• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同長度的棒狀有序介孔炭的雙電層電容性能

    2016-11-02 06:14:02余呂強(qiáng)陳曉紅廖麗芳周繼升馬兆昆宋懷河
    新型炭材料 2016年3期
    關(guān)鍵詞:棒狀電化學(xué)模板

    劉 娜,余呂強(qiáng),陳曉紅,廖麗芳,周繼升,馬兆昆,宋懷河

    (北京化工大學(xué) 化工資源有效利用國家重點(diǎn)實(shí)驗(yàn)室,材料電化學(xué)過程與技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,北京100029)

    ?

    不同長度的棒狀有序介孔炭的雙電層電容性能

    劉娜,余呂強(qiáng),陳曉紅,廖麗芳,周繼升,馬兆昆,宋懷河

    (北京化工大學(xué) 化工資源有效利用國家重點(diǎn)實(shí)驗(yàn)室,材料電化學(xué)過程與技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,北京100029)

    將三嵌段共聚物P123既充當(dāng)結(jié)構(gòu)導(dǎo)向劑又作為碳源,通過硫酸處理,并采用直接炭化硅/ P123復(fù)合材料的方法制備出棒狀有序介孔炭,避免了傳統(tǒng)硬模板法中需要除去昂貴的表面活性劑與反復(fù)浸漬的過程。通過改變合成參數(shù),制備出不同長度的、從一微米到幾十微米變化的棒狀有序介孔炭材料。采用SEM,HR-TEM,XRD與N2吸脫附等對有序介孔炭材料的形態(tài)、結(jié)構(gòu)以及孔特點(diǎn)進(jìn)行表征,并將其作為雙電層電容器的電極材料進(jìn)行電化學(xué)測試,以期關(guān)聯(lián)形貌、結(jié)構(gòu)(尤其是棒長度)與其電化學(xué)性能的關(guān)系。結(jié)果表明在這些炭材料中,最長的介孔炭具有最高的比容量170 F/g。在2 000 mA/g電流密度下,具有雙孔徑的介孔炭表現(xiàn)出最高的容量保持率(92%)。

    有序介孔炭;棒狀;模板;三嵌段共聚物;超級電容器

    1 Introduction

    Electric double-layer capacitor (EDLC) is a next-generation energy storage device,which can be applied to an auxiliary power supply and space flight technology.The double layer is formed at electrode/electrolyte interface,where electric charges are accumulated on the electrode surfaces[1,2].Compared with conventional capacitors,EDLCs can store much more energy because there is a very small charge separation distance at the interface between electrode and electrolyte and a large amount of charges on electrode of the large surface area[3].On the basis of the double-layer energy-storage mechanism,the key to enhance the specific capacitance is to enlarge the specific surface area[4]and to control the pore size and its distribution of the electrode materials[5].

    Since the first report in 1999[6],ordered mesoporous carbons (OMCs) have been widely studied as the electrode materials for EDLC owing to their well-ordered pore channels,high specific surface areas and narrow pore size distributions[7-10].Recently,Tang et al[11]synthesized an OMC through a facile way without any templates and the carbon showed a high specific capacitance (259 F·g-1) and high rate capability (189 F·g-1at 100 A·g-1).Jurewicz et al[12]investigated the electrochemical performance of carbon materials with a highly ordered mesoporous structure.The highest capacitance values are obtained for the carbons with the highest total surface area,the highest total pore volume and the most marked microporous character.It is obvious that the presence of interconnected mesopores and micropores makes the active surface more available for charge accumulation on EDLC than in a strictly microporous material.Xing et al[13]presented the EDLC performance of the OMCs with 3-D cubic and 2-D hexagonal mesopore structures.It was found that the 2-D hexagonal OMC exhibited better high-rate capability than the 3-D cubic OMC.This is attributed to the favorable ion transport in mesopores of the 2-D hexagonal OMC.Gao[14]synthesized a 3-D cubic OMC with a high energy density of 6.53 Wh·kg-1at a power density of 5 000 W·kg-1,indicating a promising application for the high performance supercapacitors.Wang et al[15]studied the ion transport behavior in hexagonal OMC rods with diverse mesopore diameters and lengths by evaluating the dynamic process of inner-pore electric double layer formation.They considered that the ion transport behavior was affected by the ratio between mesopore length and diameter,and the behavior can be enhanced by minimizing the aspect ratio of the mesopores.Xiao[16]studied the fiber-like and rod-like OMC performance in EDLC and the latter showed a better property because the short rod-like morphology and the well-defined pore size distribution favor the ions penetration into their pores.Liang et al[17]compared the EDLC performance of the OMC with an interconnected channel structure to the OMC with an unconnected channel structure,and found that the former has better performance than the latter owing to rapid mass transport in the former.

    Our group have compared the EDLC behavior of three types of OMCs with different pore characteristics and found that the OMC with a high surface area and appropriate pore size distribution (centered at 3.6 nm) exhibits the lowest resistance and highest specific capacitance[5].In this work,we fabricated four types of OMC rods from the carbonization of silica/triblock copolymer composites.By changing the synthesis parameters,the rod length of the carbons can be controlled from one to tens of micrometers.The electrochemical performance of the capacitor electrodes prepared from the OMC rods have been investigated and are tentatively correlated with their structures and pore characteristics

    2 Experimental

    2.1Preparation of OMCs

    Rod-type OMCs were synthesized using a triblock copolymer P123 as the carbon source and tetraethoxysilicon (TEOS) as the silica source.The P123 (EO20PO70EO20,Mav= 5 800) was purchased from Sigma.All commercial chemicals were used without further purification.The typical experiment[18-20]procedure is shown in the Fig.1.

    Fig.1 Synthesis of OMCs.

