tong Y,et al.ZnCo2O4nanowire arrays grown on nickel foam for high-performance pseudocapacitors[J].Journal of Materials Chemistry A,2014,2(48):5434-5440.

    [9]Simon P,Gogotsi Y.Materials for electrochemical capacitors[J].Nature Materials,2008,7(11):845-854.

    [10]Pendashteh A,Rahmanifar M S,Richard B,et al.Facile synthesis of nanostructured CuCo2O4as a novel electrode material for high-rate supercapacitors[J].Chemistry Communications,2014,50(16):1972-1975.

    [11]Zhang Y F,Ma M Z,Yang J,et al.Shape-controlled synthesis of NiCo2S4and their charge storage characteristics in supercapacitors[J].Nanoscale,2014,6(16):9824-9830.

    [12]Lei Z B,Christov N,Zhao X S,et al.Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes[J].Energy & Environmental Science,2011,4(5):1866-1873.

    [13]Chen Z,Qin Y C,Weng D,et al.Design and synthesis of hierarchical nanowire composites for electrochemical energy storage[J].Advanced Functional Materials,2009,19(21):3420-3426.

    [14]Chen H,Zhou S X,Wu L M.Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials[J].ACS Applied Materials & Interfaces,2014,6(11):8621-8630.

    [15]Chen H,Hu L F,Yan Y,et al.One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance[J].Advanced Energy Materials,2013,3(12):1636-1646.

    [16]Yuan C Z,Wu H B,Xie Y,et al.Mixed transition-metal oxides:Design,synthesis,and energy-related applications[J].Angewandte Chemie International Edition,2014,53(6):1488-1504.

    [17]Chen H,Hu L F,Chen M,et al.Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J].Advanced Functional Materials,2014,24(7):934-942.

    [18]Snook G A,Kao P,Best A S.Conducting-polymer-based supercapacitor devices and electrodes[J].Journal of Power Sources,2011,196(1):1-12.

    [19]Thounthong P,Chunkag V,Sethakul P,et al.Energy management of fuel cell/solar cell/supercapacitor hybrid power source[J].Journal of Power Sources,2011,196(1):313-324.

    [20]Danks T N,Slade R C T,Varcoe J R.Comparison of PVDF-and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs[J].Journal of Materials Chemistry,2002,12(12):3371-3373.

    [21]Liu H S,Song C J,Zhang L.A review of anode catalysis in the direct methanol fuel cell[J].Journal of Power Sources,2006,155(2):95-110.

    [22]Boggs B K,Botte G G.Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media[J].Electrochimica Acta,2010,55(19):5287-5293.

    [23]Jiang H,Zhao T,Ma J,et al.Ultrafine manganese dioxide nanowire network for high-performance supercapacitors[J].Chemical Communications,2011,47(4):1264-1266.

    [24]Reddy A L M,Shaijumon M M,Gowda S R,et al.Coaxial MnO2/Carbon nanotube array electrodes for high-performance lithium batteries[J].Nano Letters,2009,9(3):1002-1006.

    [25]Pendashteh A,Rahmanifar M S,Kanerc R B,et al.Facile synthesis of nanostructured CuCo2O4as a novel electrode material for high-rate supercapacitors[J].Chemical Communications,2014,50(16):1972-1975.

    [26]Lai C H,Lu M Y,Chen L J.Metal sulfide nanostructures:Synthesis,properties and applications in energy conversion and storage[J].Journal of Materials Chemistry,2012,22(1):19-30.

    [27]Xia X H,Zhu C R,Luo J S,et al.Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application[J].Small,2014,10(4):766-773.

    [28]Xiao J W,Wan L,Yang S L,et al.Design hierarchical electrodes with highly conductive NiCo2S4nanotube arrays grown on carbon fiber Paper for High-Performance Pseudocapacitors[J].Nano Letters,2014,14(2):831-838.

    [29]Wang H L,Dai H J.Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J].Chemical Society Reviews,2013,42(24):3088-3113.

    [30]Du W M,Wang Z Y,Zhu Z Q,et al.Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes[J].Journal of Materials Chemistry A,2014,2(25):9613-9619.

