• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    2016-11-02 07:37:44黎海超陳水挾李啟漢劉風(fēng)雷
    新型炭材料 2016年3期
    關(guān)鍵詞:中山大學(xué)乙二醇碳納米管

    黎海超,陳水挾,2,李啟漢,劉風(fēng)雷

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    黎海超1,陳水挾1,2,李啟漢1,劉風(fēng)雷1

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    采用微波輔助加熱乙二醇法制備了碳納米管(CNTs)負載的PtSn 雙組份催化劑。采用原子吸收光譜,X射線衍射儀和電子透射顯微鏡對產(chǎn)物進行了表征。結(jié)果表明,含金屬離子前驅(qū)體的乙二醇溶液的pH值對產(chǎn)物的金屬催化劑負載量、合金化程度和PtSn 粒子的形態(tài)有顯著的影響。在pH值為5時能得到組分配比為原始設(shè)計值的PtSn/CNT催化劑。在pH值2~7的范圍內(nèi)納米粒子的尺寸較小,隨著pH值的進一步提高,納米粒子直徑變大且發(fā)生團聚。電化學(xué)測試表明在pH值為5時得到的PtSn/CNT催化劑對甲醇電化學(xué)氧化具有最佳的催化作用。合適的金屬負載比例和良好的納米顆粒形狀和尺寸分布控制是得到優(yōu)異的催化性能的主要原因。

    微波輻照;碳納米管;PtSn催化劑;甲醇電化學(xué)氧化

    1 Introduction

    As the promising power sources for portable electronics,direct alcohol fuel cells (DAFCs) using methanol,ethanol,ethylene glycol (EG) and glycerol as fuels have drawn a great deal of attention owing to their high power density,low operation temperature,no corrosion problem and so on[1,2].As the anode catalysts for DAFCs,bimetallic Pt-based alloys,such as PtSn,PtRu,PtCo with modified Pt electronic properties and surface chemistry,have been of continuing interest owing to their higher activity as compared with Pt catalyst[3-12].Formation of electrocatalysts on carbon materials for DAFC applications is commonly realized by reductive deposition method.But this method based on wet impregnation and chemical reduction is usually time-consuming,while do not provide adequate control of particle shape,size and size distribution.Researchers have been devoted to find a simple,fast and efficient way to control the size of Pt catalysts.A colloid formation method based on microwave-assisted reduction of metal salts in polyol solution is mainly used to prepare metal particles with narrow size distribution and specific shape owing to its speediness and energy efficiency[13,14].

    PtSn catalyst for alcohol electrocatalytic oxidation has been extensively studied but few examinations investigated the pH influence on the PtSn catalyst.In this work,CNTs supported PtSn catalyst with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.PtSn/CNTs were synthesized at pH 2 to 12 in order to examine the influence of pH value.X-ray diffraction (XRD),transmission electron microscopy (TEM) and atomic absorption spectroscopy (AAS) were employed to characterize the structure and composition.The catalytic oxidation performance of this catalyst towards methanol was preliminary evaluated.

    2 Experimental

    2.1Materials

    All the chemical reagents employed in this study were of analytical grade.Chloroplatinic acid was purchased from ShenYang Jin Ke Chemical Factory,China.Stannous chloride dihydrate was supplied by Guanghua Chemical Factory,China.Mutiwalled carbon nanotubes (MWCNTs) with tube diameters of 40-60 nm were purchased from Shenzhen Nanotech Port Co.,Ltd.,in China.20 wt% Pt supported on Vulcan carbon black (Pt/C) catalyst was from Johnson Matthey Company and Nafion 5 wt% solution from Dupont.

    2.2Synthesis and characterization of the catalysts

    Oxidation treatment with concentrated HNO3and H2SO4was employed to purify the MWCNTs and introduce some oxygen-containing groups on the carbon surface.

    The 20 wt% PtSn/CNT with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.This catalyst was named as M-PtSn/CNT.The typical preparation procedure is as follows:1.12 mL of chloroplatinic acid in EG solution (3.7 mg Pt/mL EG) and 1.6 mg of stannous chloride dihydrate (SnCl2·2H2O) were quantitatively added into 40 mL of EG in a flask.20 mg of acid-treated MWCNTs were mixed with the solution of metallic precursors under ultrasonic treatment for 3 h.The synthesis solution pH was adjusted to 5 by adding 1.0 M NaOH EG solution.The microwave treatment was accomplished in a household microwave oven (Midea,PJ17C-M,2.45 GHz,700 W) for 3 times with 30 s irradiation on and 60 s irradiation off.The resulting suspension was filtered and the residue was washed thoroughly with deionized water.The solid product recovered as such was dried at 60 ℃ over night in a vacuum oven.As-prepared catalyst was denoted as PtSn/CNT.Four other such catalysts were prepared at the pH values of 2,7,9 and 12 to study the effect of pH value on the structure and electrocatalytic activity of PtSn/CNT catalysts.