    The micelle was formed after the P123 was dissolved in water.The P123/SiO2composite was formed in the presence of the inorganic precursor and sulfuric acid.OMCs were obtained after carbonization of the composites and etching of the SiO2with a HF solution.In a typical run,5.0 g P123 was dissolved in 130 mL distilled water at 38 ℃,then 6.4 mL sulfuric acid (98 wt%) and 9.2 mL TEOS were added to the solution under vigorous stirring.After the stirring for 5 min,the mixture was kept statically at 38 ℃ for 24 h,followed by aging at 100 ℃ for 24 h.The solid product was filtered and dried at 100 ℃ for 6 h and 160 ℃ for 6 h,respectively to get the P123/silica composite.The dark powder was carbonized under N2flow at 850 ℃ for 2 h.The obtained silica/carbon composite was treated by a diluted HF solution to remove the silica to get the OMC.By changing the adding order of sulfuric acid and P123,we obtained two samples,C1 (sulfuric acid added at the same time with P123) and C2 (sulfuric acid added after P123 dissolved).By varying the amount of TEOS with the same adding order as C1 but stop stirring 5 min after the addition of TEOS,two samples were synthesized,C3 (9.2 mL TEOS) and C4 (13.8 mL TEOS) and.

    2.2Characterization

    The OMCs were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),high resolution transmission electron microscopy (HR-TEM) and nitrogen adsorption.XRD patterns were recorded on a Rigaku D/max-2500B2+/PCX system operating at 40 kV and 20 mA using CuKαradiation (λ= 0.154 06 nm).The interplanar spacings of the OMCs are calculated from the Bragg’s equation:λ= 2dhklsinθ.SEM images were obtained using a Zeiss Supra 55 electron microscope operating at 20 kV.Nitrogen adsorption were performed with an ASAP 2020 Micromeritics Instrument at 77 K.The pore size distributions were calculated from the desorption branch of the isotherms using the BJH (Barrett-Joyner-Halenda) method.The specific surface areas were calculated from the adsorption data in the relative pressure interval from 0.04 to 0.2 using the Brunauer-Emmett-Teller (BET) method.The total pore volumes were estimated at a relative pressure of 0.98.HR-TEM images were obtained using a JEOL JEM-2100 electron microscope operating at 200 kV.The samples were prepared by dispersing the products in ethanol with an ultrasonic bath for 20 min and then a few drops of the resulting suspension were spread on a copper grid.

    The EDLC electrodes were obtained by pressing a mixture of the OMC (80 wt%),graphite (10 wt%),and polytetrafluoroethylene (10 wt%) to the nickel foam as a current collector.The electrodes had a surface of 100 mm2and thickness of 0.4 mm.A platinum wire and the Hg/HgO electrode were used as the counter and reference electrodes,respectively.The electrolyte was a 30 wt% KOH aqueous solution.The galvanostatic charge/discharge capacitance (C) of the electrode was measured using a Program Testing System (produced by Wuhan LAND Co.Ltd.,China).Charge and discharge were carried out between 0.9 and 0.01 V.The C in Farad was calculated on the basis of the equation:C = (IΔt)/(mΔV)[21],where C is the capacitance,I the constant discharge current,△t the discharge time,m is the mass of active material within the electrode andΔVis the potential range.

    The cyclic voltammetry and AC impedance were carried out with a CHI 660B electrochemical working station.For the cyclic voltammetric measurements,the sweep rate ranged from 1 to 10 mV·s-1within a potential range of -0.3 to 0.2 V.For the AC impedance measurements,the potential amplitude of AC was kept as 30 mV and the frequency range was from 10 kHz to 1 Hz.The impedance spectra were fitted to an equivalent circuit model[22]by ZView software.

    3 Results and discussion

    3.1Pore characteristics of the OMCs

    Small-angle XRD patterns of C1,C2,C3 and C4 are shown in Fig.2.As can be seen,the powder XRD patterns of the samples exhibit one intense peak indexed as (100) reflection and two weak peaks indexed as (110) and (200) reflections,associated with a 2-D hexagonal symmetry (p6mm)[23],implying the long range order of the OMCs.The (100) diffraction peaks of the samples are all around 2θ= 1.00°,which indicates that the samples have the similar interplanar spacings (d100) and unit cell parameters (a).The interplanar spacing (d100) and unit cell parameter (a) of C4 are calculated to be 8.83 nm and 10.2 nm,respectively.

    Fig.2 XRD patterns of samples (a) C1,(b) C2,(c) C3, (d) C4 and (e) an enlarged XRD pattern of C4 from 2θ= 1.3-2.3°.

    Fig.3 shows the SEM images of the samples.From the images we can see that the rod lengths of the OMCs are very sensitive to the synthesis parameters.As can be seen,C1 (Fig.3a) consists of bundles of rods with the length up to tens of micrometers.By changing the adding order of sulfuric acid and TEOS,dramatic change happens with its morphology.Short and bended rods with the length of 1-4 μm can be observed in C2 (Fig.3b).In the case of C3 (Fig.3c),the rods become shorter and more straight than C2,and the rod length is about 2-3 μm.C4 (Fig.3d) shows the shortest rod in the four samples with a length of about 1 μm.The HRTEM images of the samples are shown in Fig.4.The images show well-ordered mesopores with a 2-D hexagonal mesoporous structure in all the four samples.C1,C2 and C3 exhibit a rod-like morphology with the channels paralleling along the long axis.For 2-D hexagonal OMCs,their mesopore lengths correspond with their rod lengths[24,25].Pore lengths of samples are summarized in Table 1.The pore sizes of the samples are estimated to be about 3-4 nm,which is in good agreement with the following nitrogen sorption analysis.

    Fig.3 SEM images of samples (a) C1,(b) C2,(c) C3 and (d) C4.

    Fig.4 HRTEM images of samples (a) C1,(b) C2,(c) C3 and (d) C4.