    [31]Rui X H,Tan H T,Yan Q Y,Nanostructured metal sulfides for energy storage[J].Nanoscale,2014,6(17):9889-9924.

    [32]Gao Y,Mi L W,Wei W T,et al.Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance[J].ACS Applied Materials & Interfaces,2015,7 (7):4311-4319.

    [33]Zheng X S,Liu J D,Chen L,et al.Metal sulfides/graphene nanocomposites:An overview of preparation and applications[J].Recent Patents on Chemical Engineering,2013,6(3):152-160.

    [34]Peng S J,Li L L,Li C C,et al.In situ growth of NiCo2S4nanosheets on graphene for high-performance supercapacitors[J].Chemcial Communications,2013,49(86):10178-10180.

    [35]Yu X Y,Yu L,Lou X W.Metal sulfide hollow nanostructures for electrochemical energy storage[J].Advance Energy Material,2015:1501333.

    [36]Moosavifard S E,Fanib S,Rahmanianc M.Hierarchical CuCo2S4hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors[J].Chemical Communications,2016,52(24):4517-4520.

    [37]Shen J F,Tang J H,Dong P,et al.Construction of three-Dimensional CuCo2S4/CNT/graphene nanocomposite for high performance supercapacitors[J].RSC Advances,2016,6(16):13456-13460.

    [38]Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,40(8):4806-4814.

    [39]Annamalai K P,Gao J P,Liu L L,et al.Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance[J].Journal of Materials Chemistry A,2015,3(22):11740-11744.

    [40]M.Toupin,Brousse T,Belanger D.Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide[J].Chemistry of Materials,2002,14:3946-3952.

    A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors

    LIU Li-le1,2,K.P.Annamalai2,TAO You-sheng2

    (1.College of Chemistry,Fuzhou University,Fuzhou350108,China;2.CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Haixi Institutes,Chinese Academy of Sciences (CAS),Fuzhou350002,China)

    A CuCo2S4/graphene composite was synthesized using a simple hydrothermal method.The sample was characterized by field emission scanning electron microscopy,transmission electron microscopy,X-ray diffraction,nitrogen adsorption and electrochemical tests.The composite had a hierarchical porous structure with micropores of 0.7-1.2 nm,mesopores of 2-10 nm and a total pore volume of 0.1 cm3·g-1,and the CuCo2S4had a nano-belt structure.As the electrode of a supercapacitor the composite showed a high specific capacitance of 665 F/g at 7.5 mV/s,and excellent rate capability and cycling stability.

    Graphene; Metal sulfide; Composite; Micropore; Mesopore; Supercapacitor

    date:2016-05-08;Revised date:2016-06-12

    National Natural Science Foundation of China (21273236); Science and Technology Planning Projects of Fujian Province of China (2014H2008,2015I0008); “100 Talents” Program of Chinese Academy of Sciences; “100 Talents” Program of Fujian Province,China.

    TAO You-sheng,Ph.D,Professor.E-mail:taoys@tom.com,taoyoushengjp@yahoo.co.jp

    s introduction:LIU Li-le,Master Student,E-mail:liull342921@163.com;

    1007-8827(2016)03-0336-07

    TB333

    A

    國家自然科學(xué)基金(21273236);福建省科技計劃(2014H2008,2015I0008);中國科學(xué)院“百人計劃”;福建省“百人計劃”.

    陶有勝,教授.E-mail:taoys@tom.com,taoyoushengjp@yahoo.co.jp

    劉立樂,碩士研究生.E-mail:liull342921@163.com; K.P.Annamalai,博士后.E-mail:kpannamalai@outlook.com

    K.P.Annamalai,Post-doctorial Researcher,E-mail:kpannamalai@outlook.com

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805 ).