    X-ray diffraction (XRD) patterns were obtained on a D8 ADVANCE (BRüCKNER Textile Technologies GmbH & Co.,KG) X-ray diffractometer using Cu Kαradiation (λ= 0.154 056 nm).The tube voltage was maintained at 40 kV and tube current at 40 mA.The 2θangles ranging from 20° to 70° were covered at a scan rate of 10(°)/min.Transmission electron microscopy (TEM) was performed on a JEOL JEM-2010HR operating at 200 kV.For the atomic absorption spectroscopy (AAS) analysis,PtSn/CNTs samples were immersed in aqua regia for 24 h to dissolve the PtSn particles.The undissolved CNTs were filtered by using a millipore membrane filter.The clear solution was then diluted to an appropriate concentration before the measurement.Zeta potential measurement was performed on a Zetaplus,Brookhaven Instruments Corp.Holtsville,NY.

    2.3Measurement of the electrochemical properties of the catalysts

    All electrochemical measurements were performed in a three-electrode electrochemical cell on an IM6ex electrochemical workstation (Zahner-Electrik,Germany) at room temperature.For the preparation of working electrodes,1 mg of catalyst and 0.5 mL of isopropyl aqueous solution (Visopropanol∶Vwater= 2∶1) were mixed ultrasonically.The well-mixed electrocatalyst ink (10 μL) was deposited onto the surface of a freshly polished glassy carbon disk (GC,3 mm in diameter and 0.070 65 cm2) and dried at 60 ℃ for 30 min.3 μL of Nafion solution was then sprayed on the PtSn/MWCNT catalyst surface to form a protective layer to avoid loss of catalyst during the test.A Pt foil and a saturated calomel electrode (SCE) were used as the counter and the reference electrodes,respectively.N2gas was purged for 30 min before the experiment.

    3 Results and discussion

    3.1Effect of pH value on metal loading of PtSn

    Metal catalyst loading is defined as the weight fraction of PtSn over the weights of the catalyst.The metal loading and compositions were analyzed by AAS (Table 1).It is found that the deposition efficiency and Pt/Sn weight ratio of the particles were sensitive to the pH values of EG solution.The initial composition based on precursors are 16.6 wt% and 3.4 wt% for Pt and Sn,respectively.Metal deposition efficiency could be over 95% for catalyst prepared at pH 5 and weight ratio of Pt/Sn of as-prepared catalyst was very close to the intended one.But catalysts prepared at pH 2,7 and 9 show deposition efficiencies of 60% to 90%,indicating that there were metals remained in the solution.And we found that metal loading on CNTs prepared at pH 12 is extremely low,only 1.6 wt% Pt and 0.15 wt% Sn.

    Table 1 Structure and compositions of PtSn/CNT and Pt/C catalysts.

    3.2Effect of pH value on structure of PtSn/CNT

    The X-ray diffraction patterns of PtSn/CNT electrocatalysts prepared in different pH values are shown in Fig.1.For the sake of comparison,the pattern of commercial Pt/C catalyst (Johnson Matthey,Pt:20 wt%) is also shown in the same figure.The peak at about 2θ= 25° was associated with C (200) plane.All the of the PtSn/CNTs catalysts,except the one prepared at the pH vuale of 12,showed peaks at approximate 2θ= 39°,45°,66° and 79°,which were the main characteristic peaks of crystalline Pt and Pt alloys.The absence of Pt diffraction peaks for the catalyst prepared at pH 12 (Fig.1f) may be attributed to a poor deposition efficiency.All these peaks shifted to lower 2θvalues for PtSn/CNTs electrocatalysts as compared with the commercial Pt/C catalyst,which is caused by the formation of an alloy due to incorporation of Sn atom into the Pt fcc structure,resulting in a lattice expansion[5].No distinct peaks of SnO2were detected possibly because the particles were amorphous or too small.It should be noted that as the pH value increased,the PtSn phase diffraction peaks shifted to high 2θangle,which revealed that the alloying degree of PtSn decreased.From literature data[21],a linear relationship of the lattice parameter and alloyed Sn atomic ratio xSnhas been proposed by the following equation.

    aPtSn=kxSn+aPt

    where aPt= 0.391 4 nm is the lattice parameter of Pt/C,aPtSnis the lattice parameter of PtSn,which can be evaluated according to the angular position of the Pt (220) peak,and k is a constant = 0.352.

    Table 1 clearly shows that alloyed Sn atomic ratio xSndecreased with the pH value.The average size of the catalysts was calculated from XRD data based on the broadening of the Pt (220) peak from the Scherrer equation[22].It was found that the PtSn/CNT catalysts had a crystallite size of around 3.6 nm.We could not obtain the information for the sample prepared at pH of 12 due to the absence of Pt diffraction peaks as lattice parameter,alloyed Sn atomic ratio and XRD mean particle size were calculated based on the AAS and XRD data.

    Fig.1 XRD patterns of (a) commercial Pt/C catalyst and PtSn/CNT prepared at different pH values: (b) 2,(c) 5,(d) 7,(e) 9 and (f) 12.