    The pore structures of the samples were further analyzed using nitrogen sorption.Fig.5 displays the nitrogen adsorption-desorption isotherms and BJH pore size distributions.Whatever the synthesis route was,the isotherms of the OMCs exhibit a typical IV shape,indicating their mesoporous characteristics[26].C3 presents two pore systems with sizes centered at 3.7 and 14.2 nm.The small mesopores may be derived from the removal of template skeleton and the large mesopores originate from the coalescence of pores once the template was removed[27].C1,C2 and C4 contain narrow pore size distributions with pore sizes mainly centered at 3.7,3.6 and 3.6 nm,respectively.The BET surface areas,average pore sizes and pore volumes of samples are summarized in Table 1.

    Table 1 Pore parameters of samples calculated from the nitrogen sorption isotherms.

    Note:SBET,BET surface area; Smeso,mesopore surface area; Smic,micropore surface area; DBJH,average pore diameter; Vt,total pore volume.

    Fig.5 (a) Nitrogen adsorption-desorption isotherms and BJH pore size distributions of samples (b) C1,(c) C2,(d) C3 and (e) C4.

    3.2Electrochemical characterization

    To investigate the electrochemical performance of the OMCs as electrodes for supercapacitors,galvanostatic charge/discharge cycling measurements were performed.The result for carbon C1 at a current load of 100 mA/g is shown in Fig.6a.A direct apparent feature is that the electrode exhibits an ideal capacitor behavior from the typical triangular-shaped curve.Another important characteristic is the well-retained shape during cycling,reflecting a good reversibility and demonstrating that double layer behavior results from electrostatic attraction without Faradaic reactions.Fig.6b displays the capacitance versus cycle number of the OMCs under a current density of 100 mA/g,and all the electrodes exhibit stable capacitances with little fading after 500 cycles.The good cycle performance of the OMCs implies their stable energy-storage performance during the long cycle charging/discharging.

    The specific capacitances of the OMCs at various current densities are shown in Fig.6c.Theoretically,in order to achieve a high capacitance,the electrode material should have a high surface area,since the charge storage ability (expressed as capacitance) is proportional to surface area[28].However,actually,materials may have different porosities and pore structures.Not all the surface area is electrochemically accessible,and there are many factors affecting the double-layer capacitor behavior,such as untramicropore volume[29]and pore size distribution[30].

    For the four OMCs,the specific surface areas are in the range of 1 069-1 282 m2/g,the specific capacitances are 140 to 176 F/g at the current density of 100 mA·g-1,correspondingly to the specific surface capacitances in the range of 12-15 μF/cm2,which are higher than the value 7-10 μF/cm2for the general microporous activated carbons[31],implying the mesoporous structure is more accessible for ions.C1 exhibits the highest specific capacitance of 176 F·g-1among the four samples at the current density of 100 mA·g-1,and decreases from 176 to 150 F·g-1with the increase of current density from 100 to 2 000 mA·g-1.Although the surface areas of C1 and C2 are very close,the capacitance of C2 (159 F·g-1at the current density of 100 mA·g-1) is lower than that of C1,implying that the ion-accessible surface area of C2 is lower than C1.C3 with the highest surface area of 1 282 m2/g shows a capacitance of 152 F·g-1at the current density of 100 mA·g-1,which is lower than that of C1,suggesting that the accessible ratio of the surface area of C3 with two pore systems is much lower than that of C1.C4 with the lowest surface area of 1 069 m2/g has the lowest capacitance among the carbon materials,which decreases from 140 to 127 F·g-1with the increase of current density from 100 to 2 000 mA·g-1.

    Fig.6 Electrochemical performance of the OMCs.(a) galvanostatic charge/discharge cycling for C1 at a current density of 100 mA/g; (b) capacitances of the OMCs at a current density of 100 mA/g; (c) the specific capacitance and (d) capacitance retention ratio of OMCs at various current densities.

    The capacitance retention ratio is used to evaluate the ion transport behavior of the carbon materials,and the larger the retention ratio,the better the ion transport behavior[13].The ion transport behavior of the material is affected by many factors,such as pore size[15],pore length[15],pore order[32],and pore continuity[32].The capacitance retention ratios (relative to capacitance at a current density of 100 mA·g-1) of the OMCs at various current densities are shown in Fig.6d.As the current density rises to 2 000 mA/g,the capacitance retention ratios of the four samples are all above 85%,while the retention ratio of the activated carbons is only about 60%[33,34],which suggests that the OMCs have better ion transport behavior than activated carbons.The capacitance retention ratio of C3 is the highest among the four samples at the current density of 2 000 mA/g,retaining 92% of its initial capacitance at 100 mA/g,which is a little higher than that of C4 (91%).Besides the existence of similar pore size with C4 (3.6 nm),C3 contains larger pores (14.2 nm),which would make the ion transport more easily in C3 and thus a better ion transport behavior.Although C1,C2 and C4 have similar pore sizes (3.6 nm),the rank of capacitance retention ratio at the current density of 2 000 mA/g is C4 > C2 (86%) > C1 (85%),which could be partly ascribed to their different pore lengths.Shorter pore length needs shorter transport time when the ion transport coefficient is prescribed.The rank of pore length is C4 < C2 < C1,so the ion transport behavior in the rapid charging/discharging operation at high current densities is C4 > C2 > C1.

    Cyclic voltammetry measurements were carried out within the potential range of -0.3-0.2 V to analyze the electrochemical behavior of the supercapacitors.Fig.7a exhibits the cyclic voltammograms of C1 recorded at different sweep rates.It is known that an ideal mesostructure should be capable of providing very fast ion transport pathways,and thus the electrical double layer can be re-organized quickly at the switching potentials,resulting in a rectangular-shaped CV curve[35].

    Fig.7 (a) Cycle voltammograms of C1 at different scan rates and (b) Nyquist impedance plots for different electrodes (insert:equivalent circuit model.)

    The rectangle degree of CV curve can reflect the ion diffusion rate within a carbon mesostructure.The higher the rectangle degree has,the faster the ion diffusion rate is.It can be found that from 1 to 10 mV/s,the sample gives a good rectangular-shaped CV curve,indicating that the mesopores are able to provide fast ion transport pathways at such sweep rates.The current clearly increases with sweep rate,indicating a good rate capability.