    10.1016/S1872-5805(16)60017-3

    猜你喜歡
    復(fù)合材料
    淺談現(xiàn)代建筑中新型復(fù)合材料的應(yīng)用
    金屬復(fù)合材料在機械制造中的應(yīng)用研究
    敢為人先 持續(xù)創(chuàng)新:先進復(fù)合材料支撐我國國防裝備升級換代
    民機復(fù)合材料的適航鑒定
    復(fù)合材料無損檢測探討
    電子測試(2017年11期)2017-12-15 08:57:13
    復(fù)合材料性能與應(yīng)用分析
    PET/nano-MgO復(fù)合材料的性能研究
    中國塑料(2015年6期)2015-11-13 03:02:54
    ABS/改性高嶺土復(fù)合材料的制備與表征
    中國塑料(2015年11期)2015-10-14 01:14:14
    聚乳酸/植物纖維全生物降解復(fù)合材料的研究進展
    中國塑料(2015年8期)2015-10-14 01:10:41
    TiO2/ACF復(fù)合材料的制備及表征
    少妇人妻一区二区三区视频| 成人综合一区亚洲| 久久99热这里只频精品6学生| 日韩av免费高清视频| 亚洲国产欧美在线一区| 亚洲av男天堂| 免费电影在线观看免费观看| 黄片无遮挡物在线观看| 午夜福利高清视频| 亚洲av中文av极速乱| av在线观看视频网站免费| 三级国产精品欧美在线观看| 午夜福利网站1000一区二区三区| 久久精品人妻少妇| 久久久午夜欧美精品| 久久99蜜桃精品久久| 精品人妻偷拍中文字幕| 大香蕉97超碰在线| 男女边吃奶边做爰视频| 一边亲一边摸免费视频| 七月丁香在线播放| 啦啦啦在线观看免费高清www| 美女国产视频在线观看| 精品国产乱码久久久久久小说| 成人黄色视频免费在线看| 国产黄频视频在线观看| 欧美亚洲 丝袜 人妻 在线| 日韩人妻高清精品专区| 久久久午夜欧美精品| eeuss影院久久| 日韩精品有码人妻一区| 婷婷色综合大香蕉| 日韩不卡一区二区三区视频在线| 少妇被粗大猛烈的视频| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影| 亚洲av免费在线观看| 啦啦啦在线观看免费高清www| a级毛片免费高清观看在线播放| 一边亲一边摸免费视频| 久久久久久久午夜电影| 深爱激情五月婷婷| 一级二级三级毛片免费看| 青春草亚洲视频在线观看| 一级毛片久久久久久久久女| 免费观看无遮挡的男女| 王馨瑶露胸无遮挡在线观看| 婷婷色综合www| 免费观看的影片在线观看| 狂野欧美激情性bbbbbb| 国产淫片久久久久久久久| 久久人人爽人人片av| 少妇熟女欧美另类| 成年免费大片在线观看| 青春草国产在线视频| 麻豆乱淫一区二区| 欧美3d第一页| 免费看日本二区| 高清在线视频一区二区三区| videos熟女内射| 联通29元200g的流量卡| 国产色婷婷99| 国产成人a区在线观看| 美女被艹到高潮喷水动态| 91精品一卡2卡3卡4卡| 91狼人影院| 国产毛片a区久久久久| 国产成人精品福利久久| .国产精品久久| 久久精品人妻少妇| 精品国产乱码久久久久久小说| 搡女人真爽免费视频火全软件| 少妇被粗大猛烈的视频| 亚洲精品乱久久久久久| 中国国产av一级| 色视频在线一区二区三区| 毛片一级片免费看久久久久| 男插女下体视频免费在线播放| 国产成人aa在线观看| 麻豆乱淫一区二区| 国产精品蜜桃在线观看| 精品亚洲乱码少妇综合久久| 久久精品熟女亚洲av麻豆精品| 亚洲三级黄色毛片| 日本熟妇午夜| 精品国产露脸久久av麻豆| freevideosex欧美| 亚洲av男天堂| av一本久久久久| 亚洲高清免费不卡视频| 好男人在线观看高清免费视频| 麻豆精品久久久久久蜜桃| 久久久久久久久久久丰满| 天堂网av新在线| 亚洲最大成人中文| 国产男女超爽视频在线观看| 人妻夜夜爽99麻豆av| 