    3.3Effect of pH on morphology of PtSn/CNT

    Besides loading amount and composition,nanoparticle size,distribution and morphology are also vital to the electrochemical properties of the catalysts.Morphology of the CNT-supported PtSn catalysts observed by TEM was presented in Fig.2.The corresponding mean particle size of catalysts were also obtained by measuring over 100 particles from TEM and presented in Table 1.It can be seen that PtSn catalysts prepared at pH 5 and 7 showed the most satisfied distribution on CNTs,except for a slight particle agglomeration (Fig.2b and c).For the PtSn/CNT catalysts prepared at pH 2 and 9 (Fig.2a and d),nanoparticle agglomeration was easily observed.PtSn particles synthesized at pH 12 were rarely detected,and those located on the surface of the CNTs were large and agglomerated particles and as shown in the selected area (Fig.2e).A broader particle size distribution from 2.0 to 13.0 nm with a mean particle size of 7.6 nm was obtained.

    Fig.2 TEM images and corresponding particle size distribution histograms of PtSn/CNT prepared at different pH values:(a) 2; (b) 5; (c) 7; (d) 9 and (e) 12.

    3.4Insight into the reduction and deposition mechanism

    Fig.3 Zeta potential as a function of pH for acid-treated CNTs in EG solution.

    3.5Electrocatalytic properties

    The effect of pH values on the electrocatalytic activity of PtSn/CNT for methanol oxidation was examined by cyclic voltammetry and the result is presented in Fig.4.

    Fig.4 Catalytic activity of PtSn/CNT prepared at various pH values towards methanol electro-oxidation in 0.5 M H2SO4+ 1.0 M methanol with a sweep rate of 20 mV·s-1.

    The current values were normalized by the loading amount of Pt metal,taking account of the alcohol adsorption and dehydrogenation occurring on the Pt sites[29].Distinct changes in the peak currents for the catalysts prepared at different pH values were observed.The catalyst prepared at pH 5 showed the highest peak current density of 223 mA·mg-1Pt at 0.61 V.The mass activity decreased as the pH value increased.The peak currents were 191 and 153 mA·mg-1Pt for the catalysts prepared at pH 7 and 9,respectively.The catalyst prepared at pH 12 had nearly no activity.This result indicated that pH 5 is the optimum value for preparing the PtSn/CNT with a high electrocatalytic activity.

    4 Conclusions

    A microwave irradiation assisted EG reduction method was employed to prepare CNT-supported PtSn binary catalyst with high electrocatalytic activities for glycerol oxidation.It was found that pH value of the EG solution influenced significantly on the loading efficiency,compositions and morphology of as-prepared PtSn nanaparticles via influencing the adsorption condition of metallic precursors and stabilizing effect of glycolate.Desired catalyst with a composition close to the intended weight ratio of Pt to Sn of 16.6∶3.4 (wt/wt) was obtained by adjusting the pH value to about 5,near the IEP of the acid-treated CNTs.The PtSn nanoparticles displayed the most satisfying size distribution at pH 5 and 7.Overall the PtSn/CNT catalyst prepared at pH 5 exhibited the best catalytic activity for methanol electro-oxidation at room temperature mainly due to a high loading efficiency and adequate control of particle shape and size distribution.

    [1]Eileen Hao Yu,Xu Wang,Ulrike Krewer,et al.Direct oxidation alkaline fuel cells:from materials to systems[J].Energy Environ Sci,2012,5:5668-5680.

    [2]Kamarudin M Z F ,Kamarudin S K ,Masdar M S ,et al.Direct ethanol fuel cells[J].Int J Hydrogen Energ,2013,38(22):9438-9453.

    [3]Léger J M,Rousseau S,Coutanceau C,et al.How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol[J].Electrochim Acta,2005,50(25-26):5118-5125.

    [4]Antolini E.Catalysts for direct ethanol fuel cells[J].J Power Sources,2007,170(1):1-12.

    [5]Zheng L,Xiong L,Sun J,et al.Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation[J].Catal Commun,2008,9(5):624-629.

    [6]Seden Beyhan,Christophe Coutanceau.Promising anode candidates for direct ethanol fuel cell:Carbon supported PtSn-based trimetallic catalysts prepared by B?nnemann method[J].Int J Hydrogen Energ,2013,38(16):6830-6841.

    [7]Zhao S L,Yin H J,Du L,et al.Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells[J].J Mater Chem A,2014,2:3719-3724.

    [8]Yang C,Wang D,Hu X,et al.Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation[J].J Alloys Compd,2008,448(1-2):109-115.

    [9]Hsieh C T,Chou Y W,Chen W Y.Fabrication and electrochemical activity of carbon nanotubes decorated with PtRu nanoparticles in acid solution[J].J Alloys Compd,2008,466(466):233-240.

    [10]Okaya K,Yano H,Uchida H,et al.Control of particle size of Pt and Pt alloy electrocatalysts supported on carbon black by the nanocapsule method[J].ACS Appl Mater Interfaces,2010,2(2):888-895.

    [11]Nitul Kakati,Jatindranath Maiti,Seok Hee Lee,et al.Anode catalysts for direct methanol fuel cells in acidic media:Do we have any alternative for Pt or Pt-Ru?[J].Chem Rev,2014,114 (24):12397-12429.