    Electrochemical impedance spectroscopy has also been used to check the ability of carbon materials to store electrical energy[36,37].The impedance plots (Fig.7b) exhibit two distinct parts,a semicircle in the high frequency range and a sloped line in the low frequency range.The magnitude of the resistance can be estimated from the curvature of the high-frequency loop,whereas the diffusion is characterized by the linear area at low frequencies.The impedances on electrode/electrolyte interface (Rs) of C1,C2,C3 and C4 are 0.36,0.34,0.32 and 0.33 Ω,respectively.Lower impedance leads to better ion transport behavior,thus the rank of ion transport behavior is C3> C4 > C2 > C1,which is in accordance with the results from capacitance retention ratios.

    4 Conclusions

    OMCs with different rod lengths were synthesized by changing the operational parameters during the synthesis,using TEOS as the silica source and P123 as the carbon precursor.Their electrochemical performance was investigated in alkaline electrolytic solution using galvanostatic charge-discharge test and AC impedance spectroscopy.It was found that the OMCs exhibit ideal capacitor behaviors.The ion transport behavior of the carbons is affected by pore structures,such as pore length and pore size.Materials with two pore systems and shorter pore channels show better ion transport behavior.

    [1]K?tz R,Carlen M.Principles and applications of electrochemical capacitors[J].Electrochimica Acta,2000,45(15):2483-2498.

    [2]Frackowiak E,Beguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.

    [3]Pandolfo A G,Hollenkamp A F.Carbon properties and their role in supercapacitors[J].Journal of Power Sources,2006,157(1):11-27.

    [4]Lewandowski A,Galinski M.Practical and theoretical limits for electrochemical double-layer capacitors[J].Journal of Power Sources,2007,173(2):822-828.

    [5]Li L,Song H,Chen X.Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors[J].Electrochimica Acta,2006,51(26):5715-5720.

    [6]Ryoo R,Joo S H,Jun S.Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J].The Journal of Physical Chemistry B,1999,103(37):7743-7746.

    [7]Leyva-García S,Lozano-Castelló D,Morallón E,et al.Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors[J].Journal of Materials Chemistry A,2016,4(12):4570-4579.

    [8]Alvarez S,Blanco-Lopez M C,Miranda-Ordieres A J,et al.Electrochemical capacitor performance of mesoporous carbons obtained by templating technique[J].Carbon,2005,43(4):866-870.

    [9]WANG Da-wei,LI Feng,LIU Min,et al.Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation[J].New Carbon Materials,2007,22(4):307-314.

    (王大偉,李峰,劉敏,等.硝酸氧化改性SBA-15 模板合成的中孔炭電容性能研究[J].新型炭材料,2007,22(4):307-314.)

    [10]宋懷河,李麗霞,陳曉紅.有序介孔炭的模板合成進(jìn)展[J].新型炭材料,2006,21(4):374-383.

    (SONG Huai-he,LI Li-xia,CHEN Xiao-hong.The synthesis of ordered mesoporous carbons via a template method[J].New Carbon Materials,2006,21(4):374-383.)

    [11]Tang D,Hu S,Dai F,et al.Self-templated synthesis of mesoporous carbon from carbon tetrachloride precursor for supercapacitor electrodes[J].ACS Applied Materials & Interfaces,2016,8(11):6779-6783.

    [12]Jurewicz K,Vix-Guterl C,Frackowiak E,et al.Capacitance properties of ordered porous carbon materials prepared by a templating procedure[J].Journal of Physics and Chemistry of Solids,2004,65(2):287-293.

    [13]Xing W,Qiao S Z,Ding R G,et al.Superior electric double layer capacitors using ordered mesoporous carbons[J].Carbon,2006,44(2):216-224.

    [14]Gao J,Wang X,Zhao Q,et al.Synthesis and supercapacitive performance of three-dimensional cubic-ordered mesoporous carbons[J].Electrochimica Acta,2015,163:223-231.

    [15]Wang D W,Li F,Liu M,et al.Mesopore-aspect-ratio dependence of ion transport in rod type ordered mesoporous carbon[J].The Journal of Physical Chemistry C,2008,112(26):9950-9955.

    [16]Xiao Y,Dong H,Lei B,et al.Ordered mesoporous carbons with fiber-and rod-like morphologies for supercapacitor electrode materials[J].Materials Letters,2015,138:37-40.

    [17]Liang Y,Wu D,Fu R.Preparation and electrochemical performance of novel ordered mesoporous carbon with an interconnected channel structure[J].Langmuir,2009,25(14):7783-7785.

    [18]Yan X,Song H,Chen X.Synthesis of spherical ordered mesoporous carbons from direct carbonization of silica/triblock-copolymer composites[J].Journal of Materials Chemistry,2009,19(26):4491-4494.

    [19]Liu C,Li L,Song H,et al.Facile synthesis of ordered mesoporous carbons from F108/resorcinol-formaldehyde composites obtained in basic media[J].Chemical Communications,2007(7):757-759.

    [20]張煜,王同華,米盼盼.雙模板結(jié)構(gòu)導(dǎo)向劑制備有序介孔炭[J].新型炭材料,2012,27(4):301-306.

    (ZHANG Yu,WANG Tong-hua,MI Pan-pan.Synthesis of ordered mesoporous carbon with dual templates as structure directing agents[J].New Carbon Materials,2012,27(4):301-306.)

    [21]Lin G,Wang F,Wang Y,et al.Enhanced electrochemical performance of ordered mesoporous carbons by a one-step carbonization/activation treatment[J].Journal of Electroanalytical Chemistry,2015,758:39-45.

    [22]Pr?bstle H,Schmitt C,Fricke J.Button cell supercapacitors with monolithic carbon aerogels[J].Journal of Power Sources,2002,105(2):189-194.