看十八女毛片水多多多| 日韩国内少妇激情av| 女人久久www免费人成看片| h日本视频在线播放| 亚洲激情五月婷婷啪啪| 五月伊人婷婷丁香| 2022亚洲国产成人精品| 亚洲欧美精品专区久久| 亚洲av中文av极速乱| 亚洲精品日韩av片在线观看| 少妇人妻久久综合中文| 精品午夜福利在线看| av在线天堂中文字幕| 一区二区av电影网| 精品久久久久久电影网| 亚洲怡红院男人天堂| 神马国产精品三级电影在线观看| 亚洲精品日韩在线中文字幕| 日韩在线高清观看一区二区三区| 欧美人与善性xxx| 欧美最新免费一区二区三区| 老司机影院毛片| 美女脱内裤让男人舔精品视频| 国产高潮美女av| 久久热精品热| 少妇高潮的动态图| 夜夜看夜夜爽夜夜摸| 亚洲精品日韩在线中文字幕| 在线观看一区二区三区| 一级毛片 在线播放| 亚州av有码| 99九九线精品视频在线观看视频| 六月丁香七月| 男人爽女人下面视频在线观看| 99热6这里只有精品| 如何舔出高潮| 国产一区有黄有色的免费视频| av专区在线播放| 国产毛片a区久久久久| 亚洲第一区二区三区不卡| 婷婷色麻豆天堂久久| 2021天堂中文幕一二区在线观| 日韩精品有码人妻一区| 国产成人精品婷婷| 欧美激情在线99| 人妻少妇偷人精品九色| 在线亚洲精品国产二区图片欧美 | 亚洲天堂av无毛| av又黄又爽大尺度在线免费看| 精品少妇久久久久久888优播| 国产 精品1| 欧美极品一区二区三区四区| 18禁裸乳无遮挡动漫免费视频 | 男人添女人高潮全过程视频| 亚洲一区二区三区欧美精品 | 国产精品一及| av一本久久久久| 大片免费播放器 马上看| 国产 精品1| 亚洲av成人精品一区久久| 内射极品少妇av片p| 亚洲av欧美aⅴ国产| 国产精品人妻久久久影院| 日本爱情动作片www.在线观看| 亚洲精品日本国产第一区| 国产久久久一区二区三区| 国产精品国产av在线观看| 国产av码专区亚洲av| 自拍偷自拍亚洲精品老妇| 国产男女内射视频| 在线观看免费高清a一片| 人妻少妇偷人精品九色| 精品久久久噜噜| 大香蕉久久网| 中文欧美无线码| 亚洲欧洲日产国产| 亚洲四区av| 熟妇人妻不卡中文字幕| 99久久精品一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲欧美一区二区三区黑人 | 国精品久久久久久国模美| 久久久久国产精品人妻一区二区| av黄色大香蕉| 亚洲国产日韩一区二区| 久久精品人妻少妇| 国产一区亚洲一区在线观看| 久久97久久精品| 久久久久精品性色| 中文字幕人妻熟人妻熟丝袜美| 中国美白少妇内射xxxbb| 久久久久久九九精品二区国产| 久久久久久久久大av| 日本爱情动作片www.在线观看| 少妇人妻精品综合一区二区| videos熟女内射| 亚洲精品一二三| 高清午夜精品一区二区三区| 欧美日韩精品成人综合77777| 日韩三级伦理在线观看| 大片免费播放器 马上看| 久久久久性生活片| 午夜免费观看性视频| 一级毛片黄色毛片免费观看视频| 免费播放大片免费观看视频在线观看| 精品久久久久久久久av| 男女国产视频网站| 亚洲va在线va天堂va国产| 亚洲精品国产av蜜桃| 亚洲人成网站在线观看播放| www.av在线官网国产| 国产高潮美女av| 免费电影在线观看免费观看| av在线播放精品| 韩国av在线不卡| 日韩一区二区视频免费看| 三级男女做爰猛烈吃奶摸视频| 日韩欧美精品v在线| 久久久久久久午夜电影| 一区二区三区乱码不卡18| 亚洲精品456在线播放app| 日日摸夜夜添夜夜添av毛片| 交换朋友夫妻互换小说| 一区二区av电影网| 91久久精品国产一区二区成人| 国产v大片淫在线免费观看| 免费看不卡的av| 肉色欧美久久久久久久蜜桃 | 久久精品国产a三级三级三级| 免费大片黄手机在线观看| 国产精品偷伦视频观看了| 国产视频首页在线观看| 国产精品熟女久久久久浪| 国产久久久一区二区三区| 女人久久www免费人成看片| 