    [12]Neto A O,Watanabe A Y,Brandalise M,et al.Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J].J Alloys Compd,2009,476(1-2):288-291.

    [13]Yin S,Shen P K,Song S,et al.Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2treatment for electrocatalyst support of fuel cells[J].Electrochimica Acta,2009,54(27):6954-6958.

    [14]Chen W,Jie Z,Lee J Y,et al.Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation[J].Mater Chem Phys,2005,91(1):124-129.

    [15]Ahmadi T S,Wang Z L,Green T C,et al.Shape-controlled synthesis of colloidal Platinum nanoparticles[J].Science,1996,272(5270):1924-1926.

    [16]Christina B,Chantal P,Martin C,et al.Size-selected synthesis of PtRu nano-catalysts:Reaction and size control mechanism[J].J Am Chem Soc,2004,126(25):8028-8037.

    [17]Li X,Chen W X,Zhao J,et al.Microwave polyol synthesis of Pt/CNTs catalysts:Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J].Carbon,2005,43(10):2168-2174.

    [18]Dong H,Wang D,Sun G,et al.Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions[J].Chem Mater,2008,20(21):6627-6632.

    [19]Xu Y,Xie X,Guo J,et al.Effects of annealing treatment and pH on preparation of citrate-stabilized PtRu/C catalyst[J].J Power Sources,2006,162(1):132-140.

    [20]Jeng K T,Chien C C,Hsu N Y,et al.Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition[J].J Power Sources,2006,160(1):97-104.

    [21]Li H,Sun G,Lei C,et al.Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation[J].Electrochimica Acta,2007,52(24):6622-6629.

    [22]Hui X H,Shui X C,Yuan C.Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation[J].J Power Sources,2008,175(175):166-174.

    [23]Rodríguez-Reinoso F.The role of carbon materials in heterogeneous catalysis[J].Carbon,1998,36(3):159-175.

    [24]Radovic L R,Rodriguez-Reinoso F.In Chemistry and Physics of Carbon[M].Thrower P A,E Marcel Dekker Inc,New York,1996,25:243-360.

    [25]Yu R Q,Chen L W,Liu Q P,et al.Platinum deposition on carbon nanotubes via chemical modification[J].Chem Mater,1998,10(3):718-722.

    [26]Leon C A L Y,Solar J M,Calemma V,et al.Evidence for the protonation of basal plane sites on carbon[J].Carbon,1992,30(5):797-811.

    [27]Du H Y,Wang C H,Hsu H C,et al.Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation[J].Diamond Relat Mater,2008,17(4-5):535-541.

    [28]Jiang L,Lian G.Modified carbon nanotubes:An effective way to selective attachment of gold nanoparticles[J].Carbon,2003,41(15):2923-2929.

    [29]Neto A O,Dias R R,Tusi M M,et al.Electro-oxidation of methanol and ethanol using PtRu/C,PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J].J Power Sources,2007,166(1):87-91.

    Effect of the pH of the preparation medium on the microstructure and electrocatalytic activity of carbon nanotubes decorated with PtSn nanoparticles for use in methanol oxidation

    LI Hai-chao1,CHEN Shui-xia1,2,LI Qi-han1,LIU Feng-lei1

    (1.PCFM Lab,School of Chemistry and Chemical Engineering,Sun Yat-Sen University,Guangzhou510275,China;2.Materials Science Institute,Sun Yat-Sen University,Guangzhou510275,China)

    Carbon nanotubes (CNTs) decorated with PtSn nanoparticles (PtSn/CNT) were prepared by the microwave-assisted ethylene glycol reduction method and characterized by atomic adsorption spectroscopy,X-ray diffraction and transmission electron microscopy.Results indicated that the loading efficiency of the metal catalyst,and the degree of alloying and morphology of the PtSn nanoparticles were significantly affected by the solution pH value of the metallic ions in the ethylene glycol.The required composition of the PtSn/CNT catalysts could be obtained by adjusting the pH value to about 5,which is almost the isoelectric point of the acid-treated CNTs.The size of the PtSn nanoparticles decreased with the pH value in the range 2 to 7,but they became large and agglomerated when the pH value was greater than 7.Electrocatalytic activity tests indicated that the PtSn-CNTs prepared at pH 5 had the best catalytic performance towards methanol oxidation.The improvement in catalytic activity was mainly attributed to a high loading efficiency and control of particle shape and size distribution.

    Microwave irradiation; Carbon nanotubes; PtSn catalyst; Methanol electro-oxidation.

    date:2016-05-07;Revised date:2016-06-05

    National Natural Science Foundation of China (50373053); Science and Technology Project of Guangdong Province (2012B091000080).

    CHEN Shui-xia.E-mail:cescsx@mail.sysu.edu.cn

    1007-8827(2016)03-0293-08

    TB333

    A

    國家自然科學(xué)基金(50373053);廣東省科技計劃項目(2012B091000080).

    陳水挾,教授.E-mail:cescsx@mail.sysu.edu.cn

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805 ).