    [23]Zhu J,Yang J,Miao R,et al.Nitrogen-enriched,ordered mesoporous carbons for potential electrochemical energy storage[J].Journal of Materials Chemistry A,2016,4:2286-2292.

    [24]Li H Q,Luo J Y,Zhou X F,et al.An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications[J].Journal of the Electrochemical Society,2007,154(8):A731-A736.

    [25]Wang D W,Li F,Fang H T,et al.Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J].The Journal of Physical Chemistry B,2006,110(17):8570-8575.

    [26]Tang Y,Yuan S,Guo Y,et al.Highly ordered mesoporous Si/C nanocomposite as high performance anode material for Li-ion batteries[J].Electrochimica Acta,2016,200:182-188.

    [27]Fuertes A B,Pico F,Rojo J M.Influence of pore structure on electric double-layer capacitance of template mesoporous carbons[J].Journal of Power Sources,2004,133(2):329-336.

    [28]Osaka T,Liu X,Nojima M,et al.An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder[J].Journal of the Electrochemical Society,1999,146(5):1724-1729.

    [29]Vix-Guterl C,Frackowiak E,Jurewicz K,et al.Electrochemical energy storage in ordered porous carbon materials[J].Carbon,2005,43(6):1293-1302.

    [30]Gryglewicz G,Machnikowski J,Lorenc-Grabowska E,et al.Effect of pore size distribution of coal-based activated carbons on double layer capacitance[J].Electrochimica Acta,2005,50(5):1197-1206.

    [31]Du X,Guo P,Song H,et al.Graphene nanosheets as electrode material for electric double-layer capacitors[J].Electrochimica Acta,2010,55(16):4812-4819.

    [32]Wu D,Chen X,Lu S,et al.Study on synergistic effect of ordered mesoporous carbon and carbon aerogel during electrochemical charge-discharge process[J].Microporous and Mesoporous Materials,2010,131(1):261-264.

    [33]Tamai H,Kouzu M,Morita M,et al.Highly mesoporous carbon electrodes for electric double-layer capacitors[J].Electrochemical and Solid-state Letters,2003,6(10):A214-A217.

    [34]Alvarez S,Blanco-Lopez M C,Miranda-Ordieres A J,et al.Electrochemical capacitor performance of mesoporous carbons obtained by templating technique[J].Carbon,2005,43(4):866-870.

    [35]Fang B,Binder L.A novel carbon electrode material for highly improved EDLC performance[J].The Journal of Physical Chemistry B,2006,110(15):7877-7882.

    [36]王六平,周穎,邱介山.硝酸氧化對瀝青烯基有序介孔炭電化學(xué)性能的影響[J].新型炭材料,2011,26(3):204-210.

    (WANG Liu-ping,ZHOU Ying,QIU Jie-shan.The influence of nitric acid oxidation on the electrochemical performance of asphaltene-based ordered mesoporous carbon[J].New Carbon Materials,2011,26(3):204-210.)

    [37]Frackowiak E,Beguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.

    Electrochemical performance of rod-type ordered mesoporous carbons with different rod lengths for electric double-layer capacitors

    LIU Na,YU Lv-qiang,CHEN Xiao-hong,LIAO Li-fang,ZHOU Ji-sheng,MA Zao-kun,SONG Huai-he

    (State Key Laboratory of Chemical Resource Engineering,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing100029)

    Rod-type ordered mesoporous carbons were synthesized by the direct carbonization of sulfuric-acid-treated silica/triblock copolymer composites,followed by etching the silica with a HF solution.The morphologies,microstructures and pore structures of the mesoporous carbons were investigated by scanning electron microscopy,high resolution transmission electron microscopy,X-ray diffraction and nitrogen sorption.Their electrochemical performance as electrodes for supercapacitors was investigated by impedance spectroscopy and charge/discharge tests.It was found that the rod length of the mesoporous carbons can be changed from one to tens of micrometers by changing the synthesis parameters.The sample with the longest rod length has the highest specific capacitance.The sample with two pore sizes has the highest capacitance retention ratio of 92% at a high current density of 2 A/g.

    Ordered mesoporous carbon; Rod-type; Template; Triblock copolymer; Supercapacitor

    date:2016-05-08;Revised date:2016-06-10

    National Natural Science Foundation of China (50872006,51272016).

    SONG Huai-he.Professor.E-mail:songhh@mail.buct.edu.cn

    introduction:LIU Na.Ph.D.E-mail:1552881023@qq.com

    1007-8827(2016)03-0328-08

    TQ127.1+1

    A

    國家自然科學(xué)基金(50872006,51272016).

    宋懷河,教授.E-mail:songhh@mail.buct.edu.cn

    劉娜,博士.E-mail:1552881023@qq.com

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805).