黄片wwwwww| 日本av手机在线免费观看| 亚洲av免费高清在线观看| 大又大粗又爽又黄少妇毛片口| 最近中文字幕2019免费版| 少妇丰满av| 免费观看无遮挡的男女| 亚洲精品乱码久久久v下载方式| 亚洲无线观看免费| 我的老师免费观看完整版| 我的女老师完整版在线观看| 少妇猛男粗大的猛烈进出视频 | 免费高清在线观看视频在线观看| 国产av不卡久久| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| 熟女电影av网| 国产 一区精品| 噜噜噜噜噜久久久久久91| 国产黄色视频一区二区在线观看| 亚洲人成网站在线播| 在线精品无人区一区二区三 | 国内精品美女久久久久久| www.色视频.com| 午夜老司机福利剧场| 久久精品国产亚洲av天美| 日本熟妇午夜| 欧美日韩精品成人综合77777| 最近中文字幕高清免费大全6| 性色av一级| 亚洲精品一二三| 2021天堂中文幕一二区在线观| 激情五月婷婷亚洲| 下体分泌物呈黄色| 欧美一级a爱片免费观看看| 黄色配什么色好看| 一区二区三区精品91| 男女边吃奶边做爰视频| 日本一二三区视频观看| 成年av动漫网址| 亚洲色图av天堂| 亚洲av男天堂| 国产亚洲精品久久久com| 亚洲国产精品国产精品| 国产av码专区亚洲av| 黑人高潮一二区| 一二三四中文在线观看免费高清| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 国产亚洲5aaaaa淫片| 一边亲一边摸免费视频| 水蜜桃什么品种好| 男人添女人高潮全过程视频| 国产av码专区亚洲av| 亚洲av免费在线观看| 男人和女人高潮做爰伦理| 久久久久久久亚洲中文字幕| 国产午夜福利久久久久久| 亚洲av男天堂| 插阴视频在线观看视频| 国产大屁股一区二区在线视频| 制服丝袜香蕉在线| 我的女老师完整版在线观看| 免费观看的影片在线观看| 高清在线视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 草草在线视频免费看| av国产久精品久网站免费入址| 久久久a久久爽久久v久久| 国产高潮美女av| 丰满乱子伦码专区| 久久99热6这里只有精品| 国产一区二区三区综合在线观看 | 男人添女人高潮全过程视频| 国产高潮美女av| 亚洲内射少妇av| 免费在线观看成人毛片| 人人妻人人爽人人添夜夜欢视频 | 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 免费看a级黄色片| 国精品久久久久久国模美| 熟妇人妻不卡中文字幕| 亚洲国产高清在线一区二区三| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂 | 欧美3d第一页| 久久久久久久久久人人人人人人| 久久99蜜桃精品久久| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 白带黄色成豆腐渣| 菩萨蛮人人尽说江南好唐韦庄| 亚洲综合精品二区| 男女那种视频在线观看| 国产女主播在线喷水免费视频网站| 国产黄a三级三级三级人| 51国产日韩欧美| 91精品一卡2卡3卡4卡| 97人妻精品一区二区三区麻豆| 少妇猛男粗大的猛烈进出视频 | 少妇人妻 视频| 大香蕉97超碰在线| 亚洲欧美成人精品一区二区| 少妇人妻一区二区三区视频| 18禁在线无遮挡免费观看视频| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 啦啦啦中文免费视频观看日本| 高清毛片免费看| 国产熟女欧美一区二区| 国国产精品蜜臀av免费| 韩国av在线不卡| 亚洲欧美日韩东京热| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 国产精品久久久久久av不卡| 天堂网av新在线| 汤姆久久久久久久影院中文字幕| 亚洲,一卡二卡三卡| 