    10.1016/S1872-5805(16)60014-8

    猜你喜歡
    中山大學(xué)乙二醇碳納米管
    新型裝配式CO2直冷和乙二醇載冷冰場的對比研究
    冰雪運動(2021年2期)2021-08-14 01:54:20
    我國最大海洋綜合科考實習(xí)船“中山大學(xué)號”下水
    軍事文摘(2020年22期)2021-01-04 02:16:46
    中山大學(xué)歷史地理信息系統(tǒng)(SYSU-HGIS)實驗室簡介
    乙二醇:需求端內(nèi)憂外患 疫情期亂了節(jié)奏
    廣州化工(2020年5期)2020-04-01 01:24:58
    一擊止“痛”!450余水產(chǎn)人聚焦第九屆中山大學(xué)水產(chǎn)飼料技術(shù)創(chuàng)新大會,教你從百億到百年
    努力把乙二醇項目建成行業(yè)示范工程——寫在中鹽紅四方公司二期30萬噸/年乙二醇項目建成投產(chǎn)之際
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    中山大學(xué)點滴回憶
    廣州文博(2016年0期)2016-02-27 12:49:15
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    拓撲缺陷對Armchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    精品熟女少妇av免费看| 久久人人爽人人片av| 国产乱来视频区| 久久精品国产亚洲av涩爱| 成人黄色视频免费在线看| 国产日韩欧美亚洲二区| 欧美xxxx性猛交bbbb| 五月开心婷婷网| 日韩制服骚丝袜av| 成人二区视频| 亚洲av中文av极速乱| 成人无遮挡网站| 成人免费观看视频高清| 亚洲精品国产成人久久av| 中文在线观看免费www的网站| 只有这里有精品99| 久久久久国产精品人妻一区二区| 亚洲成人av在线免费| 伦理电影免费视频| videos熟女内射| 免费高清在线观看视频在线观看| 国模一区二区三区四区视频| 国产精品99久久久久久久久| 日韩大片免费观看网站| 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 大片免费播放器 马上看| 欧美高清成人免费视频www| 国产一区二区在线观看日韩| 欧美精品亚洲一区二区| 精品国产一区二区三区久久久樱花| 精品少妇久久久久久888优播| 久久狼人影院| 国产精品国产三级国产av玫瑰| 香蕉精品网在线| 熟女人妻精品中文字幕| 久久精品夜色国产| 九色成人免费人妻av| 国产在线一区二区三区精| 一级,二级,三级黄色视频| 国产在视频线精品| 亚洲人成网站在线观看播放| 我的女老师完整版在线观看| 晚上一个人看的免费电影| 免费人妻精品一区二区三区视频| 下体分泌物呈黄色| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 97超碰精品成人国产| 国产精品欧美亚洲77777| 亚洲av成人精品一区久久| 美女福利国产在线| 免费观看性生交大片5| 精品久久久久久久久亚洲| 日韩成人伦理影院| 亚洲成人一二三区av| av天堂久久9| 午夜影院在线不卡| 亚洲内射少妇av| 日韩一区二区视频免费看| 午夜久久久在线观看| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 中文字幕久久专区| 午夜福利在线观看免费完整高清在| 极品少妇高潮喷水抽搐| 亚洲四区av| 免费av中文字幕在线| 久久国产乱子免费精品| 国产乱人偷精品视频| 桃花免费在线播放| 中文字幕久久专区| 久久午夜综合久久蜜桃| 亚洲三级黄色毛片| 亚洲中文av在线| 精品国产国语对白av| 中文字幕人妻丝袜制服| 国产精品嫩草影院av在线观看| 人妻夜夜爽99麻豆av| 欧美xxxx性猛交bbbb| 国产亚洲5aaaaa淫片| 如何舔出高潮| 日本色播在线视频| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| 免费黄频网站在线观看国产| 亚洲内射少妇av| 亚洲av在线观看美女高潮| 我的女老师完整版在线观看| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 免费大片18禁| 久久久国产精品麻豆| 午夜福利影视在线免费观看| 最近中文字幕2019免费版| 亚洲精品日本国产第一区| 美女大奶头黄色视频| 韩国av在线不卡| 国产 一区精品| 九九爱精品视频在线观看| 国产成人91sexporn| 欧美一级a爱片免费观看看| 日韩av免费高清视频| 亚洲无线观看免费| 天堂8中文在线网| 亚洲av二区三区四区| 亚洲四区av| 国产精品成人在线| 内地一区二区视频在线| 69精品国产乱码久久久| 