    10.1016/S1872-5805(16)60016-1

    猜你喜歡
    棒狀電化學(xué)模板
    雪花不只有六邊形片狀的
    大自然探索(2023年5期)2023-06-19 08:08:53
    鋁模板在高層建筑施工中的應(yīng)用
    鋁模板在高層建筑施工中的應(yīng)用
    電化學(xué)中的防護(hù)墻——離子交換膜
    關(guān)于量子電化學(xué)
    電化學(xué)在廢水處理中的應(yīng)用
    Na摻雜Li3V2(PO4)3/C的合成及電化學(xué)性能
    鋁模板在高層建筑施工中的應(yīng)用
    城市綜改 可推廣的模板較少
    巰基-端烯/炔點(diǎn)擊反應(yīng)合成棒狀液晶化合物
    国产精品 国内视频| 91老司机精品| 国产又色又爽无遮挡免费看| 嫩草影院精品99| 成人黄色视频免费在线看| 夫妻午夜视频| 国产乱人伦免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品免费久久久久久久清纯| e午夜精品久久久久久久| 我的亚洲天堂| 久久久久久人人人人人| 男女下面进入的视频免费午夜 | 成人av一区二区三区在线看| 天堂动漫精品| 欧美日韩一级在线毛片| 他把我摸到了高潮在线观看| 99riav亚洲国产免费| 午夜久久久在线观看| 欧美性长视频在线观看| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 久久影院123| 九色亚洲精品在线播放| 婷婷六月久久综合丁香| 亚洲一码二码三码区别大吗| 夫妻午夜视频| 亚洲中文字幕日韩| 深夜精品福利| 久99久视频精品免费| 亚洲 欧美一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 国产人伦9x9x在线观看| 999久久久精品免费观看国产| 亚洲精品一二三| 中亚洲国语对白在线视频| 人妻久久中文字幕网| av电影中文网址| av天堂在线播放| 国产精品爽爽va在线观看网站 | 久久久久久大精品| 欧美中文日本在线观看视频| 美女国产高潮福利片在线看| 久久天堂一区二区三区四区| 男人的好看免费观看在线视频 | 久久久久久久午夜电影 | 天天影视国产精品| 最近最新中文字幕大全免费视频| 国产精品 欧美亚洲| 老司机在亚洲福利影院| 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡免费网站照片 | 国产亚洲欧美在线一区二区| 免费观看人在逋| 欧美日韩一级在线毛片| 麻豆一二三区av精品| 高潮久久久久久久久久久不卡| 国产精品偷伦视频观看了| 国产人伦9x9x在线观看| 一级黄色大片毛片| av视频免费观看在线观看| av网站免费在线观看视频| 一级片'在线观看视频| 欧美国产精品va在线观看不卡| 亚洲美女黄片视频| 视频区欧美日本亚洲| 无人区码免费观看不卡| 99久久99久久久精品蜜桃| 午夜福利欧美成人| 亚洲国产欧美一区二区综合| 国产精品一区二区免费欧美| 自线自在国产av| 视频区欧美日本亚洲| 极品人妻少妇av视频| 亚洲av片天天在线观看| 亚洲国产精品sss在线观看 | 国产成年人精品一区二区 | 国产深夜福利视频在线观看| 亚洲国产精品一区二区三区在线| 最新美女视频免费是黄的| 又紧又爽又黄一区二区| 久久精品国产清高在天天线| 欧美成狂野欧美在线观看| 一级毛片女人18水好多| 欧美一区二区精品小视频在线| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 久久久久国产精品人妻aⅴ院| 一区福利在线观看| a级毛片在线看网站| 黑人猛操日本美女一级片| 变态另类成人亚洲欧美熟女 | 国产精品成人在线| 男男h啪啪无遮挡| 久久久久亚洲av毛片大全| 亚洲精品美女久久av网站| 日日干狠狠操夜夜爽| 国产色视频综合| 国产精品美女特级片免费视频播放器 | 久久午夜综合久久蜜桃| 午夜91福利影院| 在线观看免费视频日本深夜| 91字幕亚洲| 两个人免费观看高清视频| 成人亚洲精品一区在线观看| 日韩人妻精品一区2区三区| 国产极品粉嫩免费观看在线| 多毛熟女@视频| 午夜日韩欧美国产| 亚洲五月色婷婷综合| 波多野结衣av一区二区av| 国产精品一区二区三区四区久久 | 国产精品一区二区精品视频观看| 91成人精品电影| 免费不卡黄色视频| 欧美一级毛片孕妇| 女人被狂操c到高潮| 国产1区2区3区精品| 超碰97精品在线观看| 午夜福利,免费看| 欧美在线一区亚洲| 在线av久久热| 精品国产国语对白av| 国产精品1区2区在线观看.| 自线自在国产av| 国产成年人精品一区二区 | 啦啦啦在线免费观看视频4| 国产乱人伦免费视频| 免费看a级黄色片| 久久久水蜜桃国产精品网| 最近最新免费中文字幕在线| 国产麻豆69| 制服人妻中文乱码| 女性被躁到高潮视频| 亚洲伊人色综图| 日本黄色日本黄色录像| 黄频高清免费视频| bbb黄色大片| 欧美大码av| 午夜激情av网站| 色在线成人网| 女生性感内裤真人,穿戴方法视频| 久久香蕉激情| 啦啦啦在线免费观看视频4| 欧美亚洲日本最大视频资源| 亚洲精品一二三| 1024视频免费在线观看| 免费久久久久久久精品成人欧美视频| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 在线免费观看的www视频| 18美女黄网站色大片免费观看| 亚洲欧美精品综合久久99| 91在线观看av| 身体一侧抽搐| 18禁国产床啪视频网站| 久久天躁狠狠躁夜夜2o2o| 成熟少妇高潮喷水视频| 亚洲一区二区三区不卡视频| 国产精品影院久久| 国产三级黄色录像| 成年人黄色毛片网站| 天堂影院成人在线观看| 精品福利观看| 国产不卡一卡二| 精品国产乱码久久久久久男人| 热99re8久久精品国产| 久久 成人 亚洲| 黄色 视频免费看| 91精品三级在线观看| 男人的好看免费观看在线视频 | 麻豆久久精品国产亚洲av | 国产成人免费无遮挡视频| 国产精品亚洲一级av第二区| 一区二区日韩欧美中文字幕| 日韩av在线大香蕉| 女人被狂操c到高潮| 好看av亚洲va欧美ⅴa在| 婷婷精品国产亚洲av在线| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩av久久| 日韩 欧美 亚洲 中文字幕| 免费人成视频x8x8入口观看| 老司机午夜福利在线观看视频| 亚洲av片天天在线观看| 日韩免费av在线播放| 欧美老熟妇乱子伦牲交| 国产黄色免费在线视频| 黑人猛操日本美女一级片| 国产精品99久久99久久久不卡| 精品一区二区三卡| 国产成人精品久久二区二区91| 大码成人一级视频| 国产成+人综合+亚洲专区| 亚洲精品在线观看二区| 免费高清在线观看日韩| 一进一出抽搐动态| 