亚洲人成网站高清观看| 日韩av在线免费看完整版不卡| 亚洲精品久久午夜乱码| 亚洲不卡免费看| 两个人的视频大全免费| 搡老乐熟女国产| 日本黄色片子视频| 三级男女做爰猛烈吃奶摸视频| 男女边吃奶边做爰视频| 如何舔出高潮| 国内精品美女久久久久久| 欧美另类一区| 国产91av在线免费观看| 亚洲第一区二区三区不卡| 欧美国产精品一级二级三级 | 成人国产av品久久久| 国产日韩欧美在线精品| 亚洲av欧美aⅴ国产| 嫩草影院新地址| 丝袜喷水一区| 欧美精品人与动牲交sv欧美| 欧美日韩视频高清一区二区三区二| 高清毛片免费看| 午夜福利网站1000一区二区三区| 在线观看美女被高潮喷水网站| 尤物成人国产欧美一区二区三区| 午夜福利网站1000一区二区三区| 69人妻影院| 日韩视频在线欧美| 日韩欧美精品v在线| 好男人视频免费观看在线| 一级毛片aaaaaa免费看小| 亚洲欧美精品专区久久| 亚洲婷婷狠狠爱综合网| 欧美一级a爱片免费观看看| 亚洲av国产av综合av卡| 亚洲精品久久午夜乱码| 天堂网av新在线| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 国产精品不卡视频一区二区| 日韩精品有码人妻一区| 国产黄色视频一区二区在线观看| 日韩,欧美,国产一区二区三区| 亚洲精品乱久久久久久| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 久久久亚洲精品成人影院| av国产精品久久久久影院| 99热这里只有是精品50| 国产一区二区三区av在线| 亚洲最大成人手机在线| 欧美高清成人免费视频www| 七月丁香在线播放| 欧美xxxx性猛交bbbb| 大陆偷拍与自拍| 国产综合精华液| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| 色哟哟·www| 国产亚洲av片在线观看秒播厂| 亚洲精品亚洲一区二区| 国语对白做爰xxxⅹ性视频网站| 人人妻人人爽人人添夜夜欢视频 | 日韩免费高清中文字幕av| 在线播放无遮挡| av免费在线看不卡| 色视频www国产| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说 | 久久热精品热| 欧美日韩国产mv在线观看视频 | 熟女av电影| 国产亚洲91精品色在线| 国产91av在线免费观看| 亚洲av中文av极速乱| 国产亚洲av嫩草精品影院| 免费看光身美女| 激情五月婷婷亚洲| 国产精品麻豆人妻色哟哟久久| 久久精品国产自在天天线| 国产精品福利在线免费观看| 色婷婷久久久亚洲欧美| 国产黄片美女视频| 日韩强制内射视频| 成人美女网站在线观看视频| 久久久久精品久久久久真实原创| 国产亚洲一区二区精品| 身体一侧抽搐| 成人无遮挡网站| 看黄色毛片网站| 一级片'在线观看视频| 亚洲久久久久久中文字幕| 免费观看av网站的网址| 69av精品久久久久久| 18+在线观看网站| 亚洲精品乱久久久久久| 极品教师在线视频| 汤姆久久久久久久影院中文字幕| 久久国内精品自在自线图片| 五月开心婷婷网| 一级毛片电影观看| 在线观看人妻少妇| 精品国产三级普通话版| 国产69精品久久久久777片| 精品酒店卫生间| av在线天堂中文字幕| 亚洲丝袜综合中文字幕| 97超视频在线观看视频| 中文字幕亚洲精品专区| 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区国产| 亚洲电影在线观看av| 国产免费一区二区三区四区乱码| 国产在线男女| 亚洲精品乱久久久久久| 蜜桃亚洲精品一区二区三区| 日韩欧美 国产精品| 美女cb高潮喷水在线观看| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站| 波多野结衣巨乳人妻| 国产精品国产三级国产av玫瑰| 久久久久久久大尺度免费视频| av网站免费在线观看视频| 