精品亚洲乱码少妇综合久久| 自拍欧美九色日韩亚洲蝌蚪91 | 男人添女人高潮全过程视频| 最近中文字幕高清免费大全6| 一个人看视频在线观看www免费| 久久韩国三级中文字幕| 国产成人精品久久久久久| 人妻系列 视频| 久久精品久久久久久噜噜老黄| 精品亚洲成a人片在线观看| 午夜激情久久久久久久| 中文资源天堂在线| 免费观看无遮挡的男女| 亚洲欧美精品自产自拍| 国产视频内射| 极品人妻少妇av视频| 精品视频人人做人人爽| 久久青草综合色| 你懂的网址亚洲精品在线观看| 国产精品嫩草影院av在线观看| 亚洲一区二区三区欧美精品| 春色校园在线视频观看| 成人毛片a级毛片在线播放| 下体分泌物呈黄色| 天堂中文最新版在线下载| 青春草国产在线视频| 国产欧美日韩综合在线一区二区 | 简卡轻食公司| 在线观看av片永久免费下载| 蜜桃久久精品国产亚洲av| 高清欧美精品videossex| 777米奇影视久久| 久久久午夜欧美精品| 十八禁网站网址无遮挡 | 春色校园在线视频观看| 久久热精品热| 午夜91福利影院| 亚洲国产精品999| 在线观看国产h片| 久久久国产精品麻豆| 亚洲国产色片| 少妇被粗大猛烈的视频| 特大巨黑吊av在线直播| 水蜜桃什么品种好| 亚洲国产欧美日韩在线播放 | 亚洲精品自拍成人| 少妇人妻一区二区三区视频| 成人国产av品久久久| 国产精品一区二区三区四区免费观看| 亚洲av二区三区四区| 亚洲人成网站在线观看播放| 国产 精品1| 亚洲欧美一区二区三区国产| 91精品国产九色| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 免费av不卡在线播放| 免费观看av网站的网址| 国产精品偷伦视频观看了| 色婷婷av一区二区三区视频| 亚洲欧洲精品一区二区精品久久久 | 美女福利国产在线| 男男h啪啪无遮挡| 亚洲四区av| 免费看日本二区| 一个人免费看片子| 内射极品少妇av片p| 欧美三级亚洲精品| 如日韩欧美国产精品一区二区三区 | 中国国产av一级| 亚洲国产最新在线播放| 免费黄色在线免费观看| 亚洲精品一区蜜桃| 国产高清不卡午夜福利| 日韩制服骚丝袜av| av卡一久久| 中文字幕亚洲精品专区| 麻豆成人av视频| 日韩av不卡免费在线播放| 亚洲精品色激情综合| 热re99久久国产66热| 国产一级毛片在线| 蜜桃在线观看..| 国产成人精品无人区| 精品午夜福利在线看| 天堂8中文在线网| 成人毛片60女人毛片免费| 欧美日韩视频精品一区| 精品一区在线观看国产| 亚洲精品国产av成人精品| 国产黄色视频一区二区在线观看| 一级毛片aaaaaa免费看小| 精品国产露脸久久av麻豆| 99热网站在线观看| a级毛片免费高清观看在线播放| 成人18禁高潮啪啪吃奶动态图 | 日本91视频免费播放| 看十八女毛片水多多多| 婷婷色麻豆天堂久久| 草草在线视频免费看| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 中文在线观看免费www的网站| h日本视频在线播放| 日本午夜av视频| 男女国产视频网站| 人妻少妇偷人精品九色| 777米奇影视久久| 亚洲欧美精品专区久久| 午夜激情久久久久久久| 卡戴珊不雅视频在线播放| 久久99热6这里只有精品| 亚洲av.av天堂| 精品久久久久久电影网| 国精品久久久久久国模美| 一区二区三区乱码不卡18| 嘟嘟电影网在线观看| 久久精品熟女亚洲av麻豆精品| 婷婷色av中文字幕| 少妇丰满av| 一边亲一边摸免费视频| 黄色毛片三级朝国网站 | 有码 亚洲区| 美女福利国产在线| 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| 成人美女网站在线观看视频| 三级经典国产精品| 一区二区av电影网| 国产男女内射视频| 成人国产av品久久久| 亚洲伊人久久精品综合| 亚洲欧洲精品一区二区精品久久久 | 中国美白少妇内射xxxbb| 成人免费观看视频高清| 国产黄频视频在线观看| 一区二区av电影网| 少妇人妻 视频| 十分钟在线观看高清视频www | 亚洲va在线va天堂va国产| 日本黄色片子视频| 中国美白少妇内射xxxbb| 久久免费观看电影| 亚洲怡红院男人天堂| 日日摸夜夜添夜夜爱| 国产黄色视频一区二区在线观看| 国产爽快片一区二区三区| h视频一区二区三区| 日日爽夜夜爽网站| 97精品久久久久久久久久精品| 丝瓜视频免费看黄片| 国产毛片在线视频| 久久av网站| 国产探花极品一区二区| 伊人久久精品亚洲午夜| 亚洲av国产av综合av卡| 亚洲欧洲国产日韩| 午夜福利在线观看免费完整高清在| 亚洲精品亚洲一区二区| 久久久午夜欧美精品| 男女免费视频国产| 日本午夜av视频| 日韩强制内射视频| 国产精品嫩草影院av在线观看| 亚洲精品中文字幕在线视频 | 午夜福利影视在线免费观看| av.