国产成人免费无遮挡视频| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 国产熟女午夜一区二区三区| 精品国产乱子伦一区二区三区| 超碰97精品在线观看| 中文字幕人妻丝袜一区二区| 嫁个100分男人电影在线观看| 成人18禁在线播放| 老司机亚洲免费影院| 婷婷精品国产亚洲av在线| 亚洲av电影在线进入| 国产成人一区二区三区免费视频网站| 在线观看免费高清a一片| 免费在线观看影片大全网站| 国产精品一区二区三区四区久久 | 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 免费高清在线观看日韩| 桃色一区二区三区在线观看| 黑人操中国人逼视频| 99久久人妻综合| 天堂√8在线中文| 桃红色精品国产亚洲av| 91大片在线观看| 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| a在线观看视频网站| 国产精品 欧美亚洲| 欧美日韩精品网址| 亚洲片人在线观看| 人成视频在线观看免费观看| 欧美一级毛片孕妇| 亚洲av五月六月丁香网| 午夜a级毛片| 久久久久久久久久久久大奶| 久久久久精品国产欧美久久久| 一边摸一边做爽爽视频免费| 波多野结衣av一区二区av| 成人亚洲精品一区在线观看| 欧美色视频一区免费| 国产成人av激情在线播放| 午夜视频精品福利| 欧美日本中文国产一区发布| 成人手机av| 成人影院久久| 亚洲熟女毛片儿| a级片在线免费高清观看视频| 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 亚洲精品成人av观看孕妇| 91麻豆精品激情在线观看国产 | 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 国产成人av教育| 亚洲一区二区三区不卡视频| 亚洲国产精品999在线| 一夜夜www| 99久久综合精品五月天人人| 热99国产精品久久久久久7| 国产精品久久久人人做人人爽| 国产黄色免费在线视频| 亚洲欧美日韩高清在线视频| 亚洲三区欧美一区| 午夜福利,免费看| 午夜精品久久久久久毛片777| 中文字幕av电影在线播放| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 性欧美人与动物交配| 99国产精品一区二区三区| 国产又爽黄色视频| 日韩高清综合在线| 夜夜躁狠狠躁天天躁| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| 视频在线观看一区二区三区| 成熟少妇高潮喷水视频| 国产伦一二天堂av在线观看| 久久精品91蜜桃| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 欧美乱色亚洲激情| 在线视频色国产色| 男女下面插进去视频免费观看| 国产激情久久老熟女| 少妇 在线观看| 亚洲av美国av| 操出白浆在线播放| 久久久久久久久中文| 91成人精品电影| 最近最新免费中文字幕在线| 亚洲情色 制服丝袜| 国产一区二区三区视频了| 亚洲av成人av| 女警被强在线播放| 久久精品亚洲精品国产色婷小说| 欧美午夜高清在线| 亚洲色图 男人天堂 中文字幕| 亚洲情色 制服丝袜| 亚洲专区中文字幕在线| 亚洲中文av在线| 亚洲第一欧美日韩一区二区三区| 黑人巨大精品欧美一区二区mp4| 欧美日本中文国产一区发布| 少妇的丰满在线观看| 亚洲中文字幕日韩| 露出奶头的视频| av网站在线播放免费| 亚洲人成网站在线播放欧美日韩| 五月开心婷婷网| 成年女人毛片免费观看观看9| 亚洲五月色婷婷综合| 99在线人妻在线中文字幕| 国产99久久九九免费精品| 亚洲精品国产区一区二| 露出奶头的视频| 99久久综合精品五月天人人| 午夜两性在线视频| 色综合站精品国产| 久久久久久亚洲精品国产蜜桃av| 手机成人av网站| 亚洲精品美女久久久久99蜜臀| 一进一出抽搐动态| 欧美国产精品va在线观看不卡| 精品人妻在线不人妻| 1024视频免费在线观看| 啦啦啦在线免费观看视频4| 国产xxxxx性猛交| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 亚洲第一av免费看| 桃红色精品国产亚洲av| 国产精品电影一区二区三区| 成人三级黄色视频| 老鸭窝网址在线观看| av国产精品久久久久影院| 色在线成人网| 如日韩欧美国产精品一区二区三区| 欧美 亚洲 国产 日韩一| 日本精品一区二区三区蜜桃| 日本wwww免费看| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩另类电影网站| av视频免费观看在线观看| 久久久精品国产亚洲av高清涩受| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| 免费久久久久久久精品成人欧美视频| 精品国产超薄肉色丝袜足j| 极品教师在线免费播放| 色尼玛亚洲综合影院| 精品电影一区二区在线| 在线看a的网站| 亚洲欧美日韩高清在线视频| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 又黄又粗又硬又大视频| 久久精品影院6| 成人三级做爰电影| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 夜夜躁狠狠躁天天躁| 日本欧美视频一区| 久久精品亚洲av国产电影网| 可以在线观看毛片的网站| 国产精品香港三级国产av潘金莲| 99在线视频只有这里精品首页| 色婷婷久久久亚洲欧美| www.999成人在线观看| 国产亚洲欧美精品永久| 亚洲成人久久性| 亚洲五月天丁香| 色综合婷婷激情| 久久天堂一区二区三区四区| 在线av久久热| 不卡一级毛片| 一个人观看的视频www高清免费观看 | 9色porny在线观看| 大型黄色视频在线免费观看| 久久99一区二区三区| 黄色毛片三级朝国网站| 亚洲精品久久成人aⅴ小说| 国产欧美日韩综合在线一区二区| 欧美精品亚洲一区二区| 叶爱在线成人免费视频播放| 制服人妻中文乱码| 波多野结衣av一区二区av| 青草久久国产| 韩国av一区二区三区四区| 亚洲成av片中文字幕在线观看| www.