国内精品宾馆在线| 国产精品一区二区在线观看99| 91久久精品国产一区二区成人| 中国美白少妇内射xxxbb| 搡老乐熟女国产| 99久久精品一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲图色成人| 久久久久精品久久久久真实原创| 蜜桃亚洲精品一区二区三区| 国产精品国产三级专区第一集| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线 | 国产国拍精品亚洲av在线观看| 99热这里只有是精品50| 久久久久久久久大av| 中文字幕制服av| 亚洲自拍偷在线| 秋霞在线观看毛片| 国产成人精品久久久久久| 日韩免费高清中文字幕av| 亚洲电影在线观看av| 美女cb高潮喷水在线观看| 最近中文字幕2019免费版| 免费观看无遮挡的男女| 天天一区二区日本电影三级| 青春草亚洲视频在线观看| 亚洲精品一二三| 嫩草影院精品99| 国产毛片在线视频| 久久综合国产亚洲精品| 欧美人与善性xxx| 欧美一区二区亚洲| 搞女人的毛片| 91在线精品国自产拍蜜月| 看十八女毛片水多多多| 色播亚洲综合网| 三级经典国产精品| 亚洲国产最新在线播放| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 免费观看av网站的网址| 男人爽女人下面视频在线观看| 成人毛片a级毛片在线播放| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 老司机影院成人| 国产高潮美女av| 午夜爱爱视频在线播放| 国产乱人视频| 国产成人aa在线观看| 久久精品人妻少妇| 少妇人妻精品综合一区二区| 男人舔奶头视频| 青春草国产在线视频| 免费看a级黄色片| 男人狂女人下面高潮的视频| av免费观看日本| 成人亚洲精品av一区二区| 99热国产这里只有精品6| 久久精品国产a三级三级三级| 亚洲av免费在线观看| 国产免费又黄又爽又色| 久久久久久国产a免费观看| 成人欧美大片| 精品一区在线观看国产| 日韩欧美一区视频在线观看 | 日韩成人伦理影院| 免费大片18禁| 看免费成人av毛片| 久久韩国三级中文字幕| 三级男女做爰猛烈吃奶摸视频| 性色avwww在线观看| 寂寞人妻少妇视频99o| 老司机影院成人| 欧美精品一区二区大全| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 亚洲成人一二三区av| 欧美日韩视频精品一区| 女的被弄到高潮叫床怎么办| 亚洲av成人精品一二三区| 97在线人人人人妻| 大码成人一级视频| 99久久精品一区二区三区| 日韩强制内射视频| 99re6热这里在线精品视频| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看 | 大片电影免费在线观看免费| 精品久久久久久久人妻蜜臀av| 舔av片在线| 久久鲁丝午夜福利片| 丰满少妇做爰视频| 国产午夜福利久久久久久| 久久久久精品性色| 国产精品成人在线| 丝瓜视频免费看黄片| 又粗又硬又长又爽又黄的视频| 另类亚洲欧美激情| 国产综合精华液| 成人免费观看视频高清| 美女内射精品一级片tv| 国产av码专区亚洲av| 亚洲国产精品成人久久小说| 婷婷色麻豆天堂久久| 如何舔出高潮| 亚洲av男天堂| 亚洲在线观看片| 国国产精品蜜臀av免费| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 国产精品久久久久久久电影| 精品一区二区三区视频在线| 亚洲精品视频女| 18禁动态无遮挡网站| 美女国产视频在线观看| 亚洲av成人精品一区久久| 欧美国产精品一级二级三级 | 禁无遮挡网站| 男女啪啪激烈高潮av片| 成人二区视频| 少妇丰满av| 观看免费一级毛片| 丰满乱子伦码专区| 日本熟妇午夜| 一区二区三区乱码不卡18| 精品人妻偷拍中文字幕|