在线天堂| 成人美女网站在线观看视频| 国产又色又爽无遮挡免| av线在线观看网站| 男人和女人高潮做爰伦理| 国产精品免费大片| www.av在线官网国产| 国产精品久久久久久精品古装| 久久韩国三级中文字幕| 一级片'在线观看视频| 寂寞人妻少妇视频99o| 欧美老熟妇乱子伦牲交| 国产精品国产三级国产专区5o| 美女xxoo啪啪120秒动态图| 一区在线观看完整版| 国产精品99久久久久久久久| 涩涩av久久男人的天堂| 久久精品国产亚洲网站| √禁漫天堂资源中文www| 亚洲精品亚洲一区二区| 成人亚洲精品一区在线观看| 久久狼人影院| 丝袜在线中文字幕| 好男人视频免费观看在线| 国产精品欧美亚洲77777| 在线观看免费日韩欧美大片 | 亚洲自偷自拍三级| 久久久亚洲精品成人影院| 男女边摸边吃奶| a级片在线免费高清观看视频| 三上悠亚av全集在线观看 | 国产免费视频播放在线视频| 亚洲美女视频黄频| 日本黄大片高清| 久久久久久久久久成人| 久久99精品国语久久久| 全区人妻精品视频| 久久这里有精品视频免费| 一区二区三区精品91| 国产午夜精品久久久久久一区二区三区| 大话2 男鬼变身卡| 午夜免费观看性视频| 99热这里只有是精品在线观看| 久热这里只有精品99| 99久久精品一区二区三区| 欧美成人午夜免费资源| 久久国内精品自在自线图片| 亚洲精品日本国产第一区| 久久97久久精品| 汤姆久久久久久久影院中文字幕| 国产精品不卡视频一区二区| 五月天丁香电影| 久久国产精品男人的天堂亚洲 | 女的被弄到高潮叫床怎么办| 在现免费观看毛片| 91久久精品国产一区二区成人| 国产亚洲午夜精品一区二区久久| 少妇人妻久久综合中文| 亚洲美女黄色视频免费看| 亚洲国产精品一区二区三区在线| 欧美日韩视频精品一区| 国产综合精华液| 麻豆成人午夜福利视频| 能在线免费看毛片的网站| 视频中文字幕在线观看| 一级毛片电影观看| 亚洲av福利一区| 少妇人妻久久综合中文| 婷婷色综合大香蕉| 亚洲精品视频女| 天天操日日干夜夜撸| av.在线天堂| 亚洲成人av在线免费| 日本黄色日本黄色录像| 久久毛片免费看一区二区三区| 国产色爽女视频免费观看| 国产91av在线免费观看| 亚洲av综合色区一区| 久久精品夜色国产| 男人爽女人下面视频在线观看| 一区二区三区乱码不卡18| 国产成人免费无遮挡视频| 欧美成人精品欧美一级黄| 日韩,欧美,国产一区二区三区| 蜜臀久久99精品久久宅男| 日韩人妻高清精品专区| 夫妻性生交免费视频一级片| 看免费成人av毛片| 内射极品少妇av片p| 日韩在线高清观看一区二区三区| 日韩视频在线欧美| 国产在线一区二区三区精| 香蕉精品网在线| 久久精品久久久久久久性| 国产乱来视频区| 最近2019中文字幕mv第一页| 成年人午夜在线观看视频| 国产在视频线精品| 国模一区二区三区四区视频| 黄色毛片三级朝国网站 | 水蜜桃什么品种好| 久久韩国三级中文字幕| 9色porny在线观看| av一本久久久久| 欧美少妇被猛烈插入视频| 草草在线视频免费看| 久久久久精品久久久久真实原创| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 久久这里有精品视频免费| 国产av码专区亚洲av| 观看av在线不卡| 久久久精品94久久精品| 国产在视频线精品| 男女无遮挡免费网站观看| 国产在线男女| 在线播放无遮挡| 内射极品少妇av片p| 国产伦在线观看视频一区| 成年人免费黄色播放视频 | 国内少妇人妻偷人精品xxx网站| 日韩一本色道免费dvd| 日韩伦理黄色片| 久久人人爽人人爽人人片va| 国产片特级美女逼逼视频| 成人综合一区亚洲| 欧美精品人与动牲交sv欧美| 一区二区av电影网| 天堂8中文在线网| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 熟女人妻精品中文字幕| 亚洲欧美日韩另类电影网站| 午夜激情福利司机影院| 麻豆精品久久久久久蜜桃| 一级av片app| 久久精品国产鲁丝片午夜精品| 亚洲av成人精品一区久久| 国产av一区二区精品久久| 久久久久久久久久成人| 久久久国产精品麻豆| 永久网站在线| 亚洲精品亚洲一区二区| 国产熟女午夜一区二区三区 | 成人亚洲精品一区在线观看| 我的老师免费观看完整版| 男女边摸边吃奶| av免费观看日本| 精品一区二区免费观看| 国内揄拍国产精品人妻在线| 爱豆传媒免费全集在线观看| 日韩av免费高清视频| 成人18禁高潮啪啪吃奶动态图 | 婷婷色av中文字幕| 亚洲国产精品国产精品| 男人添女人高潮全过程视频| 99久久精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 高清视频免费观看一区二区| 黄色日韩在线| 伦理电影大哥的女人| 中文字幕人妻丝袜制服| 亚洲一区二区三区欧美精品| 免费观看a级毛片全部| 99久久精品热视频| 国产精品免费大片| 在线观看国产h片| 久久99热这里只频精品6学生| 亚洲国产最新在线播放| 精品一区二区三区视频在线| 亚洲精品中文字幕在线视频 | 校园人妻丝袜中文字幕| 午夜免费鲁丝| 亚洲欧美清纯卡通| 国产成人aa在线观看| 成年av动漫网址| 亚洲丝袜综合中文字幕| 十八禁网站网址无遮挡 | 久久久久久人妻| 尾随美女入室| 久久人妻熟女aⅴ| 国产成人免费观看mmmm| 乱人伦中国视频| 内射极品少妇av片p| 国产精品国产三级专区第一集| 一级片'在线观看视频| 曰老女人黄片| 久久久久久久大尺度免费视频| 国产在线视频一区二区| 看非洲黑人一级黄片| 久久久久人妻精品一区果冻| 婷婷色综合www| 国产69精品久久久久777片| 日日啪夜夜爽| 亚洲久久久国产精品| 天天操日日干夜夜撸| 成人国产麻豆网| 99九九线精品视频在线观看视频| 美女福利国产在线| 国产乱来视频区| 高清在线视频一区二区三区| 赤兔流量卡办理| 国产男女超爽视频在线观看| 在线观看免费日韩欧美大片 | 久久狼人影院| 26uuu在线亚洲综合色| 99九九在线精品视频 | 天天躁夜夜躁狠狠久久av| 精品一区在线观看国产| 99热6这里只有精品| 99国产精品免费福利视频| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 少妇人妻精品综合一区二区| 精品一区二区三卡| 九九在线视频观看精品| 日韩伦理黄色片| 国产综合精华液| 黄色视频在线播放观看不卡| 十八禁高潮呻吟视频 | 亚洲精品视频女| 多毛熟女@视频| 中文字幕av电影在线播放| 在线观看www视频免费| 在线观看免费视频网站a站| 国产精品一区二区三区四区免费观看| 久久鲁丝午夜福利片| 日本黄大片高清| 边亲边吃奶的免费视频| 精品一区在线观看国产| 精品人妻一区二区三区麻豆| 日本av免费视频播放| 曰老女人黄片| 女性生殖器流出的白浆| 午夜av观看不卡| 国产视频首页在线观看| 亚洲国产欧美日韩在线播放 | 18禁在线播放成人免费| 中文字幕免费在线视频6| 十八禁网站网址无遮挡 | 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| 熟妇人妻不卡中文字幕| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 18禁裸乳无遮挡动漫免费视频| 高清不卡的av网站| 亚洲国产欧美日韩在线播放 | 黄色配什么色好看| av播播在线观看一区| 搡老乐熟女国产| 国产在线一区二区三区精| 哪个播放器可以免费观看大片| 国产 精品1| .国产精品久久| 中国三级夫妇交换| 亚洲成人手机| 三级国产精品片| 两个人免费观看高清视频 | 成人毛片60女人毛片免费| 黑人高潮一二区| 亚洲精品日本国产第一区| 中文字幕久久专区| 久久久久久久久久久久大奶| 欧美xxⅹ黑人| 春色校园在线视频观看| 91久久精品电影网| 91精品国产国语对白视频| 亚洲av在线观看美女高潮| 欧美区成人在线视频| 99久久中文字幕三级久久日本| 嫩草影院入口| 又爽又黄a免费视频| 美女脱内裤让男人舔精品视频| 亚洲av男天堂| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| av.在线天堂| 久久影院123| 亚洲精品日本国产第一区| 日韩欧美一区视频在线观看 | 日本wwww免费看| 热re99久久国产66热| 欧美3d第一页| 不卡视频在线观看欧美| 99热国产这里只有精品6| 亚洲欧美日韩卡通动漫| 亚洲精品一区蜜桃| 国产av码专区亚洲av| 视频区图区小说| 有码 亚洲区| 三级国产精品片| 亚洲久久久国产精品| 天堂中文最新版在线下载| 如日韩欧美国产精品一区二区三区 | 嫩草影院入口| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看| 91aial.com中文字幕在线观看| 久久影院123| 久久精品久久久久久久性| 不卡视频在线观看欧美| 日本wwww免费看| 五月玫瑰六月丁香| 亚洲精品第二区| 久久av网站| 精品久久久久久久久亚洲| 六月丁香七月| 国产色爽女视频免费观看| 午夜福利在线观看免费完整高清在| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品久久久com| 久久久a久久爽久久v久久| 交换朋友夫妻互换小说| 9色porny在线观看| 亚洲精品456在线播放app| 在线精品无人区一区二区三| 极品人妻少妇av视频| 中文乱码字字幕精品一区二区三区| 亚洲国产毛片av蜜桃av| 婷婷色麻豆天堂久久| 夜夜骑夜夜射夜夜干| 日韩,欧美,国产一区二区三区| 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 欧美bdsm另类| 在线免费观看不下载黄p国产| 日本黄大片高清| 成人无遮挡网站| 精品酒店卫生间| 日本av手机在线免费观看| 日韩欧美一区视频在线观看 | 精品人妻熟女av久视频| 久久人妻熟女aⅴ| 插阴视频在线观看视频|