精华液| 久久久久亚洲av毛片大全| 十八禁人妻一区二区| 在线观看舔阴道视频| 亚洲av美国av| 亚洲一区高清亚洲精品| 999久久久精品免费观看国产| 久久99一区二区三区| 丝袜美足系列| 18禁国产床啪视频网站| 视频区图区小说| 黄色成人免费大全| 国产有黄有色有爽视频| 国产精品电影一区二区三区| 在线观看免费视频网站a站| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| а√天堂www在线а√下载| 国产精品电影一区二区三区| 午夜福利一区二区在线看| 国产成人av教育| 亚洲精品在线美女| 免费女性裸体啪啪无遮挡网站| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| 国产国语露脸激情在线看| 国产视频一区二区在线看| 男女之事视频高清在线观看| 国产精品电影一区二区三区| 国产精品国产av在线观看| 亚洲欧美激情综合另类| 天堂俺去俺来也www色官网| 精品福利永久在线观看| 精品久久久精品久久久| 亚洲精品粉嫩美女一区| svipshipincom国产片| 久久人人精品亚洲av| 后天国语完整版免费观看| 久热爱精品视频在线9| 91av网站免费观看| 久久午夜综合久久蜜桃| 精品一区二区三卡| 99久久精品国产亚洲精品| 动漫黄色视频在线观看| cao死你这个sao货| 搡老熟女国产l中国老女人| 亚洲精品粉嫩美女一区| 日韩大尺度精品在线看网址 | 两个人免费观看高清视频| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看 | 91老司机精品| 搡老岳熟女国产| 国产麻豆69| 国产欧美日韩一区二区三区在线| 国产黄色免费在线视频| 亚洲色图av天堂| 18禁美女被吸乳视频| netflix在线观看网站| 88av欧美| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 国产成人免费无遮挡视频| 一级毛片精品| 在线免费观看的www视频| 夫妻午夜视频| 在线观看一区二区三区激情| 国产av又大| 国产精品亚洲一级av第二区| 久久99一区二区三区| 搡老熟女国产l中国老女人| 亚洲熟妇熟女久久| 男女高潮啪啪啪动态图| av欧美777| 91麻豆av在线| 丝袜在线中文字幕| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看 | 日韩人妻精品一区2区三区| 香蕉久久夜色| 91成年电影在线观看| 中文字幕最新亚洲高清| 精品一区二区三卡| e午夜精品久久久久久久| 国产99白浆流出| cao死你这个sao货| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| 制服人妻中文乱码| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 视频区图区小说| 嫩草影视91久久| 视频区图区小说| 日韩精品青青久久久久久| 欧美色视频一区免费| 热re99久久精品国产66热6| 又大又爽又粗| 老熟妇乱子伦视频在线观看| 大陆偷拍与自拍| 丁香六月欧美| 午夜福利,免费看| 欧美成人免费av一区二区三区| 亚洲专区中文字幕在线| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 亚洲五月婷婷丁香| 久久精品国产综合久久久| а√天堂www在线а√下载| 超碰成人久久| 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦 在线观看视频| 日韩大尺度精品在线看网址 | 亚洲人成77777在线视频| 在线国产一区二区在线| 国产免费现黄频在线看| 国产成人精品久久二区二区免费| 国产精品爽爽va在线观看网站 | 亚洲精品国产精品久久久不卡| 国产99久久九九免费精品| 国产免费av片在线观看野外av| 久久久国产成人精品二区 | 精品无人区乱码1区二区| 亚洲av成人不卡在线观看播放网| 国产国语露脸激情在线看| 国产深夜福利视频在线观看| 日韩一卡2卡3卡4卡2021年| 成人三级黄色视频| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 国产成人啪精品午夜网站| 日韩精品免费视频一区二区三区| 亚洲精品国产一区二区精华液| 久久亚洲精品不卡| 黑人猛操日本美女一级片| 亚洲激情在线av| 亚洲avbb在线观看| av视频免费观看在线观看| 久久午夜综合久久蜜桃| 亚洲av美国av| xxxhd国产人妻xxx| 99在线人妻在线中文字幕| 免费在线观看日本一区| 久久香蕉国产精品| 国产亚洲精品综合一区在线观看 | 欧美日韩福利视频一区二区| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 国产野战对白在线观看| 十分钟在线观看高清视频www| 欧美av亚洲av综合av国产av| 91麻豆av在线| 国产又色又爽无遮挡免费看| 国产精品永久免费网站| 欧美激情 高清一区二区三区| 91老司机精品| 在线天堂中文资源库| 免费一级毛片在线播放高清视频 | 丝袜美腿诱惑在线| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 97人妻天天添夜夜摸| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一出视频| 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| 在线观看午夜福利视频| 一区二区三区激情视频| 波多野结衣一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 在线观看日韩欧美| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 午夜a级毛片| 在线播放国产精品三级| 在线免费观看的www视频| 国产99久久九九免费精品| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 天堂中文最新版在线下载| 亚洲午夜精品一区,二区,三区| 亚洲精华国产精华精| 精品国产亚洲在线| 久久久国产成人免费| 亚洲伊人色综图| 精品久久蜜臀av无| 黄色女人牲交| 精品久久久久久久久久免费视频 | 久久这里只有精品19| 无遮挡黄片免费观看| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产 | 99精品欧美一区二区三区四区| 脱女人内裤的视频| 亚洲人成77777在线视频| 欧美 亚洲 国产 日韩一| a级毛片在线看网站| 亚洲精品国产区一区二| bbb黄色大片| 色在线成人网| √禁漫天堂资源中文www| 国产成年人精品一区二区 | 国产午夜精品久久久久久| 国产亚洲精品综合一区在线观看 | 亚洲欧美激情综合另类| 国产在线观看jvid| 久久影院123| 欧美激情极品国产一区二区三区| 成人永久免费在线观看视频| 最近最新免费中文字幕在线| 亚洲精品中文字幕在线视频| 性少妇av在线| 欧美黑人精品巨大| 看免费av毛片| 亚洲九九香蕉| 一级黄色大片毛片| 日韩有码中文字幕| 午夜影院日韩av| 免费av中文字幕在线| 深夜精品福利| 女人爽到高潮嗷嗷叫在线视频|